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WEAK BAER MODULES OVER GRADED RINGS
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In [2], Fuchs and Viljoen introduced and classified the B∗-modules for a
valuation ring R: an R-module M is a B∗-module if Ext1R(M,X)=0 for each
divisible module X and each torsion module X with bounded order. The
concept of a B∗-module was extended to the setting of a torsion theory over
an associative ring in [14]. In the present paper, we use categorical methods
to investigate the B∗-modules for a group graded ring. Our most complete
result (Theorem 4.10) characterizes B∗-modules for a strongly graded ring
R over a finite group G with |G|−1 ∈ R. Motivated by the results of [8], [9],
[10] and [15], we also study the condition that every non-singular R-module
is a B∗-module with respect to the Goldie torsion theory; for the case in
which R is a strongly graded ring over a group, extensive information is
obtained for group rings of abelian, solvable and polycyclic-by-finite groups.

1. Notation and preliminaries. Throughout this paper, all rings R
will be associative and with identity, and all modules will be left R-modules.
The category of left R-modules will be denoted by R-Mod. Let G be a
(multiplicative) group with identity. A G-graded ring is a ring together with
a direct sum decomposition R =

⊕
g∈G Rg (as additive subgroups) such

that

(1) RgRh ⊆ Rgh for all g, h ∈ G.

It is well known that R1 is a subring of R, and 1 ∈ R1. If in (1) we have
equality, i.e. RgRτ = Rgτ for all g, τ ∈ G, then R is called a strongly graded

ring. It is easy to see that R is strongly graded if and only if RgRg−1 = R1

for any g ∈ G. If for any g ∈ G, Rg contains an invertible element, then R is
called a crossed product. It is obvious that if R is a crossed product, then R
is strongly graded. By a left G-graded R-module we mean a left R-module
M plus an internal direct sum decomposition M =

⊕
g∈G Mg (as additive
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subgroups) such that

RgMτ ⊆ Mgτ for all g, τ ∈ G.

Denote by R-gr the category of left G-graded R-modules. If M =
⊕

g∈G Mg

and N =
⊕

g∈G Ng are two G-graded modules, then HomR-gr(M,N) consists
of the R-homomorphisms f : M → N such that f(Mg) ⊆ Ng for every
g ∈ G. As is well known [6], R-gr is a Grothendieck category.

If M =
⊕

g∈G Mg is a graded R-module, then h(M) will stand for the set
of all homogeneous elements of M ; i.e. h(M) =

⋃
g∈G Mg \ {0}. If m ∈ M ,

m 6= 0, then we can write m =
∑

g∈G mg, where mg ∈ Mg; the finite set
{mg | g ∈ G, mg 6= 0} is called the set of homogeneous components of m.
If M =

⊕
λ∈G Mλ is a graded R-module and g ∈ G, then the g-suspension

of M is defined as the graded module M(g) obtained from M by setting
M(g)λ = Mλg. The g-suspension functor

Tg : R-gr → R-gr

defined by Tg(M) = M(g) is an isomorphism of categories.

2. Divisible graded modules. Several concepts of relative divisibility
have been introduced in the literature. In this section we use the definition
of divisibility from [14] and study the preservation of relative injectivity and
divisibility by some nice functors. Then applications are made to group
graded rings.

Let C, C′ be two abelian categories and let D : C → C′ be a covariant
functor. Let T ′ be a (hereditary) torsion class for C′; i.e. T ′ is closed
under subobjects, quotient objects, extensions and under arbitrary direct
sums. We define T = {X ∈ C | D(X) ∈ T ′}. Our first result is an easy
consequence of the definition.

Lemma 2.1. If D is exact and preserves direct sums, then T is a torsion

class for C.

Examples 2.2. (i) If we consider the functor (−)e : R-gr → Re-Mod
and τ is a torsion theory on Re-Mod, we can induce a torsion theory τg in
R-gr by taking the torsion class to be {M ∈ R-gr | Me is τ -torsion}.

