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SOME QUADRATIC INTEGRAL INEQUALITIES OF FIRST ORDER

BY

BRONIS LAW F L O R K I E W I C Z AND MA LGORZATA K U C H T A (WROC LAW)

We derive and examine some quadratic integral inequalities of first order
of the form

(1)
\
I

(rḣ2 + 2shḣ + uh2) dt ≥ 0, h ∈ H,

where I = (α, β), −∞ ≤ α < β ≤ ∞, r, s and u are given real func-
tions of the variable t, H is a given class of absolutely continuous functions
and ḣ ≡ dh/dt. The inequalities of the form (1) comprise as special cases
integral inequalities of Sturm–Liouville type examined by Florkiewicz and
Rybarski [10] and quadratic integral inequalities of Opial type examined by
Kuchta [13]. The method used to obtain the integral inequalities of the
form (1) is an extension of the uniform method of obtaining various types
of integral inequalities involving a function and its derivative. The method
we extend was used in [8]–[10], [13]. The method makes it possible, given
a function r and an auxiliary function ϕ, to determine the functions s and
u, and next the class H of the functions h for which (1) holds. In this pa-
per s and u are solutions of a certain differential inequality which makes it
possible to obtain a large set of functions s and u for which inequality (1)
holds.

Inequalities of the form (1) have been considered by Beesack [2]–[5],
Redheffer [16], Yang [18], Benson [6], Boyd [7] and others (for an extensive
bibliography see [14]).

The positive definiteness of quadratic functionals of the form (1) is a basic
problem of the theory of singular quadratic functionals introduced by Morse
and Leighton [15] (cf. [17], [1]). This problem is of significant importance
for the oscillation theory for second order linear differential equations on a
non-compact interval (see [17]).

Let I = (α, β), −∞ ≤ α < β ≤ ∞, be an arbitrary open interval. We
denote by M(I) the class of real functions which are defined and Lebesgue
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measurable on I and by AC(I) the class of real functions defined and ab-
solutely continuous on I. Let r ∈ AC(I) and ϕ ∈ AC(I) be given functions
such that r > 0, ϕ > 0 on I and ϕ̇ ∈ AC(I). Then r−1 = 1/r ∈ AC(I) and
ϕ−1 = 1/ϕ ∈ AC(I). Let s ∈ AC(I) and u ∈ M(I) be arbitrary functions
satisfying the differential inequality

(2) ṡ − u + (rϕ̇)·ϕ−1 ≤ 0

almost everywhere on I.
Denote by Ĥ the class of functions h ∈ AC(I) satisfying the following

integral and limit conditions:\
I

rḣ2 dt < ∞,
\
I

shḣ dt < ∞,
\
I

uh2 dt < ∞,(3)

lim inf
t→α

vh2 < ∞, lim sup
t→β

vh2 > −∞,(4)

where

(5) v = rϕ̇ϕ−1 + s.

Theorem 1. For every h ∈ Ĥ both limits in (4) are proper and finite,
and

(6) lim
t→β

vh2 − lim
t→α

vh2 ≤
\
I

(rḣ2 + 2shḣ + uh2) dt.

If h 6≡ 0, then equality holds in (6) if and only if s and u satisfy the differ-

ential equation

(7) ṡ − u + (rϕ̇)·ϕ−1 = 0

a.e. on I, ϕ ∈ Ĥ and h = cϕ with c = const 6= 0.

