SOME QUADRATIC INTEGRAL INEQUALITIES OF FIRST ORDER

BY

BRONISŁAW FLORKIEWICZ AND MAŁGORZATA KUCHTA (WROCŁAW)

We derive and examine some quadratic integral inequalities of first order of the form

(1)
$$\int_I (r\dot{h}^2 + 2sh\dot{h} + uh^2) dt \ge 0, \quad h \in H,$$

where $I=(\alpha,\beta), \ -\infty \le \alpha < \beta \le \infty, \ r, \ s$ and u are given real functions of the variable t, H is a given class of absolutely continuous functions and $\dot{h} \equiv dh/dt$. The inequalities of the form (1) comprise as special cases integral inequalities of Sturm-Liouville type examined by Florkiewicz and Rybarski [10] and quadratic integral inequalities of Opial type examined by Kuchta [13]. The method used to obtain the integral inequalities of the form (1) is an extension of the uniform method of obtaining various types of integral inequalities involving a function and its derivative. The method we extend was used in [8]–[10], [13]. The method makes it possible, given a function r and an auxiliary function φ , to determine the functions s and u, and next the class H of the functions h for which (1) holds. In this paper s and u are solutions of a certain differential inequality which makes it possible to obtain a large set of functions s and u for which inequality (1) holds.

Inequalities of the form (1) have been considered by Beesack [2]–[5], Redheffer [16], Yang [18], Benson [6], Boyd [7] and others (for an extensive bibliography see [14]).

The positive definiteness of quadratic functionals of the form (1) is a basic problem of the theory of singular quadratic functionals introduced by Morse and Leighton [15] (cf. [17], [1]). This problem is of significant importance for the oscillation theory for second order linear differential equations on a non-compact interval (see [17]).

Let $I = (\alpha, \beta), -\infty \le \alpha < \beta \le \infty$, be an arbitrary open interval. We denote by M(I) the class of real functions which are defined and Lebesgue

¹⁹⁹¹ Mathematics Subject Classification: Primary 26D10.

Key words and phrases: absolutely continuous function, integral inequality.

measurable on I and by AC(I) the class of real functions defined and absolutely continuous on I. Let $r \in AC(I)$ and $\varphi \in AC(I)$ be given functions such that r>0, $\varphi>0$ on I and $\dot{\varphi}\in AC(I)$. Then $r^{-1}=1/r\in AC(I)$ and $\varphi^{-1} = 1/\varphi \in AC(I)$. Let $s \in AC(I)$ and $u \in M(I)$ be arbitrary functions satisfying the differential inequality

$$\dot{s} - u + (r\dot{\varphi})\dot{\varphi}^{-1} \le 0$$

almost everywhere on I.

Denote by \widehat{H} the class of functions $h \in AC(I)$ satisfying the following integral and limit conditions:

(4)
$$\lim_{t \to \alpha} \inf vh^2 < \infty, \quad \limsup_{t \to \beta} vh^2 > -\infty,$$

where

$$(5) v = r\dot{\varphi}\varphi^{-1} + s.$$

THEOREM 1. For every $h \in \widehat{H}$ both limits in (4) are proper and finite, and

(6)
$$\lim_{t \to \beta} vh^2 - \lim_{t \to \alpha} vh^2 \le \int_I (r\dot{h}^2 + 2sh\dot{h} + uh^2) dt.$$

If $h \not\equiv 0$, then equality holds in (6) if and only if s and u satisfy the differential equation

(7)
$$\dot{s} - u + (r\dot{\varphi})\dot{\varphi}^{-1} = 0$$

a.e. on $I, \varphi \in \widehat{H}$ and $h = c\varphi$ with $c = \text{const} \neq 0$.

Proof. Let $h \in AC(I)$. By (5) and our assumptions we have $vh^2 \in$ AC(I) and $\varphi^{-1}h \in AC(I)$ and we easily check that

(8)
$$r\dot{h}^2 + 2sh\dot{h} + uh^2 = (vh^2)^{\cdot} + f + g$$
 a.e. on I ,

where

(9)
$$f = -(\dot{s} - u + (r\dot{\varphi})\dot{\varphi}^{-1})h^{2} \ge 0,$$
(10)
$$g = r\varphi^{2}[(\varphi^{-1}h)\dot{\varphi}^{-1}]^{2} \ge 0.$$

(10)
$$q = r\varphi^{2}[(\varphi^{-1}h)^{\cdot}]^{2} > 0.$$

Now, let $h \in \widehat{H}$. By the first condition of (3) it follows that $r\dot{h}^2$ is summable on I because $r\dot{h}^2 \geq 0$ on I. By the assumptions, all other functions appearing in (8) are summable on each compact interval $[a,b] \subset I$. Thus, by (8),