(ii) Let R be strongly graded. Then R ⊗Re
− : Re-Mod → R-gr is exact

and preserves direct sums. We can define for any torsion theory τ in R-gr a
torsion theory τe in Re.

(iii) We denote by U : R-gr → R-Mod the forgetful functor; U is an
exact functor and preserves direct sums. Hence given a torsion theory τ in
R-Mod, we define τ∗ = {X ∈ R-gr | U(X) is τ -torsion}.

(iv) It is well known [6] that U has a right adjoint F : R-Mod → R-gr
which is defined as follows: if M ∈ R-Mod, then F (M) is the additive group⊕

g∈G(gM) (where each gM is a copy of M , gM = {gx | x ∈ M}) with the
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R-module structure given by a∗g x = hg(ax) for a ∈ Rh. Obviously, the gra-
dation of F (M) is given by F (M)g = gM, g ∈ G, and if f ∈ HomR(M,N),
then F (f) ∈ HomR-gr(F (M), F (N)) is given by F (f)( gx) = gf(x). We
remark that F is an exact functor and, by [4, Proposition 4.1], F commutes
with direct sums. Hence, given a torsion theory τ in R-gr, we can define τ
in R-Mod with torsion class {X ∈ R-Mod | F (X) is τ -torsion}.

Note also that U(F (M)) need not be a direct sum of copies of M , since
the component gM is not an R-submodule, but just an Re-submodule of
F (M). If M ∈ R-Mod, we have the canonical epimorphism

F (M)
α
→ M → 0

in R-Mod such that α( gx) = x, x ∈ M.

Proposition 2.3. Let L : C′ → C a left adjoint exact functor of D
preserving direct sums. Let T ′ be a torsion class in C′ such that DL(T ′) ⊆
T ′ and T be the torsion class induced in C. If X ∈ C is T -torsionfree, then

D(X) is T ′-torsionfree.

P r o o f. By the adjointness we have HomC′(T,D(X)) ∼= HomC(L(T ),X)
with T ∈ C′ and X ∈ C. If T is T ′-torsion, then L(T ) is T -torsion by
hypothesis. Hence the last term is zero and D(X) is T -torsionfree.

Recall that a torsion theory τ in R-gr is said to be rigid if M(g) is
τ -torsion for any τ -torsion module M for all g ∈ G. By [4, Proposition 4.2]
if τ is rigid, then τ is the smallest torsion theory of R-Mod containing the
τ -torsion modules. As an easy consequence of this definition and Proposition
2.3, we have the following result:

Corollary 2.4. Let R =
⊕

g∈G Rg with G finite and let τ be a rigid

torsion theory in R-gr. If M is a τ -torsionfree graded R-module, then M
is a τ -torsionfree R-module.

P r o o f. Since G is finite, F is also a left adjoint of U . Let T be τ -
torsion; then F (T ) is τ -torsion. Since T is the smallest torsion class in
R-Mod containing T , it follows that U(F (T )) is τ -torsion. Now, we can
apply Proposition 2.3.

Corollary 2.5. Let τ be a rigid torsion theory in R-gr. If M is a

τ -torsionfree R-module, then F (M) is τ -torsionfree.

P r o o f. It is easy to see that if T ∈ R-gr, then F (U(T )) =
⊕

g∈G T (g)
(see [5, Lemma 3.1]). Since τ is rigid, FU(T ) is τ -torsion for any τ -torsion
T . Therefore we can apply Proposition 2.3.

Corollary 2.6. F (τ(M)) = τ(F (M)) for any M ∈ R-Mod.

Our aim now is to study the injectivity relative to the torsion theories
we have described. We recall that an object E ∈ C is called T -injective
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if Ext1C(T,E) = 0 for all T ∈ T . The next result is a relative version of
the well-known result that right adjoint functors of exact functors preserve
injectivity.

Proposition 2.7. Let C, C′ be two abelian categories and T (resp. T ′)
be a torsion class in C (resp. C′). If an additive functor D : C → C′ is right

adjoint to an exact functor L with the property that L(T ′) ⊆ T , then D(E)
is T ′-injective for any T -injective object E.