P r o o f. Let h ∈ AC(I). By (5) and our assumptions we have vh2 ∈
AC(I) and ϕ−1h ∈ AC(I) and we easily check that

(8) rḣ2 + 2shḣ + uh2 = (vh2)· + f + g a.e. on I,

where

f = −(ṡ − u + (rϕ̇)·ϕ−1)h2 ≥ 0,(9)

g = rϕ2[(ϕ−1h)·]2 ≥ 0.(10)

Now, let h ∈ Ĥ. By the first condition of (3) it follows that rḣ2 is
summable on I because rḣ2 ≥ 0 on I. By the assumptions, all other func-
tions appearing in (8) are summable on each compact interval [a, b] ⊂ I.
Thus, by (8),

(11)

b\
a

rḣ2 dt + 2

b\
a

shḣ dt +

b\
a

uh2 dt = vh2|ba +

b\
a

f dt +

b\
a

g dt
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for all α < a < b < β. By (4) there exist two sequences {an} and {bn} such
that α < an < bn < β, an → α, bn → β and

lim
n→∞

(−vh2)|an
> −∞, lim

n→∞

vh2|bn
> −∞.

Thus there is a constant C such that

vh2|bn

an

≥ C > −∞.

In view of (9) and (10), from (11) we infer that

bn\
an

(2shḣ + uh2) dt ≥ −

bn\
an

rḣ2 dt + C ≥ −

β\
α

rḣ2 dt + C

and letting n → ∞ gives\
I

(2shḣ + uh2) dt ≥ −
\
I

rḣ2 dt + C > −∞.

By this estimate and by the second and third conditions of (3) we easily see
that the functions shḣ and uh2 are summable on I. In the analogous way
we show that f and g are summable on I. Thus all integrals in (11) have
finite limits as a → α or b → β. It follows that both limits in (4) are proper
and finite. Now, by (11), as a → α and b → β, we obtain

(12)
\
I

(rḣ2 + 2shḣ + uh2) dt = lim
t→β

vh2 − lim
t→α

vh2 +
\
I

f dt +
\
I

g dt

whence (6) follows, since f ≥ 0 and g ≥ 0 on I.

By (12), equality holds in (6) for a non-vanishing function h ∈ Ĥ if and
only if

T
I
f dt = 0 and

T
I
g dt = 0, i.e. f = 0 and g = 0 a.e. on I. In view

of (10), g = 0 a.e. on I if and only if (ϕ−1h)· = 0 a.e. on I. Hence h = cϕ,

where c = const 6= 0, since ϕ−1h ∈ AC(I) by assumption. Thus ϕ ∈ Ĥ.
Further, from (9), f = 0 a.e. on I if and only if s and u satisfy (7) a.e. on
I, because h2 = c2ϕ2 > 0 on I.

Denote by H̃ the class of functions h ∈ Ĥ satisfying additionally the
limit condition

(13) lim inf
t→α

vh2 ≤ lim sup
t→β

vh2.

By Theorem 1 we can write it in the equivalent form

(14) lim
t→α

vh2 ≤ lim
t→β

vh2.

Theorem 2. For every h ∈ H̃,

(15)
\
I

(rḣ2 + 2shḣ + uh2) dt ≥ 0.
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If h 6≡ 0, then equality holds in (15) if and only if ϕ−1h = const 6= 0 and

the additional conditions (7) and

(16) ϕ ∈ Ĥ, lim
t→α

vϕ2 = lim
t→β

vϕ2

are satisfied.

P r o o f. By (14) and Theorem 1, inequality (15) follows from (6). If

equality occurs in (15) for some non-vanishing function h ∈ H̃, then by (6)
and (14) we have limt→α vh2 = limt→β vh2. Using Theorem 1 once again we

conclude that (7) holds, ϕ ∈ Ĥ and h = cϕ, where c = const 6= 0, whence
we obtain (16).

Now we describe the class H̃ in the cases that occur most frequently. If
ru − s2 ≥ 0 a.e. on I, then inequality (15) holds for all h ∈ AC(I). Thus it
is natural to consider cases like ru − s2 < 0 a.e. in some interval (a, b) ⊂ I.

Lemma 1. Let α ≤ a < b ≤ β. If ru − s2 < 0 a.e. on (a, b), then the

function v satisfies the differential inequality

(17) rv̇ < 2sv − v2

a.e. on (a, b).