(11)
$$\int_{a}^{b} r\dot{h}^{2} dt + 2 \int_{a}^{b} sh\dot{h} dt + \int_{a}^{b} uh^{2} dt = vh^{2}|_{a}^{b} + \int_{a}^{b} f dt + \int_{a}^{b} g dt$$

for all $\alpha < a < b < \beta$. By (4) there exist two sequences $\{a_n\}$ and $\{b_n\}$ such that $\alpha < a_n < b_n < \beta$, $a_n \to \alpha$, $b_n \to \beta$ and

$$\lim_{n\to\infty}(-vh^2)|_{a_n}>-\infty, \quad \lim_{n\to\infty}vh^2|_{b_n}>-\infty.$$

Thus there is a constant C such that

$$vh^2|_{a_n}^{b_n} \ge C > -\infty.$$

In view of (9) and (10), from (11) we infer that

$$\int_{a_n}^{b_n} (2sh\dot{h} + uh^2) dt \ge -\int_{a_n}^{b_n} r\dot{h}^2 dt + C \ge -\int_{\alpha}^{\beta} r\dot{h}^2 dt + C$$

and letting $n \to \infty$ gives

$$\int_{I} (2sh\dot{h} + uh^2) dt \ge -\int_{I} r\dot{h}^2 dt + C > -\infty.$$

By this estimate and by the second and third conditions of (3) we easily see that the functions $sh\dot{h}$ and uh^2 are summable on I. In the analogous way we show that f and g are summable on I. Thus all integrals in (11) have finite limits as $a \to \alpha$ or $b \to \beta$. It follows that both limits in (4) are proper and finite. Now, by (11), as $a \to \alpha$ and $b \to \beta$, we obtain

(12)
$$\int_{I} (r\dot{h}^{2} + 2sh\dot{h} + uh^{2}) dt = \lim_{t \to \beta} vh^{2} - \lim_{t \to \alpha} vh^{2} + \int_{I} f dt + \int_{I} g dt$$

whence (6) follows, since $f \ge 0$ and $g \ge 0$ on I.

By (12), equality holds in (6) for a non-vanishing function $h \in \widehat{H}$ if and only if $\int_I f \, dt = 0$ and $\int_I g \, dt = 0$, i.e. f = 0 and g = 0 a.e. on I. In view of (10), g = 0 a.e. on I if and only if $(\varphi^{-1}h)^{\cdot} = 0$ a.e. on I. Hence $h = c\varphi$, where $c = \text{const} \neq 0$, since $\varphi^{-1}h \in AC(I)$ by assumption. Thus $\varphi \in \widehat{H}$. Further, from (9), f = 0 a.e. on I if and only if s and u satisfy (7) a.e. on I, because $h^2 = c^2\varphi^2 > 0$ on I.

Denote by \widetilde{H} the class of functions $h \in \widehat{H}$ satisfying additionally the limit condition

(13)
$$\liminf_{t \to \alpha} vh^2 \le \limsup_{t \to \beta} vh^2.$$

By Theorem 1 we can write it in the equivalent form

(14)
$$\lim_{t \to \alpha} vh^2 \le \lim_{t \to \beta} vh^2.$$

THEOREM 2. For every $h \in \widetilde{H}$,

(15)
$$\int_{I} (r\dot{h^2} + 2sh\dot{h} + uh^2) dt \ge 0.$$

If $h \not\equiv 0$, then equality holds in (15) if and only if $\varphi^{-1}h = \text{const} \neq 0$ and the additional conditions (7) and

(16)
$$\varphi \in \widehat{H}, \quad \lim_{t \to \alpha} v \varphi^2 = \lim_{t \to \beta} v \varphi^2$$

are satisfied.

Proof. By (14) and Theorem 1, inequality (15) follows from (6). If equality occurs in (15) for some non-vanishing function $h \in \widetilde{H}$, then by (6) and (14) we have $\lim_{t\to\alpha}vh^2=\lim_{t\to\beta}vh^2$. Using Theorem 1 once again we conclude that (7) holds, $\varphi\in\widehat{H}$ and $h=c\varphi$, where $c=\mathrm{const}\neq 0$, whence we obtain (16).

Now we describe the class \widetilde{H} in the cases that occur most frequently. If $ru - s^2 \geq 0$ a.e. on I, then inequality (15) holds for all $h \in AC(I)$. Thus it is natural to consider cases like $ru - s^2 < 0$ a.e. in some interval $(a, b) \subset I$.

