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1. Introduction and main result. Let A be a finite-dimensional
associative K-algebra with identity over an algebraically closed field K. If
1=ay,...,a, is a basis of A over K, we have the constant structures a;;
defined by a;a; = > a;jrar. The affine variety moda(d) of d-dimensional
unital left A-modules consists of n-tuples m = (mq,...,m,) of (d x d)-
matrices with coefficients in K such that m; is the identity matrix and
m;m; = Y a;;ymy holds for all indices i and j. The general linear group
Gli(K) acts on mod4(d) by conjugation, and the orbits correspond to the
isomorphism classes of d-dimensional modules (see [6]). We shall agree to
identify a d-dimensional A-module M with the point of moda(d) corre-
sponding to it. We denote by O(M) the Gly(K)-orbit of a module M in
mod 4(d). Then one says that a module N in mod(d) is a degeneration of
a module M in mod4(d) if N belongs to the Zariski closure O(M) of O(M)
in mod4(d), and we denote this fact by M <geg N. Thus <g4eg is a partial
order on the set of isomorphism classes of A-modules of a given dimension.
It is not clear how to characterize <geg in terms of representation theory.

There has been work by S. Abeasis and A. del Fra [1], K. Bongartz [4], [3],
Ch. Riedtmann [9], and A. Skowroniski and the author [11]-[14] connecting
<deg With other partial orders <. and < on the isomorphism classes in
mod 4(d). They are defined in terms of representation theory as follows:

o M <.t N < there are modules M;, U;, V; and short exact sequences
0—-U;, - M; - V; — 0in mod A such that M = My, M1, =U; &V,
1<i<s,and N = My4q for some natural number s.

o M <N & [M,X] <IN, X] holds for all modules X.

Here and later on we abbreviate dimg Hom4(X,Y) by [X,Y]. Then for
modules M and N in mod 4(d) the following implications hold:

MgextN:MSdegN:MSN
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(see [4], [9]). Unfortunately, the reverse implications are not true in gen-
eral, and it would be interesting to find out when they are. The author
proved in [14] that the orders <gez and < coincide for all modules over
all representation-finite algebras. Moreover, in [3] K. Bongartz proved that
these orders also coincide for all modules over tame concealed algebras. The
orders <geg and <. do not coincide even for very simple representation-
finite algebras (see [9]). The author proved in [14] and [13] that <qe; and
<ext are equivalent for all modules over an algebra A with Ext} (X, X) =0
for any indecomposable A-module X, and for all modules over tame con-
cealed algebras.

In the representation theory of algebras an important role is played by
selfinjective algebras, that is, algebras A such that 4 A is injective. We are
concerned with the question of when the partial orders <gey and <ey¢ coin-
cide for modules over representation-finite selfinjective algebras. The main
aim of this paper is to prove the following theorem, which gives a complete
answer to this question.

THEOREM. Let A be a connected representation-finite selfinjective alge-
bra. Then the following conditions are equivalent:

(i) There exist A-modules M, N such that M <geg N and M Lexx N.
(ii) There exist A-modules M, N such that M <4qeg N and N is inde-
composable.

(iii) The stable Auslander—Reiten quiver Iy of A is isomorphic to
ZD 3.,/ (127 1) for some m > 2.

For basic background on the topics considered here we refer to [4], [6],
[10], and for the representation theory of representation-finite selfinjective
algebras to [5], [7], [8]. The results presented in this paper form a part of
the author’s doctoral dissertation written under the supervision of Professor
A. Skowroriski. The author gratefully acknowledges support from the Polish
Scientific Grant KBN No. 2 PO3A 020 08.

2. Proof of the main result

2.1. Recall that A denotes a fixed finite-dimensional associative K-
algebra with identity over an algebraically closed field K. We denote by
mod A the category of finite-dimensional left A-modules. By an A-module
mean an object from mod A. Further, we denote by I'4 the Auslander—
Reiten quiver of A and by 7=74 and 77 =7, the Auslander-Reiten trans-
lations D Tr and TrD, respectively. We shall agree to identify the vertices
of I'y with the corresponding indecomposable modules. By I'} we denote
the stable translation quiver obtained from 1’4 by removing all projective-
injective vertices and arrows attached to them. For a noninjective indecom-
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posable A-module U we denote by X(U) the Auslander—Reiten sequence
YU): 0-U—EU)—-1U-=0,

and define 7U to be the unique indecomposable projective-injective direct
summand of E(U) if such a summand exists, or 0 otherwise.