P r o o f. By (5) and (2) we have

(18) v̇ = (rϕ̇)·ϕ−1 + ṡ − rϕ̇2ϕ−2 ≤ u − rϕ̇2ϕ−2

a.e. on (a, b). Thus from the assumptions we obtain

rv̇ ≤ ru − r2ϕ̇2ϕ−2 < s2 − (rϕ̇ϕ−1)2,

since r > 0 on I. Further, by (5) we have (rϕ̇ϕ−1)2 = s2 − 2sv + v2 on I,
whence (17) follows.

We will denote by Uα (resp. Uβ) some right-hand (resp. left-hand) neigh-
bourhood of the point α (resp. β). By Lemma 1 it follows that if ru−s2 < 0
a.e. on Uα and sv ≤ 0 on Uα, then v̇ < 0 a.e. on Uα and consequently the
function v is decreasing on Uα. Thus the limit v(α) = limt→α v exists and
v < v(α) on Uα. Analogously, if ru − s2 < 0 a.e. on Uβ and sv ≤ 0 on Uβ ,
then v(β) = limt→β v exists and v > v(β) on Uβ .

Lemma 2. If ru − s2 < 0 a.e. on Uα (resp. Uβ), sv ≤ 0 on Uα (resp.

Uβ) and v(α) 6= 0 (resp. v(β) 6= 0), then
Tt
α

r−1 dτ < ∞ (resp.
Tβ
t

r−1 dτ <
∞) for some t ∈ I. Moreover , if v(α) = ∞ (resp. v(β) = −∞), then

v(t)
Tt
α

r−1 dτ = O(1) as t → α (resp. v(t)
Tβ
t

r−1 dτ = O(1) as t → β).

P r o o f. We prove the lemma only for the point α. The proof for β is
analogous.
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Let v(α) 6= 0 and consider some right-hand neighbourhood U ⊂ Uα of α
such that v 6= 0 on U . By the assumptions and Lemma 1, from (17) we get
rv̇ < −v2 a.e. on U . Then r−1 < −v−2v̇ a.e. on U , because r > 0 on I and
we have the estimate

(19)

t\
a

r−1 dτ ≤ −

t\
a

v−2v̇ dτ = v−1(t) − v−1(a)

for α < a < t < β on U .

If v(α) > 0 (i.e. v > 0 on U), then by (19) as a → α we obtain
Tt
α

r−1dτ <

v−1(t) < ∞. Hence 0 < v(t)
Tt
α

r−1dτ < 1 and thus v(t)
Tt
α

r−1dτ = O(1) as
t → α.

If v(α) < 0 (i.e. v < 0 on U), then by (19) we obtain
Tt
a
r−1 dτ < −v−1(a),

whence as a → α we get
Tt
α

r−1 dτ < −v−1(α) < ∞.

We introduce the following terminology:

• a boundary point α (resp. β) of the interval I is of type I if v ≤ 0 on
Uα (resp. v ≥ 0 on Uβ);

• α (resp. β) is of type II if ru− s2 < 0 a.e. on Uα (resp. Uβ) and sv ≤ 0
on Uα (resp. Uβ) and 0 < v(α) < ∞ (resp. −∞ < v(β) < 0);

• α (resp. β) is of type III if ru−s2 < 0 a.e. on Uα (resp. Uβ) and sv ≤ 0
on Uα (resp. Uβ) and v(α) = ∞ (resp. v(β) = −∞).

We denote by H the class of functions h ∈ AC(I) satisfying the integral
conditions (3), and by H0 (resp. H0) the class of functions h ∈ H satisfying
the limit condition

(20) lim inf
t→α

|h| = 0 (resp. lim inf
t→β

|h| = 0).

In the cases considered in the sequel the condition (20) is equivalent to

(21) lim
t→α

h ≡ h(α) = 0 (resp. lim
t→β

h ≡ h(β) = 0).

Theorem 3. (i) If both α and β are of type I , then H̃ = H.

(ii) If α is of type II and β is of type I , then H̃ ⊃ H0.

(iii) If α is of type III and β is of type I , then H̃ = H0.