P r o o f. Consider 0 → A → B → C → 0 in C′ with C ∈ T ′. By
adjointness

HomD(B,D(E)) HomD(A,D(E))

HomC(L(B), E) HomC(L(A), E)

���������� θ
// ����������

ϕ
//

But 0 → L(A) → L(B) → L(C) → 0 is exact, and L(C) ∈ T . By hypothesis
E is T -injective; thus ϕ is onto. Hence θ is onto.

Corollary 2.8. Let C, C′ be two abelian categories and let T ′ be a

torsion class in C′. Let D be an exact functor that preserves direct sums and

that is right adjoint to an exact functor L with the property that DL(T ′) ⊆
T ′. Then D(E) is T ′-injective for any T -injective object E, where T is the

induced torsion theory.

Corollary 2.9. Let R =
⊕

g∈G Rg with G finite and let τ be a rigid

torsion theory in R-gr. If M is a τ -injective graded R-module, then M is

τ -injective as an R-module.

Proposition 2.10. Let R =
⊕

g∈G Rg and let τ be a rigid torsion theory

in R-gr. If M is a τ -injective R-module, then F (M) is τ -injective.

The following result is an easy consequence of the equivalence of cate-
gories for strongly graded rings.

Corollary 2.11. Let R be strongly graded , let τ be a rigid torsion

theory in R-gr and let M ∈ R-gr. Then M is τ -injective if and only if Me

is τe-injective.

Proposition 2.12. Let E ∈ R-gr. If E is τ -injective as an R-module,
then E is τ -injective in R-gr.

P r o o f. Consider the exact sequence in R-gr: 0 → A → B → C → 0
where C is τ -torsion. Let h : A → E be a graded morphism. Since C
is τ -torsion and E is τ -injective, we can extend h to an R-homomorphism
f : B → E. But then it is also possible to extend h by a graded morphism
(see [6, Lemma I.2.1]).
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Let X ∈ C. X is called T -divisible [14] if it is a quotient of a direct sum
of T -injective objects.

Proposition 2.13. Let C, C′ be two abelian categories and T (resp. T ′)
be a torsion class in C (resp. C′). If an exact and direct sum preserving

functor D : C → C′ is right adjoint to an exact functor L with the property

that L(T ′) ⊆ T , then D(X) is T ′-divisible for any T -divisible object X.

P r o o f. Since X is T -divisible, we have the exact sequence
⊕

Eα →
X → 0 where Eα is T -injective. Hence

⊕
D(Eα) ∼= D(

⊕
Eα) → D(X) → 0

is exact and D(Eα) is T ′-injective by Proposition 2.7. Therefore D(X) is
T ′-divisible.

Corollary 2.14. Let C, C′ be two abelian categories and T ′ be a torsion

class in C′. If an exact additive functor D, which preserves direct sums, is

right adjoint to an exact functor L with the property that DL(T ′) ⊆ T ′,
then D(X) is T ′-divisible for any T -divisible object X.

Corollary 2.15. Let R be strongly graded , M be a graded R-module

and τ be a rigid torsion theory in R-gr. Then M is a graded τ -divisible

module if and only if Me is a τe-divisible Re-module.

Corollary 2.16. Let R =
⊕

g∈G Rg and let τ be a rigid torsion theory

in R-gr. If M is τ -divisible, then F (M) is τ -divisible.

Corollary 2.17. Let R =
⊕

g∈G Rg with G finite and let τ be a rigid

torsion theory. If M is a τ -divisible graded R-module, then M is a τ -

divisible R-module.

Proposition 2.18. Let R =
⊕

g∈G Rg and let τ be a rigid torsion theory

in R-gr. If M is a τ -divisible graded module, then M(g) is τ -divisible.

P r o o f. Let
⊕

Eα → M → 0 be exact where Eα is τ -injective. By
suspension

⊕
(Eα(g)) ∼= (

⊕
Eα)(g) → M(g) → 0 is also exact. Since τ is

rigid, Tg preserves τ -torsion modules and Proposition 2.7 implies that Eα(g)
is also τ -injective.

