1998

NO. 1

VOL. 75

K-CONTACT A-MANIFOLDS

by Włodzimierz jelonek (kraków)

The aim of this paper is to give a characterization of regular K-contact $\mathcal A\text{-manifolds}.$

1. Introduction. The class of \mathcal{A} -manifolds (for a definition see [G]) is an important class of Riemannian manifolds which has appeared in a natural way during the investigation of spaces with volume preserving local geodesic symmetries. In our paper [J-2] we have constructed a family (P_c, g_c) of \mathcal{A} -manifolds on a circle bundle P over an arbitrary Kähler–Einstein manifold M. If M is locally non-homogeneous, then P is also locally non-homogeneous. Since there are many locally non-homogeneous Einstein–Kähler manifolds, we have given in this way an answer to the open question stated in the book [B]. The family P_c is parametrized by a real number c > 0. For an appropriate choice of c we obtain a K-contact metric structure on P (even Sasakian structure) which at the same time is an \mathcal{A} -manifold. In the present paper we consider a related problem and give necessary and sufficient conditions for a regular K-contact metric manifold to be an \mathcal{A} -manifold (in the compact case our definition of regular contact structure coincides with that in [B-W]).

2. Preliminaries. Throughout the paper we use the notations and terminology of [O-1], [B1]. Let P be a (2n + 1)-dimensional C^{∞} -manifold. We say that a Riemannian manifold (P, g) admits a *contact metric structure* (g, ξ, ϕ, η) if it admits a tensor field ϕ of type (1, 1), a vector field ξ and a 1-form η such that

$$\begin{split} \phi^2 &= -\operatorname{id} + \eta \otimes \xi, \quad \phi(\xi) = 0, \quad \eta \circ \phi = 0, \quad \eta(\xi) = 1, \\ g(\phi X, \phi Y) &= g(X, Y) - \eta(X)\eta(Y), \quad g(X, \xi) = \eta(X), \\ g(X, \phi Y) &= d\eta(X, Y). \end{split}$$

A contact structure (g, ξ, ϕ, η) is called a *K*-contact structure if the characteristic vector field ξ is Killing, i.e. $L_{\xi}g = 0$, *L* being the operator of Lie dif-

¹⁹⁹¹ Mathematics Subject Classification: 53C15, 53C25.

^[97]

W. JELONEK

ferentiation. This is equivalent to $L_{\xi}\phi = 0$ (see [Bl]) and then $\phi X = -\nabla_X \xi$. In the sequel we shall assume that P is a circle bundle over a 2*n*-manifold M and ξ is (up to a constant factor) the fundamental vector field of the action of the group S^1 on P (we shall say in that case that the structure (g, ξ, ϕ, η) is regular). By H (resp. V) we denote the horizontal (resp. vertical) distribution:

$$H = \{X \in TP : \eta(X) = 0\}$$
 and $V = \{X \in TP : X \| \xi \}$

It is clear that $TP = V \oplus H$ and we denote by \mathcal{V} , \mathcal{H} the projections \mathcal{V} : $TP \to V$ and $\mathcal{H}: TP \to H$. By $X^* \in \mathfrak{X}(P)$ we denote the horizontal lift of a vector field $X \in \mathfrak{X}(M)$. A K-contact metric structure (g, ξ, ϕ, η) on P induces an almost Hermitian structure (J_*, g_*) on the manifold M such that (M, g_*, J_*) is an almost Kähler manifold. The metric g_* and the almost complex structure J_* satisfy the conditions

$$g_*(X,Y) = g(X^*,Y^*), \quad dp \circ \phi = J_* \circ dp$$

for any $X, Y \in \mathfrak{X}(M)$. The existence of such g_* and J_* follows from the fact that ξ is a Killing field and that $L_{\xi}\phi = 0$. The Kähler form Ω of (M, g_*, J_*) satisfies the relation

$$p^*\Omega(X,Y) = d\eta(X,Y) = g(X,\phi Y).$$

Note also that the mapping $p: P \to M$ is a Riemannian submersion (see [O'N]) and if P is a Sasakian manifold, then (M, g_*, J_*) is a Kähler manifold. In the sequel we shall use O'Neill's tensors T and A. They are defined as follows:

$$A_X Y = \mathcal{V}(\nabla_{\mathcal{H}X} \mathcal{H}Y) + \mathcal{H}(\nabla_{\mathcal{H}X} \mathcal{V}Y),$$

$$T_X Y = \mathcal{H}(\nabla_{\mathcal{V}X} \mathcal{V}Y) + \mathcal{V}(\nabla_{\mathcal{V}X} \mathcal{H}Y).$$