LEMMA 1. Let $\alpha \leq a < b \leq \beta$. If $ru - s^2 < 0$ a.e. on (a,b), then the function v satisfies the differential inequality

$$(17) r\dot{v} < 2sv - v^2$$

a.e. on (a,b).

Proof. By (5) and (2) we have

(18)
$$\dot{v} = (r\dot{\varphi})\dot{\varphi}^{-1} + \dot{s} - r\dot{\varphi}^2\varphi^{-2} < u - r\dot{\varphi}^2\varphi^{-2}$$

a.e. on (a, b). Thus from the assumptions we obtain

$$r\dot{v} \le ru - r^2\dot{\varphi}^2\varphi^{-2} < s^2 - (r\dot{\varphi}\varphi^{-1})^2$$

since r > 0 on I. Further, by (5) we have $(r\dot{\varphi}\varphi^{-1})^2 = s^2 - 2sv + v^2$ on I, whence (17) follows. \blacksquare

We will denote by U_{α} (resp. U_{β}) some right-hand (resp. left-hand) neighbourhood of the point α (resp. β). By Lemma 1 it follows that if $ru-s^2<0$ a.e. on U_{α} and $sv\leq 0$ on U_{α} , then $\dot{v}<0$ a.e. on U_{α} and consequently the function v is decreasing on U_{α} . Thus the limit $v(\alpha)=\lim_{t\to\alpha}v$ exists and $v< v(\alpha)$ on U_{α} . Analogously, if $ru-s^2<0$ a.e. on U_{β} and $sv\leq 0$ on U_{β} , then $v(\beta)=\lim_{t\to\beta}v$ exists and $v>v(\beta)$ on U_{β} .

LEMMA 2. If $ru - s^2 < 0$ a.e. on U_{α} (resp. U_{β}), $sv \leq 0$ on U_{α} (resp. U_{β}) and $v(\alpha) \neq 0$ (resp. $v(\beta) \neq 0$), then $\int_{\alpha}^{t} r^{-1} d\tau < \infty$ (resp. $\int_{t}^{\beta} r^{-1} d\tau < \infty$) for some $t \in I$. Moreover, if $v(\alpha) = \infty$ (resp. $v(\beta) = -\infty$), then $v(t) \int_{\alpha}^{t} r^{-1} d\tau = O(1)$ as $t \to \alpha$ (resp. $v(t) \int_{t}^{\beta} r^{-1} d\tau = O(1)$ as $t \to \beta$).

Proof. We prove the lemma only for the point α . The proof for β is analogous.

Let $v(\alpha) \neq 0$ and consider some right-hand neighbourhood $U \subset U_{\alpha}$ of α such that $v \neq 0$ on U. By the assumptions and Lemma 1, from (17) we get $r\dot{v} < -v^2$ a.e. on U. Then $r^{-1} < -v^{-2}\dot{v}$ a.e. on U, because r > 0 on I and we have the estimate

(19)
$$\int_{a}^{t} r^{-1} d\tau \le -\int_{a}^{t} v^{-2} \dot{v} d\tau = v^{-1}(t) - v^{-1}(a)$$

for $\alpha < a < t < \beta$ on U.

If $v(\alpha) > 0$ (i.e. v > 0 on U), then by (19) as $a \to \alpha$ we obtain $\int_{\alpha}^{t} r^{-1} d\tau < v^{-1}(t) < \infty$. Hence $0 < v(t) \int_{\alpha}^{t} r^{-1} d\tau < 1$ and thus $v(t) \int_{\alpha}^{t} r^{-1} d\tau = O(1)$ as $t \to \alpha$.

If $v(\alpha) < 0$ (i.e. v < 0 on U), then by (19) we obtain $\int_a^t r^{-1} d\tau < -v^{-1}(a)$, whence as $a \to \alpha$ we get $\int_a^t r^{-1} d\tau < -v^{-1}(\alpha) < \infty$.

We introduce the following terminology:

- a boundary point α (resp. β) of the interval I is of type I if $v \leq 0$ on U_{α} (resp. $v \geq 0$ on U_{β});
- α (resp. β) is of $type\ II$ if $ru-s^2<0$ a.e. on U_{α} (resp. U_{β}) and $sv\leq 0$ on U_{α} (resp. U_{β}) and $0< v(\alpha)<\infty$ (resp. $-\infty< v(\beta)<0$);
- α (resp. β) is of type III if $ru s^2 < 0$ a.e. on U_{α} (resp. U_{β}) and $sv \leq 0$ on U_{α} (resp. U_{β}) and $v(\alpha) = \infty$ (resp. $v(\beta) = -\infty$).

