SOME QUADRATIC INTEGRAL INEQUALITIES OF FIRST ORDER
BY
BRONISŁAW FLORKIEWICZ and MAŁGORZATA KUCHTA (WROCŁAW)
We derive and examine some quadratic integral inequalities of first order of the form

$$
\begin{equation*}
\int_{I}\left(r \dot{h}^{2}+2 s h \dot{h}+u h^{2}\right) d t \geq 0, \quad h \in H, \tag{1}
\end{equation*}
$$

where $I=(\alpha, \beta),-\infty \leq \alpha<\beta \leq \infty, r, s$ and u are given real functions of the variable t, H is a given class of absolutely continuous functions and $\dot{h} \equiv d h / d t$. The inequalities of the form (1) comprise as special cases integral inequalities of Sturm-Liouville type examined by Florkiewicz and Rybarski [10] and quadratic integral inequalities of Opial type examined by Kuchta [13]. The method used to obtain the integral inequalities of the form (1) is an extension of the uniform method of obtaining various types of integral inequalities involving a function and its derivative. The method we extend was used in [8]-[10], [13]. The method makes it possible, given a function r and an auxiliary function φ, to determine the functions s and u, and next the class H of the functions h for which (1) holds. In this paper s and u are solutions of a certain differential inequality which makes it possible to obtain a large set of functions s and u for which inequality (1) holds.

Inequalities of the form (1) have been considered by Beesack [2]-[5], Redheffer [16], Yang [18], Benson [6], Boyd [7] and others (for an extensive bibliography see [14]).

The positive definiteness of quadratic functionals of the form (1) is a basic problem of the theory of singular quadratic functionals introduced by Morse and Leighton [15] (cf. [17], [1]). This problem is of significant importance for the oscillation theory for second order linear differential equations on a non-compact interval (see [17]).

Let $I=(\alpha, \beta),-\infty \leq \alpha<\beta \leq \infty$, be an arbitrary open interval. We denote by $M(I)$ the class of real functions which are defined and Lebesgue

[^0]measurable on I and by $A C(I)$ the class of real functions defined and absolutely continuous on I. Let $r \in A C(I)$ and $\varphi \in A C(I)$ be given functions such that $r>0, \varphi>0$ on I and $\dot{\varphi} \in A C(I)$. Then $r^{-1}=1 / r \in A C(I)$ and $\varphi^{-1}=1 / \varphi \in A C(I)$. Let $s \in A C(I)$ and $u \in M(I)$ be arbitrary functions satisfying the differential inequality
\[

$$
\begin{equation*}
\dot{s}-u+(r \dot{\varphi})^{\cdot} \varphi^{-1} \leq 0 \tag{2}
\end{equation*}
$$

\]

almost everywhere on I.
Denote by \widehat{H} the class of functions $h \in A C(I)$ satisfying the following integral and limit conditions:

$$
\begin{gather*}
\int_{I} r \dot{h}^{2} d t<\infty, \quad \int_{I} s h \dot{h} d t<\infty, \quad \int_{I} u h^{2} d t<\infty \tag{3}\\
\liminf _{t \rightarrow \alpha} v h^{2}<\infty, \quad \limsup _{t \rightarrow \beta} v h^{2}>-\infty \tag{4}
\end{gather*}
$$

where

$$
\begin{equation*}
v=r \dot{\varphi} \varphi^{-1}+s \tag{5}
\end{equation*}
$$

Theorem 1. For every $h \in \widehat{H}$ both limits in (4) are proper and finite, and

$$
\begin{equation*}
\lim _{t \rightarrow \beta} v h^{2}-\lim _{t \rightarrow \alpha} v h^{2} \leq \int_{I}\left(r \dot{h}^{2}+2 s h \dot{h}+u h^{2}\right) d t \tag{6}
\end{equation*}
$$

If $h \not \equiv 0$, then equality holds in (6) if and only if s and u satisfy the differential equation

$$
\begin{equation*}
\dot{s}-u+(r \dot{\varphi})^{\cdot} \varphi^{-1}=0 \tag{7}
\end{equation*}
$$

a.e. on $I, \varphi \in \widehat{H}$ and $h=c \varphi$ with $c=$ const $\neq 0$.

Proof. Let $h \in A C(I)$. By (5) and our assumptions we have $v h^{2} \in$ $A C(I)$ and $\varphi^{-1} h \in A C(I)$ and we easily check that

$$
\begin{equation*}
r \dot{h}^{2}+2 s h \dot{h}+u h^{2}=\left(v h^{2}\right)^{\cdot}+f+g \quad \text { a.e. on } I, \tag{8}
\end{equation*}
$$

where

$$
\begin{align*}
& f=-\left(\dot{s}-u+(r \dot{\varphi})^{\cdot} \varphi^{-1}\right) h^{2} \geq 0 \tag{9}\\
& g=r \varphi^{2}\left[\left(\varphi^{-1} h\right)^{\circ}\right]^{2} \geq 0 \tag{10}
\end{align*}
$$