In view of the results of D. Blair [Bl] we have:

PROPOSITION 1. A contact metric structure (g, ξ, ϕ, η) on a Riemannian manifold (P,g) is a K-contact structure if and only if the characteristic vector field ξ is an eigenfield of the Ricci tensor ρ of (P,g) with constant eigenvalue $\lambda = 2n$.

Let us recall that a *Hodge manifold* is a Kähler manifold whose Kähler form is a multiple of an integral class. We shall use the following:

DEFINITION. An almost Kähler manifold (M, g, J) whose Kähler form $\Omega(X, Y) = g(X, JY)$ is a multiple of an integral class $\omega \in H^2(M, \mathbb{Z})$ is said to be an *almost Hodge manifold*.

R e m a r k. Note that there are many almost Hodge manifolds which are not Hodge manifolds, i.e. which are not Kähler manifolds. Many examples of such non-Kähler manifolds are given in [J-1]. Finally, recall that a Riemannian manifold (M, g) is called an *A*-manifold (see [G]) (we write $M \in \mathcal{A}$) if the Ricci tensor of (M, g) satisfies the condition

$$\nabla_X \varrho(X, X) = 0$$

for all local vector fields $X \in \mathfrak{X}(M)$. On Sasakian manifolds, this condition is equivalent to the so-called η -parallelity of the Ricci tensor (see [O-2]).

3. K-contact regular \mathcal{A} -manifolds. Assume that $p: P \to M$ is a principal circle bundle admitting a K-contact metric structure (g, ξ, ϕ, η) such that the fundamental vector field of the action of S^1 on P coincides with the characteristic vector field of the structure. Hence (g, ξ, ϕ, η) induces on M an almost Hermitian structure (g_*, J_*) such that (M, g_*, J_*) is an almost Hodge manifold. We denote by $\overline{\nabla}$ the Levi-Civita connection of the metric g_* and by ∇ that of g. We prove the following theorem:

THEOREM 1. A K-contact regular metric space (P,g) is an A-manifold if and only if the almost Kähler manifold (M, g_*, J_*) is an A-manifold whose Ricci tensor ϱ_* satisfies the additional condition

(A)
$$\varrho_*(J_*X, J_*Y) = \varrho_*(X, Y)$$

 $\operatorname{Proof.}$ Denote by ϱ the Ricci tensor of (P,g). We have to show that condition (A) implies

$$\mathfrak{C}_{X,Y,Z}\nabla_X\varrho(Y,Z)=0$$

for all $X, Y, Z \in \mathfrak{X}(P)$ where \mathfrak{C} denotes the cyclic sum. We consider three cases. Note first that ξ is a Killing vector field of constant length, hence $\phi(\xi) = -\nabla_{\xi}\xi = 0$, which means that the fibres $p^{-1}(x)$ of P are totally geodesic submanifolds. Hence the O'Neill tensor T vanishes (see [O'N]). It is easy to compute the tensor A (see [B]). Note that $A_XY = A_{\mathcal{H}X}\mathcal{H}Y + A_{\mathcal{H}X}\mathcal{V}Y$ and $\mathcal{H}X = X - \eta(X)\xi$, $\mathcal{H}Y = Y - \eta(Y)\xi$, $\mathcal{V}Y = \eta(Y)\xi$. Hence we obtain

$$A_X Y = A_{X-\eta(X)\xi} (Y - \eta(Y)\xi) + A_{X-\eta(X)\xi} \eta(Y)\xi$$

Assume now that $X, Y \in \mathfrak{X}(P)$ are two horizontal vector fields, i.e. $X, Y \in \Gamma(H)$ (where we denote by $\Gamma(H)$ the set of all local sections of the vector bundle H). Then $A_X Y = \eta(\nabla_X Y)\xi$. We also have in this case

$$g(\xi, \nabla_X Y) = \eta(\nabla_X Y) = Xg(\xi, Y) - g(Y, \nabla_X \xi)$$
$$= -g(\nabla_X \xi, Y) = g(\phi X, Y).$$