We denote by H the class of functions $h \in AC(I)$ satisfying the integral conditions (3), and by H_0 (resp. H^0) the class of functions $h \in H$ satisfying the limit condition

(20)
$$\liminf_{t \to \alpha} |h| = 0 \quad (\text{resp. } \liminf_{t \to \beta} |h| = 0).$$

In the cases considered in the sequel the condition (20) is equivalent to

(21)
$$\lim_{t \to \alpha} h \equiv h(\alpha) = 0 \quad \text{(resp. } \lim_{t \to \beta} h \equiv h(\beta) = 0\text{)}.$$

THEOREM 3. (i) If both α and β are of type I, then $\widetilde{H} = H$.

- (ii) If α is of type II and β is of type I, then $\widetilde{H} \supset H_0$.
- (iii) If α is of type III and β is of type I, then $\widetilde{H} = H_0$.
- (iv) If α is of type I and β is of type II, then $\widetilde{H} \supset H^0$;
- (v) If α is of type I and β is of type III, then $\widetilde{H} = H^0$;
- (vi) If both α and β are of type II or III, then $\widetilde{H} = H_0 \cap H^0$.

Proof. If α is of type I and $h \in AC(I)$, then $vh^2 \leq 0$ on U_{α} and hence $\liminf_{t \to \alpha} vh^2 \leq 0$.

Let α be of type II or III. Then by Lemma 2 we have $\int_{\alpha}^{t} r^{-1} d\tau < \infty$ for some $t \in I$. Furthermore, if $h \in AC(I)$ and $\int_{I} r\dot{h}^{2} dt < \infty$, then using

Schwarz's inequality we obtain the estimate

(22)
$$|h(b) - h(a)| \le \int_{a}^{b} |\dot{h}| dt \le \left(\int_{a}^{b} r^{-1} dt\right)^{1/2} \left(\int_{a}^{b} r \dot{h}^{2} dt\right)^{1/2},$$

where $\alpha < a < b \le t$, and the Cauchy condition for the existence of the limit yields the existence of a finite limit $h(\alpha) = \lim_{t \to \alpha} h$.

If α is of type III and $h \in \widetilde{H}$, then $v(\alpha) = \infty$ and a finite limit $h(\alpha)$ exists. If $h(\alpha) \neq 0$, then $\lim_{t\to\alpha} vh^2 = \infty$, which contradicts (4). Thus $h(\alpha) = 0$, i.e. $h \in H_0$.

If α is of type II or III, then by Lemma 2 we have $\int_{\alpha}^{t} r^{-1} d\tau < \infty$ for some $t \in I$ and $v(t) \int_{\alpha}^{t} r^{-1} d\tau = O(1)$ as $t \to \alpha$. Furthermore, if $h \in H_0$, then from (22) as $a \to \alpha$ and b = t we get the estimate

$$0 \le |vh^2| \le \left|v(t)\int_{\alpha}^t r^{-1} d\tau\right| \int_{\alpha}^t r \dot{h}^2 d\tau$$

and hence $\lim_{t\to\alpha} vh^2 = 0$.

Similar symmetric conclusions are valid if α is replaced by β and the class H_0 by H^0 .

If both α and β are of type II or III and $h \in \widetilde{H}$, then $\lim_{t \to \alpha} vh^2 \geq 0$ and $\lim_{t \to \beta} vh^2 \leq 0$ and by (14) we have

(23)
$$\lim_{t \to \alpha} vh^2 = \lim_{t \to \beta} vh^2 = 0.$$

Since $v(\alpha) > 0, v(\beta) < 0$ and the finite values $h(\alpha)$ and $h(\beta)$ exist, it follows from (23) that $h(\alpha) = h(\beta) = 0$, i.e. $h \in H_0 \cap H^0$.

Basing on these considerations we can easily derive the theorem. \blacksquare

Now we prove some new inequalities. According to these examples we see that all cases of Theorem 3 can hold.