Now, let $h \in \widehat{H}$. By the first condition of (3) it follows that $r \hat{h}^{2}$ is summable on I because $r \dot{h}^{2} \geq 0$ on I. By the assumptions, all other functions appearing in (8) are summable on each compact interval $[a, b] \subset I$. Thus, by (8),

$$
\begin{equation*}
\int_{a}^{b} r \dot{h}^{2} d t+2 \int_{a}^{b} s h \dot{h} d t+\int_{a}^{b} u h^{2} d t=\left.v h^{2}\right|_{a} ^{b}+\int_{a}^{b} f d t+\int_{a}^{b} g d t \tag{11}
\end{equation*}
$$

for all $\alpha<a<b<\beta$. By (4) there exist two sequences $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ such that $\alpha<a_{n}<b_{n}<\beta, a_{n} \rightarrow \alpha, b_{n} \rightarrow \beta$ and

$$
\left.\lim _{n \rightarrow \infty}\left(-v h^{2}\right)\right|_{a_{n}}>-\infty,\left.\quad \lim _{n \rightarrow \infty} v h^{2}\right|_{b_{n}}>-\infty
$$

Thus there is a constant C such that

$$
\left.v h^{2}\right|_{a_{n}} ^{b_{n}} \geq C>-\infty
$$

In view of (9) and (10), from (11) we infer that

$$
\int_{a_{n}}^{b_{n}}\left(2 s h \dot{h}+u h^{2}\right) d t \geq-\int_{a_{n}}^{b_{n}} r \dot{h}^{2} d t+C \geq-\int_{\alpha}^{\beta} r \dot{h}^{2} d t+C
$$

and letting $n \rightarrow \infty$ gives

$$
\int_{I}\left(2 s h \dot{h}+u h^{2}\right) d t \geq-\int_{I} r \dot{h}^{2} d t+C>-\infty
$$

By this estimate and by the second and third conditions of (3) we easily see that the functions $s h \dot{h}$ and $u h^{2}$ are summable on I. In the analogous way we show that f and g are summable on I. Thus all integrals in (11) have finite limits as $a \rightarrow \alpha$ or $b \rightarrow \beta$. It follows that both limits in (4) are proper and finite. Now, by (11), as $a \rightarrow \alpha$ and $b \rightarrow \beta$, we obtain

$$
\begin{equation*}
\int_{I}\left(r \dot{h}^{2}+2 s h \dot{h}+u h^{2}\right) d t=\lim _{t \rightarrow \beta} v h^{2}-\lim _{t \rightarrow \alpha} v h^{2}+\int_{I} f d t+\int_{I} g d t \tag{12}
\end{equation*}
$$

whence (6) follows, since $f \geq 0$ and $g \geq 0$ on I.
By (12), equality holds in (6) for a non-vanishing function $h \in \widehat{H}$ if and only if $\int_{I} f d t=0$ and $\int_{I} g d t=0$, i.e. $f=0$ and $g=0$ a.e. on I. In view of $(10), g=0$ a.e. on I if and only if $\left(\varphi^{-1} h\right)^{\cdot}=0$ a.e. on I. Hence $h=c \varphi$, where $c=$ const $\neq 0$, since $\varphi^{-1} h \in A C(I)$ by assumption. Thus $\varphi \in \widehat{H}$. Further, from (9), $f=0$ a.e. on I if and only if s and u satisfy (7) a.e. on I, because $h^{2}=c^{2} \varphi^{2}>0$ on I.

Denote by \widetilde{H} the class of functions $h \in \widehat{H}$ satisfying additionally the limit condition

$$
\begin{equation*}
\liminf _{t \rightarrow \alpha} v h^{2} \leq \limsup _{t \rightarrow \beta} v h^{2} \tag{13}
\end{equation*}
$$

By Theorem 1 we can write it in the equivalent form

$$
\begin{equation*}
\lim _{t \rightarrow \alpha} v h^{2} \leq \lim _{t \rightarrow \beta} v h^{2} \tag{14}
\end{equation*}
$$

Theorem 2. For every $h \in \widetilde{H}$,

$$
\begin{equation*}
\int_{I}\left(r \dot{h}^{2}+2 s h \dot{h}+u h^{2}\right) d t \geq 0 \tag{15}
\end{equation*}
$$

If $h \not \equiv 0$, then equality holds in (15) if and only if $\varphi^{-1} h=$ const $\neq 0$ and the additional conditions (7) and

$$
\begin{equation*}
\varphi \in \widehat{H}, \quad \lim _{t \rightarrow \alpha} v \varphi^{2}=\lim _{t \rightarrow \beta} v \varphi^{2} \tag{16}
\end{equation*}
$$

are satisfied.
Proof. By (14) and Theorem 1, inequality (15) follows from (6). If equality occurs in (15) for some non-vanishing function $h \in \widetilde{H}$, then by (6) and (14) we have $\lim _{t \rightarrow \alpha} v h^{2}=\lim _{t \rightarrow \beta} v h^{2}$. Using Theorem 1 once again we conclude that (7) holds, $\varphi \in \widehat{H}$ and $h=c \varphi$, where $c=$ const $\neq 0$, whence we obtain (16).