Hence

$$A_{X-\eta(X)\xi}(Y-\eta(Y)\xi) = g(\phi X, Y)\xi$$

for any $X, Y \in \mathfrak{X}(P)$. Since for any $X, Y \in \mathfrak{X}(P)$,

$$A_X(\eta(Y)\xi) = \mathcal{H}(\eta(Y)\nabla_X\xi) = \eta(Y)\nabla_X\xi = -\eta(Y)\phi(X)$$

we finally get the formula

(3.1)
$$A_X Y = -g(X, \phi Y)\xi - \eta(Y)\phi(X),$$

where $X, Y \in \mathfrak{X}(P)$. Hence we obtain, in view of the results of O'Neill [O'N], the following formulas for the sectional curvatures:

$$K(U \wedge V) = K_*(U_* \wedge V_*) - 3 \|A_U V\|^2 \quad \text{for } U, V \in H,$$

$$K(U \wedge \xi) = \|A_U \xi\|^2 = \|\phi U\|^2 \quad \text{for } U \in H,$$

where $U_* = p(U), V_* = p(V), g(U, U) = g(V, V) = 1, g(U, V) = 0$ and by K (resp. K_*) we denoted the sectional curvature of P (resp. M). Let $\{E_1,\ldots,E_n\}$ be an orthonormal local frame on M and $U \in \mathfrak{X}(M)$. Then $\{E_1^*, \ldots, E_n^*, \xi\}$ is a local orthonormal frame on P. Then

$$\varrho(U^*, U^*) = \sum_{i=1}^n K(U^* \wedge E_i^*) + K(U^* \wedge \xi)$$

= $\sum_{i=1}^n (K_*(U \wedge E_i) - 3g(\phi U, E_i)^2) + g(\phi U, \phi U)$
= $\varrho_*(U, U) - 2g(\phi U, \phi U).$

Consequently, if $U, V \in \mathfrak{X}(M)$, then

(3.2) $\varrho_*(U,V) = \varrho(U^*,V^*) + 2g(\phi U^*,\phi V^*) = \varrho(U^*,V^*) - 2g(\phi^2 U^*,V^*),$

which implies

(3.3)
$$\varrho_*(U,V) = \varrho(U^*,V^*) + 2g(U^*,V^*).$$

From (3.3) we get

(3.4)
$$\overline{\nabla}_U \varrho_*(U,U) = \nabla_{U^*} \varrho(U^*,U^*).$$

Hence, for all $U \in \mathfrak{X}(M)$, the equality $\nabla_{U^*}\rho(U^*, U^*) = 0$ holds if and only if $\overline{\nabla}_U \varrho_*(U, U) = 0$. The last equality is equivalent to $(M, g_*) \in \mathcal{A}$.

From Proposition 1 we have $S\xi = 2n\xi$, where S is the Ricci endomorphism of (P, g). Taking account of $\phi \xi = 0$ we obtain

(3.5)
$$\nabla S(\xi,\xi) = 0.$$

Hence

(3.6)
$$\nabla \varrho(\xi,\xi,V^*) = 0$$

for any $V \in \mathfrak{X}(M)$. On the other hand, $\varrho(\xi,\xi) = 2n$ is constant and consequently

$$\nabla_{V^*}\varrho(\xi,\xi) - 2\varrho(\phi V^*,\xi) = 0.$$

The equation $\rho(\phi V^*, \xi) = 2ng(\xi, \phi V^*) = 0$ implies (3.7) $\nabla_{V^*}\varrho(\xi,\xi) = 0.$