Proposition 2.19. Let R =
⊕

g∈G Rg. If M is a divisible graded R-

module, then F (M) is a gr-divisible graded R-module.

P r o o f. Since F is a right adjoint, it preserves injectivity. Now, F is
exact and therefore F preserves divisibility.

3. Graded D∗-modules. In this section we assume that τ is a rigid
torsion theory in R-gr. We recall that an object X ∈ C is said to be a
D∗-object for T if Ext1C(X,D) = 0 for any T -divisible object D. We now
study the properties of D∗-modules (i.e., the D∗-objects) for the category
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R-gr; this can be viewed as a continuation of the study of D∗-modules that
was begun in [14] and [10].

Our next result is an easy consequence of the equivalence between the
categories Re-Mod and R-gr.

Proposition 3.1. Let R be a strongly graded ring and M ∈ R-gr. Then

M is a D∗-module for τ if and only if Me is a D∗-module for τe.

Proposition 3.2. Let R =
⊕

g∈G Rg with G finite and |G|−1 ∈ R. If

M ∈ R-gr is a D∗-module for τ , then M ∈ R-Mod is a D∗-module for τ .

P r o o f. Consider an exact sequence 0 → A → B → M → 0 with A
τ -divisible. Applying F , we obtain

0 → F (A) → F (B) → F (M) ∼=
⊕

g∈G

M(g) → 0

exact where F (A) is τ -divisible by Corollary 2.16. We claim that M(g) is
also a D∗-module for τ . Consider 0 → D → X → M(g) → 0, where D is
τ -divisible. Then 0 → D(g−1) → X(g−1) → M → 0 is exact and D(g−1) is
τ -divisible by Proposition 2.18; so this sequence splits. Hence by applying
the g-suspension, the sequence 0 → D → X → M(g) → 0 also splits. Apply
[5, Theorem 3.10.1] to deduce that 0 → A → B → M → 0 splits.

Proposition 3.3. Let R =
⊕

g∈G Rg with G finite. If M ∈ R-gr is a

D∗-module for τ , then M is a D∗-module for τ .

P r o o f. Let 0 → D → X → M → 0 be an exact sequence in R-gr,
where D is τ -divisible. By Corollary 2.17, D is τ -divisible. Since M is a
D∗-module for τ , the exact sequence splits in R-Mod. Thus the sequence
splits in R-gr.

4. Graded B∗-modules. Let C be a Grothendieck category with a
finitely generated generator V . We say that an object X ∈ T of C has
bounded order in case there is a T -dense subobject K of V such that X
embeds in a factor of (V/K)(A), the direct sum of cardinal of A copies of
V/K, for some set A. In this section, we investigate the preservation of
the bounded order property by nice functors. Again, we are particularly
interested in applications to a strongly graded ring R and its functor Ext1R.
This type of investigation is closely related to the Bounded Splitting Prob-
lem that has been studied by many authors; see [14] for some background
references on splitting problems.

R e m a r k s. (i) It is easy to show that the definition of bounded order
does not depend on the finitely generated generator of C.

(ii) This concept of bounded order clearly coincides with the usual one
when C = R-Mod. It also makes sense for R-gr when either G is finite
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or R is strongly graded, since in these cases R-gr has a finitely generated
generator.

(iii) If we consider Goldie’s torsion theory, this concept coincides with
the definition of bounded order introduced in [15].

(iv) Let M ∈ R-gr. It is clear that if M has τ -bounded order, then M
has τ -bounded order.

Proposition 4.1. Let D : C → C′ be a functor between two Grothendieck

categories and let T (resp. T ′) be a torsion class in C (resp. C′). If D is

exact , preserves direct sums, sends a finitely generated generator to a finitely

generated generator and D(T ) ⊆ T ′, then D sends T -bounded order objects

to T ′-bounded order objects.

P r o o f. Straightforward.

Corollary 4.2. Let R be strongly graded and let X ∈ R-gr. If X has

τ -bounded order , then F (X) has τ -bounded order.