Example 1. Take $I=(0,1), r=e^{at}$ and $\varphi=e^{ct}$ where $a\neq 0$ and c are arbitrary constants. Then the functions

$$s = \frac{1 - ac - c^2}{a}e^{at} + k,$$

where k is an arbitrary constant and $u = e^{at}$, satisfy equation (7) on I, and inequality (15) takes the form

(24)
$$\int_{0}^{1} \left(e^{at} \dot{h}^{2} + 2 \left(\frac{1 - ac - c^{2}}{a} e^{at} + k \right) h \dot{h} + e^{at} h^{2} \right) dt \ge 0.$$

Denote by \tilde{a} the root of the equation $2e^a - a = 2$ such that $-2 < \tilde{a} < -1$ and by \hat{a} the root of $(2-a)e^a = 2$ such that $1 < \hat{a} < 2$. From Theorems 2 and 3(i), (ii), (iv) we obtain:

• If either (i) or (ii) holds, where

(i)
$$\widetilde{a} < a < 0 \text{ or } a > 0$$
,

$$-1 + \frac{a}{e^a - 1} < c < 1, \quad \frac{c^2 - 1}{a}e^a < k < \frac{c^2 - 1}{a} + c - 1,$$

(ii)
$$a < 0 \text{ or } 0 < a < \hat{a}$$
,

$$-1 < c < 1 - \frac{ae^a}{e^a - 1}, \qquad \left(\frac{c^2 - 1}{a} + c + 1\right)e^a < k < \frac{c^2 - 1}{a},$$

then inequality (24) holds for every $h \in H$, i.e. for h satisfying only the integral conditions (3).

If

(iii)
$$a < \tilde{a}$$
, $1 < c < -1 + \frac{a}{e^a - 1}$, $\frac{c^2 - 1}{a} < k < \frac{c^2 - 1}{a} + c - 1$,

then (24) holds for $h \in H_0$.

If

$$\text{(iv) } a > \widehat{a}, \quad \ 1 - \frac{ae^a}{e^a - 1} < c < -1, \quad \ \left(\frac{c^2 - 1}{a} + c + 1\right)e^a < k < \frac{c^2 - 1}{a},$$

then (24) holds for $h \in H^0$.

Inequality (24) is strict for $h \not\equiv 0$.

The condition $ru - s^2 < 0$ is satisfied on the interval $(0, \tau_0)$ with

$$0 < \tau_0 = \frac{1}{a} \ln \frac{ak}{(c-1)(c+a+1)} < 1$$

in case (i), on $(\tau_1, 1)$ with

$$0 < \tau_1 = \frac{1}{a} \ln \frac{ak}{(c+1)(c+a-1)} < 1$$

in case (ii) and on (0,1) in cases (iii) and (iv).

Example 2. Let $I=(\alpha,\beta)$, where $0\leq \alpha<\beta\leq\infty$. Take $r=t^a$ and $\varphi=t^{(1-a)/2}$ on I, where $a\neq 1$ is an arbitrary constant. Then the functions $s=At^{a-1}$ and $u=\frac{1}{4}(a-1)(6A-a+1)t^{a-2}$, where A is an arbitrary constant, satisfy equation (7) on I. If (i) a<1 and $(a-1)/2< A\leq 0$ or (ii) a>1 and $0\leq A<(a-1)/2$, then $ru-s^2<0$ on I and in case (i) the boundary point α is of type II if $\alpha>0$ or of type III if $\alpha=0$ and the boundary point β is of type I, and in case (ii) the point α is of type I and the point β is of type II if $\beta<\infty$ or of type III if $\beta=\infty$.

Applying Theorems 2 and 3(ii), (iii), (iv), (v) we get:

If $0 \le \alpha < \beta \le \infty$ and either a < 1, $(a-1)/2 < A \le 0$ or a > 1, $0 \le A < (a-1)/2$, and $h \not\equiv 0$, then

(25)
$$\int_{\alpha}^{\beta} \left[t^a \dot{h}^2 + 2At^{a-1}h\dot{h} + \frac{1}{4}(a-1)(6A-a+1)t^{a-2}h^2 \right] dt > 0$$

for every $h \in \widetilde{H}$; and $\widetilde{H} = H_0$ if a < 1 and $\widetilde{H} = H^0$ if a > 1.

Inequality (25) for A=0 was considered in [3] (cf. [13]); if $\alpha=0,\beta=\infty$ and a=0 we get the well-known Hardy integral inequality ([11, Th. 253]).

EXAMPLE 3. We take I=(-1,1) and $r=(1-t^2)^a$ on I. We put $\varphi=(1-t^2)^k$ on I and k=1-a or k=1/2-a, where a is an arbitrary constant such that k>0. Then the functions $s=At(1-t^2)^b$ and $u=(B-Ct^2)(1-t^2)^{b-1}$, where b=a, B=A+2a-2, C=A(2a+1) if k=1-a or b=a-1, B=A+2a-1, C=A(2a-1) if k=1/2-a and A is an arbitrary constant, satisfy (7) on I.