Now we describe the class \widetilde{H} in the cases that occur most frequently. If $r u-s^{2} \geq 0$ a.e. on I, then inequality (15) holds for all $h \in A C(I)$. Thus it is natural to consider cases like $r u-s^{2}<0$ a.e. in some interval $(a, b) \subset I$.

Lemma 1. Let $\alpha \leq a<b \leq \beta$. If $r u-s^{2}<0$ a.e. on (a, b), then the function v satisfies the differential inequality

$$
\begin{equation*}
r \dot{v}<2 s v-v^{2} \tag{17}
\end{equation*}
$$

a.e. on (a, b).

Proof. By (5) and (2) we have

$$
\begin{equation*}
\dot{v}=(r \dot{\varphi})^{\cdot} \varphi^{-1}+\dot{s}-r \dot{\varphi}^{2} \varphi^{-2} \leq u-r \dot{\varphi}^{2} \varphi^{-2} \tag{18}
\end{equation*}
$$

a.e. on (a, b). Thus from the assumptions we obtain

$$
r \dot{v} \leq r u-r^{2} \dot{\varphi}^{2} \varphi^{-2}<s^{2}-\left(r \dot{\varphi} \varphi^{-1}\right)^{2},
$$

since $r>0$ on I. Further, by (5) we have $\left(r \dot{\varphi} \varphi^{-1}\right)^{2}=s^{2}-2 s v+v^{2}$ on I, whence (17) follows.

We will denote by $U_{\alpha}\left(\right.$ resp. $\left.U_{\beta}\right)$ some right-hand (resp. left-hand) neighbourhood of the point α (resp. β). By Lemma 1 it follows that if $r u-s^{2}<0$ a.e. on U_{α} and $s v \leq 0$ on U_{α}, then $\dot{v}<0$ a.e. on U_{α} and consequently the function v is decreasing on U_{α}. Thus the limit $v(\alpha)=\lim _{t \rightarrow \alpha} v$ exists and $v<v(\alpha)$ on U_{α}. Analogously, if $r u-s^{2}<0$ a.e. on U_{β} and $s v \leq 0$ on U_{β}, then $v(\beta)=\lim _{t \rightarrow \beta} v$ exists and $v>v(\beta)$ on U_{β}.

Lemma 2. If $r u-s^{2}<0$ a.e. on U_{α} (resp. U_{β}), sv ≤ 0 on U_{α} (resp. $\left.U_{\beta}\right)$ and $v(\alpha) \neq 0($ resp. $v(\beta) \neq 0)$, then $\int_{\alpha}^{t} r^{-1} d \tau<\infty\left(\right.$ resp. $\int_{t}^{\beta} r^{-1} d \tau<$ ∞) for some $t \in I$. Moreover, if $v(\alpha)=\infty$ (resp. $v(\beta)=-\infty$), then $v(t) \int_{\alpha}^{t} r^{-1} d \tau=O(1)$ as $t \rightarrow \alpha\left(\right.$ resp. $v(t) \int_{t}^{\beta} r^{-1} d \tau=O(1)$ as $\left.t \rightarrow \beta\right)$.

Proof. We prove the lemma only for the point α. The proof for β is analogous.

Let $v(\alpha) \neq 0$ and consider some right-hand neighbourhood $U \subset U_{\alpha}$ of α such that $v \neq 0$ on U. By the assumptions and Lemma 1 , from (17) we get $r \dot{v}<-v^{2}$ a.e. on U. Then $r^{-1}<-v^{-2} \dot{v}$ a.e. on U, because $r>0$ on I and we have the estimate

$$
\begin{equation*}
\int_{a}^{t} r^{-1} d \tau \leq-\int_{a}^{t} v^{-2} \dot{v} d \tau=v^{-1}(t)-v^{-1}(a) \tag{19}
\end{equation*}
$$

for $\alpha<a<t<\beta$ on U.
If $v(\alpha)>0$ (i.e. $v>0$ on U), then by (19) as $a \rightarrow \alpha$ we obtain $\int_{\alpha}^{t} r^{-1} d \tau<$ $v^{-1}(t)<\infty$. Hence $0<v(t) \int_{\alpha}^{t} r^{-1} d \tau<1$ and thus $v(t) \int_{\alpha}^{t} r^{-1} d \tau=O(1)$ as $t \rightarrow \alpha$.

If $v(\alpha)<0$ (i.e. $v<0$ on U), then by (19) we obtain $\int_{a}^{t} r^{-1} d \tau<-v^{-1}(a)$, whence as $a \rightarrow \alpha$ we get $\int_{\alpha}^{t} r^{-1} d \tau<-v^{-1}(\alpha)<\infty$.