Corollary 4.3. Let R be strongly graded and let τ be a rigid torsion

theory. If X ∈ R-gr has τ -bounded order , then X(g) has τ -bounded or-

der.

Corollary 4.4. Let R be a strongly graded ring and let τ be a rigid

torsion theory in R-gr. Then M ∈ R-gr has τ -bounded order if and only if

Me ∈ Re-Mod has τe-bounded order.

Following the notation of [14], we say that an object M ∈ C is a B∗-object
for T if Ext1C(M,X) = 0 for each T -divisible X and each X with T -bounded
order.

From Proposition 3.1, Corollary 4.4, and the equivalence of the categories
Re-Mod and R-gr for strongly graded rings, we obtain the following result.

Proposition 4.5. Let R be a strongly graded ring , and let τ be a rigid

torsion theory in R-gr. Let M ∈ R-gr. Then M is a B∗-module for τ if and

only if Me is a B∗-module for τe.

Proposition 4.6. Let M ∈ R-gr. If Ext1R(M,T ) = 0 for all T with

τ -bounded order , then Ext1R-gr(M,T ) = 0 for all T with τ -bounded order.

P r o o f. Consider an exact sequence 0 → T → X → M → 0 in R-gr,
where T has τ -bounded order. Since T has also τ -bounded order, the pre-
ceding exact sequence splits in R-Mod and therefore in R-gr.

Proposition 4.7. Let M ∈ R-gr. If M is a B∗-module for τ , then M
is a B∗-module for τ .

P r o o f. This follows from Propositions 3.3 and 4.5.
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Proposition 4.8. Let R =
⊕

g∈G Rg with G finite and |G|−1 ∈ R and

let τ be a rigid torsion theory in R-gr. If Ext1R-gr(M,T ) = 0 for all T with

τ -bounder order , then Ext1R(M,T ) = 0 for all T with τ -bounded order.

P r o o f. Let 0 → T → X → M → 0 be an exact sequence in R-Mod
with T having τ -bounded order. Then 0 → F (T ) → F (X) → F (M) ∼=⊕

g∈G M(g) → 0 is exact and F (T ) has τ -bounded order by Corollary 4.2.

Now Ext1R-gr(
⊕

g∈G M(g), F (T )) ∼=
∏

Ext1R-gr(M(g), F (T )). Next we show

that Ext1R-gr(M(g), F (T )) = 0.

Consider the exact sequence 0 → F (T ) → Y → M(g) → 0 . Apply
the g−1-suspension to get the exact sequence 0 → F (T )(g−1) → Y (g−1) →
M → 0. By Corollary 4.3, F (T )(g−1) has τ -bounded order. By hypothesis,
we now find that 0 → F (T )(g−1) → Y (g−1) → M → 0 splits. Applying the
g-suspension, we find that 0 → F (T ) → Y → M(g) → 0 splits, as desired.
So 0 → F (T ) → F (X) → F (M) → 0 splits. Since |G| < ∞ and |G|−1 ∈ R,
from [5, Theorem 3.10.1] we deduce that 0 → T → X → M → 0 splits.

Proposition 4.9. Let R =
⊕

g∈G Rg with G finite and |G|−1 ∈ R and

let τ be a rigid torsion theory in R-gr. Let M ∈ R-gr. If M is a B∗-module

for τ , then M is a B∗-module for τ .

P r o o f. This follows from Propositions 3.2 and 4.7.

We summarize our results in the following:

Theorem 4.10. Let R be a strongly graded ring over a finite group G
with |G|−1 ∈ R, let τ be a rigid torsion theory in R-gr and let X ∈ R-gr.
Then the following conditions are equivalent :

(i) X is a B∗-module for τ .

(ii) X is a B∗-module for τ .

(iii) Xe is a B∗-module for τe.

5. Non-singular B∗-modules. In this section we study B∗-modules
for the Goldie torsion theory. We say that a category C has the (ND) (resp.
(NB)) property if every non-singular object is a D∗-object (resp. B∗-object).
Motivated by the work in [8] and [9], we study the conditions under which
every non-singular R-module has (NB), where R is a strongly graded ring.
Extensive information is obtained for the group ring case.