If a < -1/2, $0 \le A < 1 - 1/a$ or $-1/2 \le a < 1$, $0 \le A < 2 - 2a$ in the case k = 1 - a; or a < 0, $0 \le A < 1$ or $0 \le a < 1/2$, $0 \le A < 1 - 2a$ in the case k = 1/2 - a, then both boundary points are of type III.

Applying Theorems 2 and 3(vi) we infer the following:

Let $h \in H_0 \cap H^0$.

(i) If a < -1/2, $0 \le A < 1 - 1/a$ or $-1/2 \le a < 1$, $0 \le A < 2 - 2a$, then

(26)
$$\int_{-1}^{1} \left[(1 - t^2)^a \dot{h}^2 + 2At(1 - t^2)^a h \dot{h} + (B - Ct^2)(1 - t^2)^{a-1} h^2 \right] dt \ge 0,$$

where B = A + 2a - 2 and C = A(2a + 1). Equality holds in (26) if and only if $h = c(1 - t^2)^{1-a}$, where $c = \text{const} \neq 0$.

(ii) If
$$a < 0$$
, $0 \le A < 1$ or $0 \le a < 1/2$, $0 \le A < 1 - 2a$, then

(27)
$$\int_{1}^{1} \left[(1 - t^2)^a \dot{h}^2 + 2At(1 - t^2)^{a-1} h \dot{h} + (B - Ct^2)(1 - t^2)^{a-2} h^2 \right] dt \ge 0,$$

where B = A + 2a - 1 and C = A(2a - 1). If $h \not\equiv 0$, then for a < 0 equality holds in (27) if and only if $h = c(1 - t^2)^{1/2 - a}$, where $c = \text{const} \neq 0$, and for $0 \le a < 1/2$ inequality (27) is strict.

The condition $ru - s^2 < 0$ is satisfied on (-1, 1) in both cases.

Inequalities (26) and (27) for A=0 were discussed in [12] and [16] (cf. [10]).

Let $s \in AC(I)$ and $u \in M(I)$ be arbitrary functions satisfying the differential inequality (2) a.e. on I such that s=0 on I and u<0 a.e. on I. Then

the second and third conditions of (3) are trivially satisfied and inequality (15) takes the form

(28)
$$\int_{I} |u|h^2 dt \le \int_{I} r\dot{h}^2 dt.$$

Inequalities of the form (28) are the integral inequalities of Sturm-Liouville type which were examined in [10].

In this case we have $ru-s^2=ru<0$ a.e. on I and sv=0 on I. Thus the function v is decreasing on I and $v(\alpha)>v(\beta)$. Moreover, α (resp. β) is of type I if $v(\alpha)\leq 0$ (resp. $v(\beta)\geq 0$), of type II if $0< v(\alpha)<\infty$ (resp. $-\infty< v(\beta)<0$) and of type III if $v(\alpha)=\infty$ (resp. $v(\beta)=-\infty$). Hence α and β cannot be simultaneously of type I. In this way from Theorems 2 and 3 we get Theorems 3 and 4 of [10].

Now, let $s \in AC(I)$ and $u \in M(I)$ be arbitrary functions satisfying the differential inequality (2) a.e. on I such that $u \le 0$ a.e. on I. Then the third of the integral conditions (3) is trivially satisfied and if $s^2 + u^2 > 0$ a.e. on I, then $ru - s^2 < 0$ a.e. on I. Next by (18) we have $\dot{v} \le u - r\dot{\varphi}^2\varphi^{-2} \le 0$ a.e. on I. Thus v is nonincreasing on I and $v(\alpha) > v(\beta)$ except for the trivial case $s \equiv 0$ and $u \equiv 0$. Hence α and β cannot be simultaneously of type I.

Theorem 4. Let $u \leq 0$ a.e. on I and let $h \in AC(I)$ satisfy the integral condition $\int_I r\dot{h}^2 dt < \infty$. If $s \leq 0$ on I, $v(\beta) \geq 0$ and $h(\alpha) = 0$, or $s \geq 0$ on I, $v(\alpha) \leq 0$ and $h(\beta) = 0$, then

(29)
$$2 \int_{I} |sh\dot{h}| \, dt + \int_{I} |u| h^{2} \, dt \le \int_{I} r\dot{h}^{2} \, dt.$$

If $h \not\equiv 0$, then equality holds in (29) if and only if s and u satisfy the differential equation (7) a.e. on I, $\varphi^{-1}h = \text{const} \neq 0$,

(30)
$$\int_{I} r\dot{\varphi}^{2} dt < \infty, \quad \lim_{t \to \alpha} v\varphi^{2} = \lim_{t \to \beta} v\varphi^{2},$$

and $\varphi(\alpha) = 0$, $\dot{\varphi} \ge 0$ on I provided $s \le 0$ on I, or $\varphi(\beta) = 0$, $\dot{\varphi} \le 0$ on I provided $s \ge 0$ on I.