We introduce the following terminology:

- a boundary point α (resp. β) of the interval I is of type I if $v \leq 0$ on U_{α} (resp. $v \geq 0$ on U_{β});
- α (resp. β) is of type II if $r u-s^{2}<0$ a.e. on U_{α} (resp. U_{β}) and $s v \leq 0$ on U_{α} (resp. U_{β}) and $0<v(\alpha)<\infty$ (resp. $-\infty<v(\beta)<0$);
- α (resp. β) is of type III if $r u-s^{2}<0$ a.e. on U_{α} (resp. U_{β}) and $s v \leq 0$ on U_{α} (resp. U_{β}) and $v(\alpha)=\infty$ (resp. $\left.v(\beta)=-\infty\right)$.

We denote by H the class of functions $h \in A C(I)$ satisfying the integral conditions (3), and by H_{0} (resp. H^{0}) the class of functions $h \in H$ satisfying the limit condition

$$
\begin{equation*}
\liminf _{t \rightarrow \alpha}|h|=0 \quad\left(\text { resp. } \liminf _{t \rightarrow \beta}|h|=0\right) . \tag{20}
\end{equation*}
$$

In the cases considered in the sequel the condition (20) is equivalent to

$$
\begin{equation*}
\lim _{t \rightarrow \alpha} h \equiv h(\alpha)=0 \quad\left(\text { resp. } \lim _{t \rightarrow \beta} h \equiv h(\beta)=0\right) . \tag{21}
\end{equation*}
$$

Theorem 3. (i) If both α and β are of type I, then $\widetilde{H}=H$.
(ii) If α is of type $I I$ and β is of type I, then $\widetilde{H} \supset H_{0}$.
(iii) If α is of type III and β is of type I, then $\widetilde{H}=H_{0}$.
(iv) If α is of type I and β is of type $I I$, then $\widetilde{H} \supset H^{0}$;
(v) If α is of type I and β is of type III, then $\widetilde{H}=H^{0}$;
(vi) If both α and β are of type II or III, then $\widetilde{H}=H_{0} \cap H^{0}$.

Proof. If α is of type I and $h \in A C(I)$, then $v h^{2} \leq 0$ on U_{α} and hence $\lim \inf _{t \rightarrow \alpha} v h^{2} \leq 0$.

Let α be of type II or III. Then by Lemma 2 we have $\int_{\alpha}^{t} r^{-1} d \tau<\infty$ for some $t \in I$. Furthermore, if $h \in A C(I)$ and $\int_{I} r \dot{h}^{2} d t<\infty$, then using

Schwarz's inequality we obtain the estimate

$$
\begin{equation*}
|h(b)-h(a)| \leq \int_{a}^{b}|\dot{h}| d t \leq\left(\int_{a}^{b} r^{-1} d t\right)^{1 / 2}\left(\int_{a}^{b} r \dot{h}^{2} d t\right)^{1 / 2} \tag{22}
\end{equation*}
$$

where $\alpha<a<b \leq t$, and the Cauchy condition for the existence of the limit yields the existence of a finite limit $h(\alpha)=\lim _{t \rightarrow \alpha} h$.

If α is of type III and $h \in \widetilde{H}$, then $v(\alpha)=\infty$ and a finite limit $h(\alpha)$ exists. If $h(\alpha) \neq 0$, then $\lim _{t \rightarrow \alpha} v h^{2}=\infty$, which contradicts (4). Thus $h(\alpha)=0$, i.e. $h \in H_{0}$.

If α is of type II or III, then by Lemma 2 we have $\int_{\alpha}^{t} r^{-1} d \tau<\infty$ for some $t \in I$ and $v(t) \int_{\alpha}^{t} r^{-1} d \tau=O(1)$ as $t \rightarrow \alpha$. Furthermore, if $h \in H_{0}$, then from (22) as $a \rightarrow \alpha$ and $b=t$ we get the estimate

$$
0 \leq\left|v h^{2}\right| \leq\left|v(t) \int_{\alpha}^{t} r^{-1} d \tau\right| \int_{\alpha}^{t} r \dot{h}^{2} d \tau
$$

and hence $\lim _{t \rightarrow \alpha} v h^{2}=0$.
Similar symmetric conclusions are valid if α is replaced by β and the class H_{0} by H^{0}.

If both α and β are of type II or III and $h \in \tilde{H}$, then $\lim _{t \rightarrow \alpha} v h^{2} \geq 0$ and $\lim _{t \rightarrow \beta} v h^{2} \leq 0$ and by (14) we have

$$
\begin{equation*}
\lim _{t \rightarrow \alpha} v h^{2}=\lim _{t \rightarrow \beta} v h^{2}=0 \tag{23}
\end{equation*}
$$

Since $v(\alpha)>0, v(\beta)<0$ and the finite values $h(\alpha)$ and $h(\beta)$ exist, it follows from (23) that $h(\alpha)=h(\beta)=0$, i.e. $h \in H_{0} \cap H^{0}$.

Basing on these considerations we can easily derive the theorem.
Now we prove some new inequalities. According to these examples we see that all cases of Theorem 3 can hold.