The following result is an easy consequence of the equivalence between
the categories Re-Mod and R-gr.

Proposition 5.1. Let R be a strongly graded ring. Then R-gr has (ND)
(resp. (NB)) if and only if Re-Mod has (ND) (resp. (NB)).
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Theorem 5.2. Let R be a strongly graded ring over a finite group G with

|G| invertible in R. If R is non-singular , then the following conditions are

equivalent :

(i) R-Mod has (NB).
(ii) R-gr has (NB).
(iii) Re-Mod has (NB).

P r o o f. We only have to show the equivalence of (i) and (ii). Assume
that R-Mod has (NB) and let X ∈ R-gr be a gr-non-singular module. Then
by [15, Lemma 2.7], U(X) is non-singular as an R-module. Hence U(X) is
a B∗-module as an R-module. Let

(1) 0 → A → B → X → 0

be an exact sequence of graded R-modules. If A is gr-bounded, we apply
the exact functor U to obtain

(2) 0 → U(A) → U(B) → U(X) → 0

in R-Mod. Since U preserves essentiality, we apply [15, Proposition 2.3] to
deduce that U(A) is bounded. If A is gr-divisible, then U(A) is divisible,
since E being gr-injective implies U(E) is injective [3, Theorem 4.7]. In
both cases the exact sequence (2) splits, and hence (1) splits in R-gr.

Assume now that R-gr has (NB) and let Y be a non-singular R-module.
Let

(3) 0 → A → B → Y → 0

be an exact sequence of R-modules. We apply the exact functor F to obtain

(4) 0 → F (A) → F (B) → F (X) → 0.

If A is bounded, then by [15, Proposition 2.2], F (A) is gr-bounded; and if
A is divisible, then F (A) is gr-divisible by Proposition 2.19. Moreover, [15,
Proposition 2.2] implies that F (Y ) is gr-non-singular and so the hypothesis
yields that (4) splits. By [5, Theorem 3.10.1], (3) splits.

Proposition 5.3. If the group ring R[G] has (NB), then either G is

finite or else R ∼= Mn1
(D1)× . . .×Mnt

(Dt) for some division rings Di such

that Z(Di)[G] has BSP (Bounded Splitting Property) for i = 1, . . . , t.

P r o o f. If all the non-singular R[G]-modules are B∗-modules, then R[G]
has BSP. By [15, Proposition 3.3], the result follows.

From [15, Corollary 3.5], we also have the following result.

Proposition 5.4. Let G be an infinite group and G0 = {1} ⊳ G1 ⊳

G2 ⊳ . . . ⊳ Gm ⊳ G be a finite subnormal chain in G. If R[G] has (NB),
then exactly one factor of the chain, say Gk/Gk−1, is infinite and each R[Gi]
has BSP.
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By Proposition 5.3 and Morita equivalence, there is no loss of generality
in assuming that R is a division ring D when we study (NB) for R[G] with
G infinite. We wish to show that if D[G] has (NB), then K[G] has (NB),
where K is the center of D. We then use this fact and Proposition 5.4 to
analyze the (NB) property when G is abelian-by-finite or polycyclic-by-finite
or solvable.

Lemma 5.5. Let D be a division ring that is finite-dimensional over its

center K = Z(D), and let G be an abelian group such that G ∼= T ⊕Z with

K[T ] semisimple artinian. Then D[G] has (NB).

P r o o f. Since K[T ] is semisimple, so is D[T ]. Thus D[G] ∼= D[T ⊕
Z] ∼= (D[T ])[Z] is hereditary, and hence D[G] has (ND). It also follows from
Morita equivalence and [15, Proposition 3.9] that D[G] has BSP.

It is very useful to understand the abelian case.

Theorem 5.6. Let K be a field and let G be an infinite abelian group.

Then K[G] has (NB) if and only if G = T ⊕ Z with K[T ] semisimple

artinian.