Proof. Let $s \leq 0$ on I and $v(\beta) \geq 0$. Then $v(\alpha) > 0$ and v > 0 on I, whence $sv \leq 0$ on I. Thus α is of the type II or III and β is of type I.

Further, let $h_+ \in AC(I)$ be such that $h_+(\alpha) = 0, h_+ \ge 0$ on I, $\dot{h}_+ \ge 0$ a.e. on I and $\int_I r \dot{h}_+^2 dt < \infty$. Then $\int_I s h_+ \dot{h}_+ dt \le 0$ and the second of the integral conditions (3) is satisfied. Thus $h_+ \in H_0$ and by Theorem 3(ii)–(iii) we have $h_+ \in \tilde{H}$. Next by Theorem 2 we get

(31)
$$2\int_{I} |s|h_{+}\dot{h}_{+} dt + \int_{I} |u|h_{+}^{2} dt \leq \int_{I} r\dot{h}_{+}^{2} dt.$$

Now, let $h \in AC(I)$ be such that $h(\alpha) = 0$ and $\int_I r\dot{h}^2 dt < \infty$. Put $h_+ = \int_{\alpha}^t |\dot{h}| \, d\tau$. Then $h_+ \in AC(I)$, $h_+(\alpha) = 0$, $h_+ \ge 0$ on I, $\dot{h}_+ = |\dot{h}| \ge 0$ a.e. on I and

(32)
$$\int_{I} r\dot{h}_{+}^{2} dt = \int_{I} r\dot{h}^{2} dt < \infty.$$

Hence h_{+} satisfies inequality (31). Notice that

$$|h| = \left| \int_{\alpha}^{t} \dot{h} \, d\tau \right| \le \int_{\alpha}^{t} |\dot{h}| \, d\tau = h_{+}$$

on I, and equality holds if and only if \dot{h} does not change sign on I. Hence

(33)
$$2 \int_{I} |sh\dot{h}| dt + \int_{I} |u|h^{2} dt \le 2 \int_{I} |s|h_{+}\dot{h}_{+} dt + \int_{I} |u|h_{+}^{2} dt$$

and by (31)–(33) we get inequality (29).

If both sides of (29) are equal for some non-vanishing function $h \in AC(I)$ such that $h(\alpha) = 0$ and $\int_I r\dot{h}^2 dt < \infty$, then by (31)–(33) it follows that for $h_+ = \int_{\alpha}^t |\dot{h}| \, d\tau$ equality holds in (31) and (33). It follows that $|h| = h_+$ and hence \dot{h} does not change sign on I. Since $h_+ \in \widetilde{H}$ and by Theorem 2, equality occurs in (31) if and only if s and u satisfy (7) a.e. on I, $\varphi^{-1}h_+ = \text{const} > 0$ and conditions (16) are satisfied. Hence $\varphi^{-1}h = \text{const} \neq 0$, $\varphi(\alpha) = 0$ and $\dot{\varphi} \geq 0$ on I.

Let s and u satisfy (7) a.e. on I and φ be such that $\varphi(\alpha) = 0, \dot{\varphi} \geq 0$ and conditions (30) hold. Then we easily check that the function $h = c\varphi$, where $c = \text{const} \neq 0$, satisfies $h(\alpha) = 0$ and $\int_I r\dot{h}^2 dt < \infty$ and for this function equality holds in (29).

The case when $s \geq 0$ on I, $v(\alpha) \leq 0$, $h(\beta) = 0$ can be proved in a similar way considering the function $h_- = \int_t^\beta |\dot{h}| \, d\tau \in \widetilde{H}$.

Inequalities (29) embrace, as a particular case (if u = 0 on I), the integral inequalities of Opial type which were examined in [13].

EXAMPLE 4. Let $I=(\alpha,\beta), \ -\infty \le \alpha < \beta \le \infty$. Let r>0 and $u\le 0$ be functions absolutely continuous on I such that $\int_I r^{-1} dt < \infty$ and

$$\int_{I} u \, dt \ge -\left(\int_{I} r^{-1} \, dt\right)^{-1}.$$

If we put $\varphi = \int_{\alpha}^{t} r^{-1} d\tau$, then the functions u and

(34)
$$s = -\int_{t}^{\beta} u \, d\tau - \left(\int_{I} r^{-1} \, dt \right)^{-1} \le 0$$

satisfy equation (7) on I and $v(\beta) = 0$. If we put $\varphi = \int_t^\beta r^{-1} d\tau$, then the functions u and

(35)
$$s = \int_{\alpha}^{t} u \, d\tau + \left(\int_{I} r^{-1} \, dt\right)^{-1} \ge 0$$

satisfy (7) on I and $v(\alpha) = 0$.