Example 1. Take $I=(0,1), r=e^{a t}$ and $\varphi=e^{c t}$ where $a \neq 0$ and c are arbitrary constants. Then the functions

$$
s=\frac{1-a c-c^{2}}{a} e^{a t}+k,
$$

where k is an arbitrary constant and $u=e^{a t}$, satisfy equation (7) on I, and inequality (15) takes the form

$$
\begin{equation*}
\int_{0}^{1}\left(e^{a t} \dot{h}^{2}+2\left(\frac{1-a c-c^{2}}{a} e^{a t}+k\right) h \dot{h}+e^{a t} h^{2}\right) d t \geq 0 \tag{24}
\end{equation*}
$$

Denote by \widetilde{a} the root of the equation $2 e^{a}-a=2$ such that $-2<\widetilde{a}<-1$ and by \widehat{a} the root of $(2-a) e^{a}=2$ such that $1<\widehat{a}<2$. From Theorems 2 and 3(i), (ii), (iv) we obtain:

- If either (i) or (ii) holds, where
(i) $\widetilde{a}<a<0$ or $a>0$,

$$
-1+\frac{a}{e^{a}-1}<c<1, \quad \frac{c^{2}-1}{a} e^{a}<k<\frac{c^{2}-1}{a}+c-1,
$$

(ii) $a<0$ or $0<a<\widehat{a}$,

$$
-1<c<1-\frac{a e^{a}}{e^{a}-1}, \quad\left(\frac{c^{2}-1}{a}+c+1\right) e^{a}<k<\frac{c^{2}-1}{a}
$$

then inequality (24) holds for every $h \in H$, i.e. for h satisfying only the integral conditions (3).

- If
(iii) $a<\widetilde{a}, \quad 1<c<-1+\frac{a}{e^{a}-1}, \quad \frac{c^{2}-1}{a}<k<\frac{c^{2}-1}{a}+c-1$,
then (24) holds for $h \in H_{0}$.
- If
(iv) $a>\widehat{a}, \quad 1-\frac{a e^{a}}{e^{a}-1}<c<-1, \quad\left(\frac{c^{2}-1}{a}+c+1\right) e^{a}<k<\frac{c^{2}-1}{a}$,
then (24) holds for $h \in H^{0}$.
Inequality (24) is strict for $h \not \equiv 0$.
The condition $r u-s^{2}<0$ is satisfied on the interval $\left(0, \tau_{0}\right)$ with

$$
0<\tau_{0}=\frac{1}{a} \ln \frac{a k}{(c-1)(c+a+1)}<1
$$

in case (i), on ($\tau_{1}, 1$) with

$$
0<\tau_{1}=\frac{1}{a} \ln \frac{a k}{(c+1)(c+a-1)}<1
$$

in case (ii) and on (0,1) in cases (iii) and (iv).
Example 2. Let $I=(\alpha, \beta)$, where $0 \leq \alpha<\beta \leq \infty$. Take $r=t^{a}$ and $\varphi=t^{(1-a) / 2}$ on I, where $a \neq 1$ is an arbitrary constant. Then the functions $s=A t^{a-1}$ and $u=\frac{1}{4}(a-1)(6 A-a+1) t^{a-2}$, where A is an arbitrary constant, satisfy equation (7) on I. If (i) $a<1$ and $(a-1) / 2<A \leq 0$ or (ii) $a>1$ and $0 \leq A<(a-1) / 2$, then $r u-s^{2}<0$ on I and in case (i) the boundary point α is of type II if $\alpha>0$ or of type III if $\alpha=0$ and the boundary point β is of type I, and in case (ii) the point α is of type I and the point β is of type II if $\beta<\infty$ or of type III if $\beta=\infty$.

Applying Theorems 2 and 3(ii), (iii), (iv), (v) we get:

If $0 \leq \alpha<\beta \leq \infty$ and either $a<1,(a-1) / 2<A \leq 0$ or $a>1$, $0 \leq A<(a-1) / 2$, and $h \not \equiv 0$, then

$$
\begin{equation*}
\int_{\alpha}^{\beta}\left[t^{a} \dot{h}^{2}+2 A t^{a-1} h \dot{h}+\frac{1}{4}(a-1)(6 A-a+1) t^{a-2} h^{2}\right] d t>0 \tag{25}
\end{equation*}
$$

for every $h \in \widetilde{H}$; and $\widetilde{H}=H_{0}$ if $a<1$ and $\widetilde{H}=H^{0}$ if $a>1$.
Inequality (25) for $A=0$ was considered in [3] (cf. [13]); if $\alpha=0, \beta=\infty$ and $a=0$ we get the well-known Hardy integral inequality ([11, Th. 253]).

Example 3. We take $I=(-1,1)$ and $r=\left(1-t^{2}\right)^{a}$ on I. We put $\varphi=\left(1-t^{2}\right)^{k}$ on I and $k=1-a$ or $k=1 / 2-a$, where a is an arbitrary constant such that $k>0$. Then the functions $s=A t\left(1-t^{2}\right)^{b}$ and $u=$ $\left(B-C t^{2}\right)\left(1-t^{2}\right)^{b-1}$, where $b=a, B=A+2 a-2, C=A(2 a+1)$ if $k=1-a$ or $b=a-1, B=A+2 a-1, C=A(2 a-1)$ if $k=1 / 2-a$ and A is an arbitrary constant, satisfy (7) on I.