2.2. Let A be a connected representation-finite selfinjective algebra.
Then I'§ ~ ZA/II, where A is a Dynkin diagram of type A,, with n > 1,
D,, with n > 4, or E,, with n € {6,7,8}, and II is an infinite cyclic group of
automorphisms of ZA with finitely many orbits. Following [7] the vertices
of ZA are denoted by (p,q), where p € Z and q € A, and the translation 7
on ZA is given by 7(p,q) = (p—1, q). For a vertex (p, q) of ZA we denote by

(p, q) its orbit in I'§. Following O. Bretscher, C. Léser and C. Riedtmann
(see [5, (1.1)]) we define ma to be the smallest integer m such that the image
v in the mesh category K(ZA) equals 0 for all paths v in ZA whose length
is greater than or equal to m. Then my, = n, mp, = 2n — 3, mg, = 11,
mg, = 17 and mg, = 29.

2.3. LEMMA. Let A be a representation-finite selfinjective algebra of
class D, or E,,. If I'S is not isomorphic to ZD 3, /(7*™~1) for m > 2, then
Ext (X, X) = 0 for all indecomposable A-modules X .

Proof. Take any indecomposable A-module X. If X is projective-
injective, then Extly(X,X) = 0. Thus, we may assume that X € I'.
Following O. Bretscher, C. Léser and C. Riedtmann (see [5, (1.4)]), we
write I'y = ZA/(7"®), where r > 1 and @ is an automorphism of ZA which
fixes at least one vertex. Moreover, we may assume that ¥ = 154 for some
k>1, since A =D, or A =E,. Hence, every path in ZA starting from
Y: and ending in Y5 with Y = Y, has length 27l for some [ > 1. Take any
W in ZA such that W = X. Applying the Auslander-Reiten formula and
Proposition 1.5 in [7], we obtain

Extly (X, X) ~ DHom 4 (X,7X) ~ P Hompza)(Y,7W).
Y~X

Then Ext!, (X, X) # 0 implies that there exists an integer I > 1 and a path
v in ZA of length 2rl — 2 such that its image T in the mesh category K(ZA)
is nonzero. By the definition of m x, it remains to show that 2r — 2 > ma.
But this is done by (1.5) and (1.6) in [5], since 77® # 2™~ 1

2.4. Proof of the Theorem. Clearly, (ii) implies (i).

(i)=(iii). Assume that I'§ is not isomorphic to ZD 3,,/(7?™~!) for any
m > 2. We claim that then the orders <qo; and <y are equivalent. If
A is a selfinjective algebra of class A,,, then this is done by Theorem 2 in
[12]. Thus, we may assume that A is of class D,, with n > 4, or E,, with
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n € {6,7,8}. Then our claim follows from Lemma 2.3 above and Theorem 2
in [14].
(iii)=>(ii). Assume I} = ZD3,,/(7?™"1) for some m > 2 and D3, of
the form
(3m —1)
1—>2—>...—>(3m—2)/

N\

3m
The quiver ZD 3, admits a mesh-complete subquiver of the form

(0,3m) (1,3m)

[ ] [ ]
%,37”—1)\—1 /(1‘,37n—m

(03m—2) ¢ —s ¢ —r 00— 0@ —> @ (2,3m—2)

NN SN

® (1,3m—3) ® (2,3m—3)
/

(0,m+1.)/ a E \ (.2m—2,m+2)
NS NN
®(0,m) ®(1,m) (2m—2,m+1) ® °
NS NS
(1,m.—1) (2m—.1,m)

Then there are the following short exact sequences in mod A:

2(0,k)):0—=(0,k) = (0,k+1)® (1,k—1)®n(0,k) — (1,k) — 0,
for any m < k < 3m — 3,
2((0,3m —2)): 0 — (0,3m —2) — (0,3m — 1) @ (0,3m) @ (1,3m — 3)
®7(0,3m —2) — (1,3m —2) — 0,
2((0,3m — 1)) ® 2((0,3m) : 0 — (0,3m — 1) @ (0,3m) — (1,3m — 2)
®(1,3m —-2)®n(0,3m —1) ®7(0,3m) — (1,3m —1) & (1,3m) — 0,
2((1,3m—2)):0— (1,3m —2) — (1,3m — 1) @ (1,3m) @ (2,3m — 3)
®r(1,3m—2) — (2,3m — 2) — 0,
2((1,3m—-1-1):0—-1,3m—-1-1)—= (1,3m—-)@®(+1,3m—2—1)
on(l,3m—-1-1)—-(1+1,3m—-1—-1) — 0, for any 2 <1 < 2m — 2.

Applying Lemma (3 + 3 + 2) from [2, (2.1)] to these sequences, we get a
short exact sequence

0—(0,m)—(1,m-1)d2m—-1,m)&r— (2m—-1,m+1) — 0,
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where

3m 2m—2
m=Px0,k))e P ={,3m-1-1)).
k=m =1

Of course, (2m — 1, m) = (0,m). Finally, applying [9, Proposition 3.4], we
infer that (1,m — 1) & ™ <geg (2m — 1,m + 1). This finishes the proof.
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