As a result, $\mathfrak{C}_{V^*,\xi,\xi} \nabla_{V^*} \varrho(\xi,\xi) = 0$. Let now $U, V \in \mathfrak{X}(M)$. We compute the cyclic sum

$$\mathfrak{C}_{\xi,V^*,U^*} \nabla_{\xi} \varrho(U^*,V^*).$$

Since ξ is a Killing vector field we have $L_{\xi} \varrho = 0$, and consequently

(3.8) $\nabla_{\xi} \varrho(U^*, V^*) = (\nabla_{\xi} - L_{\xi}) \varrho(U^*, V^*) = \varrho(\phi U^*, V^*) + \varrho(U^*, \phi V^*).$

Similarly from the equality $S\xi = 2n\xi$ it follows that

(3.9)
$$\nabla_{U^*} \varrho(\xi, V^*) = g(\nabla S(U^*, \xi), V^*) = g((2nI - S)(\nabla_{U^*}\xi), V^*)$$
$$= -2ng(\phi U^*, V^*) + \varrho(\phi U^*, V^*).$$

Consequently, (3.8) and (3.9) give

(3.10)
$$\mathfrak{C}_{\xi,U^*,V^*} \nabla_{\xi} \varrho(U^*,V^*) = 2(\varrho(\phi U^*,V^*) + \varrho(U^*,\phi V^*)).$$

In view of (3.3) we conclude that

(3.11)
$$\varrho(\phi U^*, V^*) + \varrho(U^*, \phi V^*) = \varrho_*(J_*U, V) + \varrho_*(U, J_*V).$$

Hence $\mathfrak{C}_{\xi,U^*,V^*} \nabla_{\xi} \varrho(U^*,V^*) = 0$ if and only if equation (A) is satisfied. From the above considerations it is clear that if (P,g) is an \mathcal{A} -manifold, then (M, g_*, J_*) is an \mathcal{A} -manifold satisfying (A), and if M with the induced almost Kähler structure (g_*, J_*) is an \mathcal{A} -manifold satisfying (A), then (P,g) is an \mathcal{A} -manifold. \blacksquare

THEOREM 2. If (M, g_*, J_*) is an almost Hodge \mathcal{A} -manifold satisfying condition (A) then there exists a circle bundle $p : P \to M$ such that Padmits a K-contact metric structure $(g, \xi, \phi, \eta), (P, g)$ is an \mathcal{A} -manifold and p is a Riemannian submersion.

To prove Theorem 2 recall the following theorem by S. Kobayashi ([K]):

PROPOSITION 2. Let $\omega \in H^2(M, \mathbb{R})$ be an integral cohomology class and let a 2-form $\Omega \in \mathcal{A}^2(M)$ belong to ω . Then there exists an S^1 -principal fibre bundle $p : P \to M$ and a connection Γ on P with connection form $\theta \in \mathcal{A}^1(P)$ such that

$$d\theta = 2\pi p^* \Omega.$$

Proof of Theorem 2. Assume that (M, g_*, J_*) is an almost Kähler manifold and $\Omega_*(X, Y) = g_*(X, J_*Y)$ is its Kähler form. Assume that $\Omega_* = c\Omega$, where $c \in \mathbb{R}$ and $\{\Omega\} \in H^2(M, \mathbb{Z})$. By Proposition 2 there exists an S^1 -principal fibre bundle $p: P \to M$ with connection form θ such that

$$d\theta = 2\pi p^* \Omega.$$

Define $\eta := (2\pi/c)\theta$. Then

(3.12)

$$d\eta = p^* \Omega_*.$$

Next we define the metric g on P by $g = \eta \otimes \eta + p^* g_*$. It is clear that p is a Riemannian submersion $p : (P,g) \to (M,g_*)$. If $\overline{\xi}$ is the fundamental

vector field of the action of S^1 on P, then write $\xi = (2\pi/c)\overline{\xi}$. Then $\eta(\xi) = 1$ and $\eta(X) = g(\xi, X)$. Note also that $L_{\xi}\eta = 0$ (since $\eta = (2\pi/c)\theta$ and θ is a connection form, which implies $L_{\overline{\xi}}\theta = 0$). Define a (1,1)-tensor field ϕ on Pby

(3.13) $\phi(X^*) = (J_*X)^*$ if $X \in TM$ and $\phi(X) = 0$.