(iv) If α is of type I and β is of type II , then H̃ ⊃ H0;

(v) If α is of type I and β is of type III , then H̃ = H0;

(vi) If both α and β are of type II or III , then H̃ = H0 ∩ H0.

P r o o f. If α is of type I and h ∈ AC(I), then vh2 ≤ 0 on Uα and hence
lim inft→α vh2 ≤ 0.

Let α be of type II or III. Then by Lemma 2 we have
Tt
α

r−1 dτ < ∞

for some t ∈ I. Furthermore, if h ∈ AC(I) and
T
I
rḣ2 dt < ∞, then using
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Schwarz’s inequality we obtain the estimate

(22) |h(b) − h(a)| ≤

b\
a

|ḣ| dt ≤
( b\

a

r−1 dt
)1/2( b\

a

rḣ2 dt
)1/2

,

where α < a < b ≤ t, and the Cauchy condition for the existence of the
limit yields the existence of a finite limit h(α) = limt→α h.

If α is of type III and h ∈ H̃, then v(α) = ∞ and a finite limit h(α)
exists. If h(α) 6= 0, then limt→α vh2 = ∞, which contradicts (4). Thus
h(α) = 0, i.e. h ∈ H0.

If α is of type II or III, then by Lemma 2 we have
Tt
α

r−1 dτ < ∞ for

some t ∈ I and v(t)
Tt
α

r−1 dτ = O(1) as t → α. Furthermore, if h ∈ H0,
then from (22) as a → α and b = t we get the estimate

0 ≤ |vh2| ≤
∣∣∣v(t)

t\
α

r−1 dτ
∣∣∣

t\
α

rḣ2dτ

and hence limt→α vh2 = 0.
Similar symmetric conclusions are valid if α is replaced by β and the

class H0 by H0.
If both α and β are of type II or III and h ∈ H̃, then limt→α vh2 ≥ 0

and limt→β vh2 ≤ 0 and by (14) we have

(23) lim
t→α

vh2 = lim
t→β

vh2 = 0.

Since v(α) > 0, v(β) < 0 and the finite values h(α) and h(β) exist, it follows
from (23) that h(α) = h(β) = 0, i.e. h ∈ H0 ∩ H0.

Basing on these considerations we can easily derive the theorem.

Now we prove some new inequalities. According to these examples we
see that all cases of Theorem 3 can hold.

Example 1. Take I = (0, 1), r = eat and ϕ = ect where a 6= 0 and c are
arbitrary constants. Then the functions

s =
1 − ac − c2

a
eat + k,

where k is an arbitrary constant and u = eat, satisfy equation (7) on I, and
inequality (15) takes the form

(24)

1\
0

(
eatḣ2 + 2

(
1 − ac − c2

a
eat + k

)
hḣ + eath2

)
dt ≥ 0.

Denote by ã the root of the equation 2ea − a = 2 such that −2 < ã < −1
and by â the root of (2 − a)ea = 2 such that 1 < â < 2. From Theorems 2
and 3(i), (ii), (iv) we obtain:
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• If either (i) or (ii) holds, where

(i) ã < a < 0 or a > 0,

−1 +
a

ea − 1
< c < 1,

c2 − 1

a
ea < k <

c2 − 1

a
+ c − 1,

(ii) a < 0 or 0 < a < â,

−1 < c < 1 −
aea

ea − 1
,

(
c2 − 1

a
+ c + 1

)
ea < k <

c2 − 1

a
,

then inequality (24) holds for every h ∈ H, i.e. for h satisfying only the

integral conditions (3).

• If

(iii) a < ã, 1 < c < −1 +
a

ea − 1
,

c2 − 1

a
< k <

c2 − 1

a
+ c − 1,

then (24) holds for h ∈ H0.

• If

(iv) a > â, 1−
aea

ea − 1
< c < −1,

(
c2 − 1

a
+ c+1

)
ea < k <

c2 − 1

a
,

then (24) holds for h ∈ H0.