P r o o f. If K[G] has (NB), then K[G] has BSP. By [15, Theorem 3.6]
it follows that either G ∼= T ⊕ Z with K[T ] semisimple artinian or K[G] ∼=
K1[Zp∞ ] × . . . × Kr[Zp∞ ], where the fields Ki are of first kind with respect
to p and char(Ki) 6= p for each i. But in the latter case the ring Ki[Zp∞ ]
is a regular non-semisimple ring. But K[G] has (NB) and by [10], K[G] is
finite-dimensional. Hence this case is eliminated.

The converse is immediate from Lemma 5.5 with D = K.

Proposition 5.7. Let D be a division ring and K ⊆ Z(D) be a field.

Assume that D[G] is non-singular. If D[G] has (ND), then K[G] has (ND).

P r o o f. Let C be a divisible left K[G]-module. We will show that
HomK[G](D[G], C) is divisible as a left D[G]-module.

We have an exact sequence
⊕

Eα → C → 0 with injective modules Eα.
The epimorphism

⊕
βα

K[G] → Eα extends to
⊕

βα
E(K[G]) → Eα. Since

K[G] is non-singular, we have E(K[G]) ∼= Qmax(K[G]) = Q. Since D[G]
has (ND), it follows that D[G] is finite-dimensional. Since D[G] is free over
K[G], we see that K[G] is finite-dimensional. Hence direct sums of Q’s are
injective. We obtain E =

⊕
α(

⊕
βα

Q) → C → 0 with E injective. Since
D[G] is flat over K[G], it follows that HomK[G](D[G], E) is injective as a
D[G]-module. The exact sequence

HomK[G](D[G], E) → HomK[G](D[G], C) → 0

yields that HomK[G](D[G], C) is divisible.
By [15, Lemma 3.2], if N is non-singular as a K[G]-module, then the

extension of scalars D[G] ⊗K[G] N is non-singular as a D[G]-module.
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Finally, take any non-singular K[G]-module N and any divisible K[G]-
module C. By [1, 4.1.4], we have

Ext1K[G](D[G] ⊗K[G] N,C) ∼= Ext1D[G](D[G] ⊗K[G] N,HomK[G](D[G], C)),

and the last term is zero since D[G] has (ND), HomK[G](D[G], C) is divisible
and D[G]⊗K[G] N is non-singular. Since K[G] is a direct summand of D[G]
as a K[G]-module, it follows that N is a direct summand of D[G] ⊗K[G] N .

Hence Ext1K[G](N,C) = 0.

Corollary 5.8. Let D be a division ring and let K ⊆ Z(D) be a field.

If D[G] has (NB), then so does K[G].

P r o o f. If D[G] has (NB), then K[G] has BSP by [15, Theorem 3.11],
and D[G] is non-singular. Now K[G] has also (ND) by Proposition 5.7.

Combining Corollary 5.8, Theorem 5.6, and Lemma 5.5, we have the
following result.

Theorem 5.9. Let D be any division ring that is finite-dimensional over

its center K = Z(D) and G be an infinite abelian group. The group ring

D[G] has (NB) if and only if K[G] does.

Proposition 5.10. Let R[G] be a left non-singular ring. If R[G] has

(ND), then R[H] has finite left Goldie dimension for any subgroup H of G.

P r o o f. By [10], since R[G] has (ND), it follows that R[G] has finite left
Goldie dimension. Since R[G] is a free extension of R[H], we see that R[H]
has finite Goldie dimension.

Corollary 5.11. Assume that R[G] has (NB). If H is a locally finite

subgroup of an infinite group G and o(h)−1 ∈ R for all h ∈ H, then H is

finite.

P r o o f. Since R[G] has (NB), we deduce that R[G] has BSP. By [15,
Lemma 3.1] it follows that R is semisimple. By Morita equivalence we can
assume that R = D, a division ring. Then the hypotheses imply D[H] is von
Neumann regular. By Proposition 5.10, D[H] has finite Goldie dimension.
Hence D[H] must be semisimple artinian. Therefore, H is finite.

We denote by ∆(G) the set of all the elements in G with finitely many
conjugates.