If $a<-1 / 2,0 \leq A<1-1 / a$ or $-1 / 2 \leq a<1,0 \leq A<2-2 a$ in the case $k=1-a$; or $a<0,0 \leq A<1$ or $0 \leq a<1 / 2,0 \leq A<1-2 a$ in the case $k=1 / 2-a$, then both boundary points are of type III.

Applying Theorems 2 and $3(\mathrm{vi})$ we infer the following:
Let $h \in H_{0} \cap H^{0}$.
(i) If $a<-1 / 2,0 \leq A<1-1 / a$ or $-1 / 2 \leq a<1,0 \leq A<2-2 a$, then

$$
\begin{equation*}
\int_{-1}^{1}\left[\left(1-t^{2}\right)^{a} \dot{h}^{2}+2 A t\left(1-t^{2}\right)^{a} h \dot{h}+\left(B-C t^{2}\right)\left(1-t^{2}\right)^{a-1} h^{2}\right] d t \geq 0 \tag{26}
\end{equation*}
$$

where $B=A+2 a-2$ and $C=A(2 a+1)$. Equality holds in (26) if and only if $h=c\left(1-t^{2}\right)^{1-a}$, where $c=$ const $\neq 0$.
(ii) If $a<0,0 \leq A<1$ or $0 \leq a<1 / 2,0 \leq A<1-2 a$, then
(27) $\int_{-1}^{1}\left[\left(1-t^{2}\right)^{a} \dot{h}^{2}+2 A t\left(1-t^{2}\right)^{a-1} h \dot{h}+\left(B-C t^{2}\right)\left(1-t^{2}\right)^{a-2} h^{2}\right] d t \geq 0$,
where $B=A+2 a-1$ and $C=A(2 a-1)$. If $h \not \equiv 0$, then for $a<0$ equality holds in (27) if and only if $h=c\left(1-t^{2}\right)^{1 / 2-a}$, where $c=$ const $\neq 0$, and for $0 \leq a<1 / 2$ inequality (27) is strict.

The condition $r u-s^{2}<0$ is satisfied on $(-1,1)$ in both cases.
Inequalities (26) and (27) for $A=0$ were discussed in [12] and [16] (cf. [10]).

Let $s \in A C(I)$ and $u \in M(I)$ be arbitrary functions satisfying the differential inequality (2) a.e. on I such that $s=0$ on I and $u<0$ a.e. on I. Then
the second and third conditions of (3) are trivially satisfied and inequality (15) takes the form

$$
\begin{equation*}
\int_{I}|u| h^{2} d t \leq \int_{I} r \dot{h}^{2} d t \tag{28}
\end{equation*}
$$

Inequalities of the form (28) are the integral inequalities of Sturm-Liouville type which were examined in [10].

In this case we have $r u-s^{2}=r u<0$ a.e. on I and $s v=0$ on I. Thus the function v is decreasing on I and $v(\alpha)>v(\beta)$. Moreover, α (resp. β) is of type I if $v(\alpha) \leq 0$ (resp. $v(\beta) \geq 0$), of type II if $0<v(\alpha)<\infty$ (resp. $-\infty<v(\beta)<0$) and of type III if $v(\alpha)=\infty$ (resp. $v(\beta)=-\infty$). Hence α and β cannot be simultaneously of type I. In this way from Theorems 2 and 3 we get Theorems 3 and 4 of [10].

Now, let $s \in A C(I)$ and $u \in M(I)$ be arbitrary functions satisfying the differential inequality (2) a.e. on I such that $u \leq 0$ a.e. on I. Then the third of the integral conditions (3) is trivially satisfied and if $s^{2}+u^{2}>0$ a.e. on I, then $r u-s^{2}<0$ a.e. on I. Next by (18) we have $\dot{v} \leq u-r \dot{\varphi}^{2} \varphi^{-2} \leq 0$ a.e. on I. Thus v is nonincreasing on I and $v(\alpha)>v(\beta)$ except for the trivial case $s \equiv 0$ and $u \equiv 0$. Hence α and β cannot be simultaneously of type I.