Inequality (24) is strict for h 6≡ 0.

The condition ru − s2 < 0 is satisfied on the interval (0, τ0) with

0 < τ0 =
1

a
ln

ak

(c − 1)(c + a + 1)
< 1

in case (i), on (τ1, 1) with

0 < τ1 =
1

a
ln

ak

(c + 1)(c + a − 1)
< 1

in case (ii) and on (0, 1) in cases (iii) and (iv).

Example 2. Let I = (α, β), where 0 ≤ α < β ≤ ∞. Take r = ta and
ϕ = t(1−a)/2 on I, where a 6= 1 is an arbitrary constant. Then the functions
s = Ata−1 and u = 1

4
(a − 1)(6A − a + 1)ta−2, where A is an arbitrary

constant, satisfy equation (7) on I. If (i) a < 1 and (a − 1)/2 < A ≤ 0 or
(ii) a > 1 and 0 ≤ A < (a − 1)/2, then ru − s2 < 0 on I and in case (i)
the boundary point α is of type II if α > 0 or of type III if α = 0 and the
boundary point β is of type I, and in case (ii) the point α is of type I and
the point β is of type II if β < ∞ or of type III if β = ∞.

Applying Theorems 2 and 3(ii), (iii), (iv), (v) we get:
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If 0 ≤ α < β ≤ ∞ and either a < 1, (a − 1)/2 < A ≤ 0 or a > 1,
0 ≤ A < (a − 1)/2, and h 6≡ 0, then

(25)

β\
α

[
taḣ2 + 2Ata−1hḣ + 1

4 (a − 1)(6A − a + 1)ta−2h2
]
dt > 0

for every h ∈ H̃; and H̃ = H0 if a < 1 and H̃ = H0 if a > 1.

Inequality (25) for A = 0 was considered in [3] (cf. [13]); if α = 0, β = ∞
and a = 0 we get the well-known Hardy integral inequality ([11, Th. 253]).

Example 3. We take I = (−1, 1) and r = (1 − t2)a on I. We put
ϕ = (1 − t2)k on I and k = 1 − a or k = 1/2 − a, where a is an arbitrary
constant such that k > 0. Then the functions s = At(1 − t2)b and u =
(B − Ct2)(1 − t2)b−1, where b = a,B = A + 2a − 2, C = A(2a + 1) if
k = 1− a or b = a− 1, B = A + 2a− 1, C = A(2a− 1) if k = 1/2− a and A
is an arbitrary constant, satisfy (7) on I.

If a < −1/2, 0 ≤ A < 1 − 1/a or −1/2 ≤ a < 1, 0 ≤ A < 2 − 2a in the
case k = 1 − a; or a < 0, 0 ≤ A < 1 or 0 ≤ a < 1/2, 0 ≤ A < 1 − 2a in the
case k = 1/2 − a, then both boundary points are of type III.

Applying Theorems 2 and 3(vi) we infer the following:

Let h ∈ H0 ∩ H0.

(i) If a < −1/2, 0 ≤ A < 1 − 1/a or −1/2 ≤ a < 1, 0 ≤ A < 2 − 2a,
then

(26)

1\
−1

[(1 − t2)aḣ2 + 2At(1 − t2)ahḣ + (B − Ct2)(1 − t2)a−1h2] dt ≥ 0,

where B = A + 2a − 2 and C = A(2a + 1). Equality holds in (26) if and

only if h = c(1 − t2)1−a, where c = const 6= 0.

(ii) If a < 0, 0 ≤ A < 1 or 0 ≤ a < 1/2, 0 ≤ A < 1 − 2a, then

(27)

1\
−1

[(1 − t2)aḣ2 + 2At(1 − t2)a−1hḣ + (B − Ct2)(1 − t2)a−2h2] dt ≥ 0,

where B = A + 2a− 1 and C = A(2a− 1). If h 6≡ 0, then for a < 0 equality

holds in (27) if and only if h = c(1− t2)1/2−a, where c = const 6= 0, and for

0 ≤ a < 1/2 inequality (27) is strict.