Now, applying Theorem 4 we get:

If $h \in AC(I)$ satisfies $\int_I r\dot{h}^2 dt < \infty$ and $h(\alpha) = 0$ or $h(\beta) = 0$, then the inequality of the form (29) with s defined by (34) if $h(\alpha) = 0$ or by (35) if $h(\beta) = 0$ is valid. In both cases equality holds only for $h = c\varphi$, where c = const.

If $u \equiv 0$, then we obtain the inequalities which were considered in [4] (cf. [13]).

In the case when $0 = \alpha < \beta \le 1, r = 1, u = -1$ on I we obtain the inequality

(36)
$$2\int_{0}^{\beta} \left(\frac{1-\beta^{2}}{\beta} + t\right) |h\dot{h}| dt + \int_{0}^{\beta} h^{2} dt \le \int_{0}^{\beta} \dot{h}^{2} dt,$$

which holds for all $h \in AC((0,\beta))$ such that h(0) = 0 and $\int_0^\beta \dot{h}^2 dt < \infty$, and the inequality

(37)
$$2\int_{0}^{\beta} \left(\frac{1}{\beta} - t\right) |h\dot{h}| dt + \int_{0}^{\beta} h^{2} dt \le \int_{0}^{\beta} \dot{h}^{2} dt,$$

which holds for all $h \in AC((0,\beta))$ such that $h(\beta) = 0$ and $\int_0^\beta \dot{h}^2 dt < \infty$.

Equality holds in (36) only for h = ct, and in (37) only for $h = c(\beta - t)$, where c = const.

REFERENCES

- C. D. Ahlbrandt, Variational inequalities, in: Inequalities, W. N. Everitt (ed.), Dekker, New York, 1991, 1–19.
- [2] P. R. Beesack, Integral inequalities of the Wirtinger type, Duke Math. J. 25 (1958), 477–498.
- [3] —, Hardy's inequality and its extensions, Pacific J. Math. 11 (1961), 39-61.
- [4] —, On an integral inequality of Z. Opial, Trans. Amer. Math. Soc. 104 (1962), 470–475.
- [5] —, Integral inequalities involving a function and its derivative, Amer. Math. Monthly 78 (1971), 705–741.
- [6] D. C. Benson, Inequalities involving integrals of functions and their derivatives, J. Math. Anal. Appl. 17 (1967), 292–308.

- [7] D. W. Boyd, Best constants in inequalities related to Opial's inequality, ibid. 25 (1969), 378–387.
- [8] B. Florkiewicz, Some integral inequalities of Hardy type, Colloq. Math. 43 (1980), 321–330.
- [9] —, On some integral inequalities of Block type, ibid. 55 (1988), 179–189.
- [10] B. Florkiewicz and A. Rybarski, Some integral inequalities of Sturm-Liouville type, ibid. 36 (1976), 127–141.
- [11] G. H. Hardy, J. E. Littlewood and G. Pólya, *Inequalities*, Cambridge Univ. Press, 1991.
- [12] A. Krzywicki and A. Rybarski, On some integral inequalities involving Chebyshev weight function, Colloq. Math. 18 (1967), 147–150.
- [13] M. Kuchta, Some quadratic integral inequalities of Opial type, Ann. Polon. Math. 63 (1996), 103 –113.
- [14] M. Morse and W. Leighton, Singular quadratic functionals, Trans. Amer. Math. Soc. 40 (1936), 252–286.
- [15] D. S. Mitrinović, J. E. Pečarić and A. M. Fink, Inequalities Involving Functions and Their Integrals and Derivatives, Kluwer, Dordrecht 1991.
- [16] R. Redheffer, Inequalities with three functions, J. Math. Anal. Appl. 16 (1966), 219–242.
- [17] W. T. Reid, Sturmian Theory of Ordinary Differential Equations, Springer, New York, 1980.
- [18] G. S. Yang, On a certain result of Z. Opial, Proc. Japan Acad. 42 (1966), 78–83.

Institute of Mathematics Technical University of Wrocław Wybrzeże Wyspiańskiego 27 50-370 Wrocław, Poland

> Received 23 April 1996; revised 28 February 1997