TheOrem 4. Let $u \leq 0$ a.e. on I and let $h \in A C(I)$ satisfy the integral condition $\int_{I} r \dot{h}^{2} d t<\infty$. If $s \leq 0$ on $I, v(\beta) \geq 0$ and $h(\alpha)=0$, or $s \geq 0$ on $I, v(\alpha) \leq 0$ and $h(\beta)=0$, then

$$
\begin{equation*}
2 \int_{I}|s h \dot{h}| d t+\int_{I}|u| h^{2} d t \leq \int_{I} r \dot{h}^{2} d t . \tag{29}
\end{equation*}
$$

If $h \not \equiv 0$, then equality holds in (29) if and only if s and u satisfy the differential equation (7) a.e. on $I, \varphi^{-1} h=\mathrm{const} \neq 0$,

$$
\begin{equation*}
\int_{I} r \dot{\varphi}^{2} d t<\infty, \quad \lim _{t \rightarrow \alpha} v \varphi^{2}=\lim _{t \rightarrow \beta} v \varphi^{2} \tag{30}
\end{equation*}
$$

and $\varphi(\alpha)=0, \dot{\varphi} \geq 0$ on I provided $s \leq 0$ on I, or $\varphi(\beta)=0, \dot{\varphi} \leq 0$ on I provided $s \geq 0$ on I.

Proof. Let $s \leq 0$ on I and $v(\beta) \geq 0$. Then $v(\alpha)>0$ and $v>0$ on I, whence $s v \leq 0$ on I. Thus α is of the type II or III and β is of type I.

Further, let $h_{+} \in A C(I)$ be such that $h_{+}(\alpha)=0, h_{+} \geq 0$ on $I, \dot{h}_{+} \geq 0$ a.e. on I and $\int_{I} r \dot{h}_{+}^{2} d t<\infty$. Then $\int_{I} s h_{+} \dot{h}_{+} d t \leq 0$ and the second of the integral conditions (3) is satisfied. Thus $h_{+} \in H_{0}$ and by Theorem 3(ii)-(iii) we have $h_{+} \in \widetilde{H}$. Next by Theorem 2 we get

$$
\begin{equation*}
2 \int_{I}|s| h_{+} \dot{h}_{+} d t+\int_{I}|u| h_{+}^{2} d t \leq \int_{I} r \dot{h}_{+}^{2} d t . \tag{31}
\end{equation*}
$$

Now, let $h \in A C(I)$ be such that $h(\alpha)=0$ and $\int_{I} r \dot{h}^{2} d t<\infty$. Put $h_{+}=\int_{\alpha}^{t}|\dot{h}| d \tau$. Then $h_{+} \in A C(I), h_{+}(\alpha)=0, h_{+} \geq 0$ on $I, \dot{h}_{+}=|\dot{h}| \geq 0$ a.e. on I and

$$
\begin{equation*}
\int_{I} r \dot{h}_{+}^{2} d t=\int_{I} r \dot{h}^{2} d t<\infty \tag{32}
\end{equation*}
$$

Hence h_{+}satisfies inequality (31). Notice that

$$
|h|=\left|\int_{\alpha}^{t} \dot{h} d \tau\right| \leq \int_{\alpha}^{t}|\dot{h}| d \tau=h_{+}
$$

on I, and equality holds if and only if \dot{h} does not change sign on I. Hence

$$
\begin{equation*}
2 \int_{I}|s h \dot{h}| d t+\int_{I}|u| h^{2} d t \leq 2 \int_{I}|s| h_{+} \dot{h}_{+} d t+\int_{I}|u| h_{+}^{2} d t \tag{33}
\end{equation*}
$$

and by (31)-(33) we get inequality (29).
If both sides of (29) are equal for some non-vanishing function $h \in A C(I)$ such that $h(\alpha)=0$ and $\int_{I} r \dot{h}^{2} d t<\infty$, then by (31)-(33) it follows that for $h_{+}=\int_{\alpha}^{t}|\dot{h}| d \tau$ equality holds in (31) and (33). It follows that $|h|=h_{+}$and hence \dot{h} does not change sign on I. Since $h_{+} \in \widetilde{H}$ and by Theorem 2, equality occurs in (31) if and only if s and u satisfy (7) a.e. on $I, \varphi^{-1} h_{+}=$const >0 and conditions (16) are satisfied. Hence $\varphi^{-1} h=\mathrm{const} \neq 0, \varphi(\alpha)=0$ and $\dot{\varphi} \geq 0$ on I.

Let s and u satisfy (7) a.e. on I and φ be such that $\varphi(\alpha)=0, \dot{\varphi} \geq 0$ and conditions (30) hold. Then we easily check that the function $h=c \varphi$, where $c=$ const $\neq 0$, satisfies $h(\alpha)=0$ and $\int_{I} r \dot{h}^{2} d t<\infty$ and for this function equality holds in (29).

The case when $s \geq 0$ on $I, v(\alpha) \leq 0, h(\beta)=0$ can be proved in a similar way considering the function $h_{-}=\int_{t}^{\beta}|\dot{h}| d \tau \in \widetilde{H}$.

Inequalities (29) embrace, as a particular case (if $u=0$ on I), the integral inequalities of Opial type which were examined in [13].