The condition ru − s2 < 0 is satisfied on (−1, 1) in both cases.

Inequalities (26) and (27) for A = 0 were discussed in [12] and [16]
(cf. [10]).

Let s ∈ AC(I) and u ∈ M(I) be arbitrary functions satisfying the differ-
ential inequality (2) a.e. on I such that s=0 on I and u<0 a.e. on I. Then
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the second and third conditions of (3) are trivially satisfied and inequality
(15) takes the form

(28)
\
I

|u|h2 dt ≤
\
I

rḣ2 dt.

Inequalities of the form (28) are the integral inequalities of Sturm–Liouville
type which were examined in [10].

In this case we have ru − s2 = ru < 0 a.e. on I and sv = 0 on I. Thus
the function v is decreasing on I and v(α) > v(β). Moreover, α (resp. β)
is of type I if v(α) ≤ 0 (resp. v(β) ≥ 0), of type II if 0 < v(α) < ∞ (resp.
−∞ < v(β) < 0) and of type III if v(α) = ∞ (resp. v(β) = −∞). Hence α
and β cannot be simultaneously of type I. In this way from Theorems 2 and
3 we get Theorems 3 and 4 of [10].

Now, let s ∈ AC(I) and u ∈ M(I) be arbitrary functions satisfying the
differential inequality (2) a.e. on I such that u ≤ 0 a.e. on I. Then the third
of the integral conditions (3) is trivially satisfied and if s2 + u2 > 0 a.e. on
I, then ru− s2 < 0 a.e. on I. Next by (18) we have v̇ ≤ u− rϕ̇2ϕ−2 ≤ 0 a.e.
on I. Thus v is nonincreasing on I and v(α) > v(β) except for the trivial
case s ≡ 0 and u ≡ 0. Hence α and β cannot be simultaneously of type I.

Theorem 4. Let u ≤ 0 a.e. on I and let h ∈ AC(I) satisfy the integral

condition
T
I
rḣ2 dt < ∞. If s ≤ 0 on I, v(β) ≥ 0 and h(α) = 0, or s ≥ 0 on

I, v(α) ≤ 0 and h(β) = 0, then

(29) 2
\
I

|shḣ| dt +
\
I

|u|h2 dt ≤
\
I

rḣ2 dt.

If h 6≡ 0, then equality holds in (29) if and only if s and u satisfy the

differential equation (7) a.e. on I, ϕ−1h = const 6= 0,

(30)
\
I

rϕ̇2 dt < ∞, lim
t→α

vϕ2 = lim
t→β

vϕ2,

and ϕ(α) = 0, ϕ̇ ≥ 0 on I provided s ≤ 0 on I, or ϕ(β) = 0, ϕ̇ ≤ 0 on I
provided s ≥ 0 on I.

P r o o f. Let s ≤ 0 on I and v(β) ≥ 0. Then v(α) > 0 and v > 0 on I,
whence sv ≤ 0 on I. Thus α is of the type II or III and β is of type I.

Further, let h+ ∈ AC(I) be such that h+(α) = 0, h+ ≥ 0 on I, ḣ+ ≥ 0
a.e. on I and

T
I
rḣ2

+ dt < ∞. Then
T
I
sh+ḣ+ dt ≤ 0 and the second of the

integral conditions (3) is satisfied. Thus h+ ∈ H0 and by Theorem 3(ii)–(iii)

we have h+ ∈ H̃. Next by Theorem 2 we get

(31) 2
\
I

|s|h+ḣ+ dt +
\
I

|u|h2
+ dt ≤

\
I

rḣ2
+ dt.
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Now, let h ∈ AC(I) be such that h(α) = 0 and
T
I
rḣ2 dt < ∞. Put

h+ =
Tt
α
|ḣ| dτ . Then h+ ∈ AC(I), h+(α) = 0, h+ ≥ 0 on I, ḣ+ = |ḣ| ≥ 0

a.e. on I and

(32)
\
I

rḣ2
+ dt =

\
I

rḣ2 dt < ∞.