Proposition 5.12. Assume that o(h)−1 ∈ R for all h ∈ t(∆(G)). If

R[G] has (NB) and |∆(G)| is infinite, then

(1) |G/∆(G)| < ∞,

(2) |t(∆(G))| < ∞,

(3) ∆(G)/t(∆(G)) ∼= Z.
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P r o o f. (1) By [15, Lemma 3.4], |G/∆(G)| < ∞.

(2) Since t(∆(G)) is locally finite, we can apply Corollary 5.10.

(3) By [7, IV, Lemma 1.6], H = ∆(G)/t(∆(G)) is abelian. By Proposi-
tion 5.4, H must have rank one. Choose C ⊆ H with C ∼= Z. By Proposition
5.4, H/C is finite, and hence H is finitely generated. Therefore, H ∼= Z.

R e m a r k. When G satisfies the hypothesis of Proposition 5.12, then G
has a normal series finite-Z-finite. By [11, Proposition 8.2.], G is polycyclic-
by-finite. Since the Hirsch number h(G) of G is 1, G has a normal series
Z-finite. (See Section 3 of [15] for more information about these R[G].)

Proposition 5.13. If G is a infinite solvable group and R[G] has BSP ,
then G is polycyclic-by-finite with h(G) = 1.

P r o o f. By Proposition 5.4, only one factor H of the commutator series
for G is infinite; so we can argue as in Proposition 5.12(3) that H ∼= Z.

If G is abelian-by-finite and R[G] has BSP, a similar argument shows
that G has a normal series Z-finite. Therefore to study (NB) for G in the
case of Proposition 5.11 or G solvable or G polycyclic-by-finite, it is sufficient
to examine a group G with a normal series Z-finite. We are able to do this
in a special case.

Proposition 5.14. Let D be a division ring finite-dimensional over its

center. If G has a normal series Z-finite and (o(x))−1 ∈ D for each x ∈
G/Z, then D[G] has (NB).

P r o o f. By [15, Proposition 3.9], D[Z] has BSP. On the other hand,
D[Z] is a hereditarily noetherian ring and any divisible module is injective.
Hence D[Z] has (NB). Since D[G] ∼= D[Z]∗[G/Z] and G/Z has nice inverses,
D[G] has (NB) by [15, Corollary 2.6] and Theorem 5.2.

We now further examine the role of ∆(G) in the study of BSP.

Proposition 5.15. Let G be an infinite group with ∆(G) finite, and

assume R[G] has BSP. Let ℵ be an infinite cardinal. If x ∈ G has ℵ
conjugates, then |G| = ℵ. Consequently , any element in G − ∆(G) has |G|
conjugates.

P r o o f. Let x ∈ G−∆(G). Let {xα} be a set of distinct conjugates of x.
Then |{xα}| = ℵ by hypothesis. Let H be the subgroup of G generated by
{xα}. Since {xα} ⊆ H, we have |H| ≥ ℵ. Since H consists of finite products
from a set having ≤ ℵ elements, we deduce that |H| ≤ ℵ. Since the conjugate
of a product is the product of conjugates, it follows that H ⊳ G. By [15,
Lemma 3.4], |G/H| < ∞. Hence G is the union of a finite number of cosets,
each of which has ℵ elements. Thus |G| = ℵ.
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Corollary 5.16. If R[G] has BSP with |G| = ∞ and |∆(G)| < ∞, then

either G is countable or else every element of G − ∆(G) has uncountably

many conjugates.
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[12] B. Stenstr öm, Rings of Quotients, Springer, Berlin, 1975.
[13] M. Teply, Semicocritical Modules, Universidad de Murcia, 1987.
[14] M. Teply and B. Torrec i l las, A weaker form of Baer’s splitting problem for

torsion theories, Czechoslovak Math. J. 43 (1993), 663–674.
[15] —, —, Strongly graded rings with the Bounded Splitting Property , J. Algebra, to

appear.

Department of Mathematical Sciences Department of Algebra and Analysis
University of Wisconsin-Milwaukee University of Almeŕıa
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