Example 4. Let $I=(\alpha, \beta),-\infty \leq \alpha<\beta \leq \infty$. Let $r>0$ and $u \leq 0$ be functions absolutely continuous on I such that $\int_{I} r^{-1} d t<\infty$ and

$$
\int_{I} u d t \geq-\left(\int_{I} r^{-1} d t\right)^{-1}
$$

If we put $\varphi=\int_{\alpha}^{t} r^{-1} d \tau$, then the functions u and

$$
\begin{equation*}
s=-\int_{t}^{\beta} u d \tau-\left(\int_{I} r^{-1} d t\right)^{-1} \leq 0 \tag{34}
\end{equation*}
$$

satisfy equation (7) on I and $v(\beta)=0$. If we put $\varphi=\int_{t}^{\beta} r^{-1} d \tau$, then the functions u and

$$
\begin{equation*}
s=\int_{\alpha}^{t} u d \tau+\left(\int_{I} r^{-1} d t\right)^{-1} \geq 0 \tag{35}
\end{equation*}
$$

satisfy (7) on I and $v(\alpha)=0$.
Now, applying Theorem 4 we get:
If $h \in A C(I)$ satisfies $\int_{I} r \dot{h}^{2} d t<\infty$ and $h(\alpha)=0$ or $h(\beta)=0$, then the inequality of the form (29) with s defined by (34) if $h(\alpha)=0$ or by (35) if $h(\beta)=0$ is valid. In both cases equality holds only for $h=c \varphi$, where $c=$ const.

If $u \equiv 0$, then we obtain the inequalities which were considered in [4] (cf. [13]).

In the case when $0=\alpha<\beta \leq 1, r=1, u=-1$ on I we obtain the inequality

$$
\begin{equation*}
2 \int_{0}^{\beta}\left(\frac{1-\beta^{2}}{\beta}+t\right)|h \dot{h}| d t+\int_{0}^{\beta} h^{2} d t \leq \int_{0}^{\beta} \dot{h}^{2} d t \tag{36}
\end{equation*}
$$

which holds for all $h \in A C((0, \beta))$ such that $h(0)=0$ and $\int_{0}^{\beta} \dot{h}^{2} d t<\infty$, and the inequality

$$
\begin{equation*}
2 \int_{0}^{\beta}\left(\frac{1}{\beta}-t\right)|h \dot{h}| d t+\int_{0}^{\beta} h^{2} d t \leq \int_{0}^{\beta} \dot{h}^{2} d t \tag{37}
\end{equation*}
$$

which holds for all $h \in A C((0, \beta))$ such that $h(\beta)=0$ and $\int_{0}^{\beta} \dot{h}^{2} d t<\infty$.
Equality holds in (36) only for $h=c t$, and in (37) only for $h=c(\beta-t)$, where $c=$ const.

REFERENCES

[1] C. D. Ahlbrandt, Variational inequalities, in: Inequalities, W. N. Everitt (ed.), Dekker, New York, 1991, 1-19.
[2] P. R. Beesack, Integral inequalities of the Wirtinger type, Duke Math. J. 25 (1958), 477-498.
[3] - Hardy's inequality and its extensions, Pacific J. Math. 11 (1961), 39-61.
[4] -, On an integral inequality of Z. Opial, Trans. Amer. Math. Soc. 104 (1962), 470-475.
[5] -, Integral inequalities involving a function and its derivative, Amer. Math. Monthly 78 (1971), 705-741.
[6] D. C. Benson, Inequalities involving integrals of functions and their derivatives, J. Math. Anal. Appl. 17 (1967), 292-308.
[7] D. W. Boyd, Best constants in inequalities related to Opial's inequality, ibid. 25 (1969), 378-387.
[8] B. Florkiewicz, Some integral inequalities of Hardy type, Colloq. Math. 43 (1980), 321-330.
[9] -, On some integral inequalities of Block type, ibid. 55 (1988), 179-189.
[10] B. Florkiewicz and A. Rybarski, Some integral inequalities of Sturm-Liouville type, ibid. 36 (1976), 127-141.
[11] G. H. Hardy, J. E. Littlewood and G. Pólya, Inequalities, Cambridge Univ. Press, 1991
[12] A. Krzywicki and A. Rybarski, On some integral inequalities involving Chebyshev weight function, Colloq. Math. 18 (1967), 147-150.
[13] M. Kuchta, Some quadratic integral inequalities of Opial type, Ann. Polon. Math. 63 (1996), 103 -113.
[14] M. Morse and W. Leighton, Singular quadratic functionals, Trans. Amer. Math. Soc. 40 (1936), 252-286.
[15] D. S. Mitrinović, J. E. Pečarić and A. M. Fink, Inequalities Involving Functions and Their Integrals and Derivatives, Kluwer, Dordrecht 1991.
[16] R. Redheffer, Inequalities with three functions, J. Math. Anal. Appl. 16 (1966), 219-242.
[17] W. T. Reid, Sturmian Theory of Ordinary Differential Equations, Springer, New York, 1980.
[18] G. S. Yang, On a certain result of Z. Opial, Proc. Japan Acad. 42 (1966), 78-83.

Institute of Mathematics
Technical University of Wrocław
Wybrzeże Wyspiańskiego 27
50-370 Wrocław, Poland

[^0]: 1991 Mathematics Subject Classification: Primary 26D10.
 Key words and phrases: absolutely continuous function, integral inequality.