Hence h+ satisfies inequality (31). Notice that

|h| =
∣∣∣
t\
α

ḣ dτ
∣∣∣ ≤

t\
α

|ḣ| dτ = h+

on I, and equality holds if and only if ḣ does not change sign on I. Hence

(33) 2
\
I

|shḣ| dt +
\
I

|u|h2 dt ≤ 2
\
I

|s|h+ḣ+ dt +
\
I

|u|h2
+ dt

and by (31)–(33) we get inequality (29).

If both sides of (29) are equal for some non-vanishing function h ∈ AC(I)
such that h(α) = 0 and

T
I
rḣ2 dt < ∞, then by (31)–(33) it follows that for

h+ =
Tt
α
|ḣ| dτ equality holds in (31) and (33). It follows that |h| = h+ and

hence ḣ does not change sign on I. Since h+ ∈ H̃ and by Theorem 2, equality
occurs in (31) if and only if s and u satisfy (7) a.e. on I, ϕ−1h+ = const > 0
and conditions (16) are satisfied. Hence ϕ−1h = const 6= 0, ϕ(α) = 0 and
ϕ̇ ≥ 0 on I.

Let s and u satisfy (7) a.e. on I and ϕ be such that ϕ(α) = 0, ϕ̇ ≥ 0 and
conditions (30) hold. Then we easily check that the function h = cϕ, where
c = const 6= 0, satisfies h(α) = 0 and

T
I
rḣ2 dt < ∞ and for this function

equality holds in (29).

The case when s ≥ 0 on I, v(α) ≤ 0, h(β) = 0 can be proved in a similar

way considering the function h− =
Tβ
t
|ḣ| dτ ∈ H̃.

Inequalities (29) embrace, as a particular case (if u = 0 on I), the integral
inequalities of Opial type which were examined in [13].

Example 4. Let I = (α, β), −∞ ≤ α < β ≤ ∞. Let r > 0 and u ≤ 0
be functions absolutely continuous on I such that

T
I
r−1 dt < ∞ and\

I

u dt ≥ −
(\

I

r−1 dt
)
−1

.

If we put ϕ =
Tt
α

r−1dτ , then the functions u and

(34) s = −

β\
t

u dτ −
(\

I

r−1 dt
)
−1

≤ 0
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satisfy equation (7) on I and v(β) = 0. If we put ϕ =
Tβ
t

r−1dτ , then the
functions u and

(35) s =

t\
α

u dτ +
(\

I

r−1 dt
)
−1

≥ 0

satisfy (7) on I and v(α) = 0.

Now, applying Theorem 4 we get:

If h ∈ AC(I) satisfies
T
I
rḣ2 dt < ∞ and h(α) = 0 or h(β) = 0, then

the inequality of the form (29) with s defined by (34) if h(α) = 0 or by (35)
if h(β) = 0 is valid. In both cases equality holds only for h = cϕ, where

c = const.

If u ≡ 0, then we obtain the inequalities which were considered in [4]
(cf. [13]).

In the case when 0 = α < β ≤ 1, r = 1, u = −1 on I we obtain the
inequality

(36) 2

β\
0

(
1 − β2

β
+ t

)
|hḣ| dt +

β\
0

h2 dt ≤

β\
0

ḣ2 dt,

which holds for all h ∈ AC((0, β)) such that h(0) = 0 and
Tβ
0

ḣ2 dt < ∞, and
the inequality

(37) 2

β\
0

(
1

β
− t

)
|hḣ| dt +

β\
0

h2 dt ≤

β\
0

ḣ2 dt,

which holds for all h ∈ AC((0, β)) such that h(β) = 0 and
Tβ
0

ḣ2 dt < ∞.

Equality holds in (36) only for h = ct, and in (37) only for h = c(β − t),
where c = const.
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