The tensor field ϕ is well defined and satisfies the following conditions:

$$\phi^2 = -\operatorname{id} + \eta \otimes \xi, \quad \phi(\xi) = 0, \quad \eta \circ \phi = 0,$$

$$g(\phi X, \phi Y) = g(X, Y) - \eta(X)\eta(Y), \quad g(X, \xi) = \eta(X)$$

We show that

(3.14)
$$d\eta(X,Y) = g(X,\phi Y)$$

for all $X, Y \in \mathfrak{X}(M)$. Note that if X, Y are horizontal, the equality follows from formulas (3.12), (3.13) and definition of g. Since $L_{\xi}\eta = 0$ and $0 = L_{\xi}\eta(X) = (d \circ i_{\xi}\eta)(X) + (i_{\xi}d\eta)(X) = d\eta(\xi, X)$, it is clear that (3.14) holds for all $X, Y \in \mathfrak{X}(M)$. Note also that since $L_{\xi}\eta = 0$ and consequently $L_{\xi}g = 0$, the field ξ is a Killing vector field on P. Hence (g, ξ, ϕ, η) is a K-contact structure. From the previous theorem it follows that if (M, g_*) is an \mathcal{A} -manifold, then so is (P, g), which concludes the proof.

R e m a r k. Note that every Kähler manifold (M, g_*, J_*) satisfies condition (A). On the other hand, a general almost Kähler manifold does not satisfy this condition. It is clear that every almost Kähler Einstein manifold satisfies both conditions; however, the Goldberg conjecture says that every such (compact) manifold is Kähler (see [S-1], [S-2]).

Taking account of the result of A. Gray [G] and K. Sekigawa and L. Vanhecke [S-V] we obtain:

COROLLARY. A K-contact metric regular manifold (P,g) is a Sasakian \mathcal{A} -manifold if and only if (M, g_*, J_*) is a Kähler manifold with parallel Ricci tensor $\nabla \varrho_* = 0$. If M is complete and simply connected, then the last condition is equivalent to the fact that $M = M_1 \times \ldots \times M_r$, where each M_i is a Kähler–Einstein manifold.

Moreover, if $M = M_1 \times \ldots \times M_r$, where each (M_i, g_i, J_i) is a Kähler-Einstein manifold with non-zero scalar curvature (or more generally, which is a Hodge manifold), then there exists a circle bundle $p : P \to M$ such that P admits a Sasakian structure $(g, \xi, \phi, \eta), (P, g)$ is an A-manifold and $p : (P,g) \to (M, g_*)$ is a Riemannian submersion, where $g_* = \sum \alpha_i g_i$ for some $\alpha_i \in \mathbb{R}_+$.

Proof. Recall that in our case P is a Sasakian manifold if and only if (M, g_*, J_*) is Kähler manifold ([Bl]). Hence in view of the results of K- $CONTACT \mathcal{A}$ -MANIFOLDS

A. Gray [G] and K. Sekigawa and L. Vanhecke [S-V], $(M, g_*, J_*) \in \mathcal{A}$ implies $\overline{\nabla} \varrho_* = 0$. If M is complete and simply connected, then (as is well known) the de Rham theorem gives $M = M_1 \times \ldots \times M_r$, where each M_i is a Kähler–Einstein manifold.

On the other hand, if $M = M_1 \times \ldots \times M_r$, where each (M_i, g_i, J_i) is a Kähler–Einstein manifold with nonzero scalar curvature (or Hodge manifold if it has zero scalar curvature), then for some $\alpha_i \in \mathbb{R}_+$ the manifold (M, g_*, J_*) , where $g_* = \sum_i \alpha_i g_i$, $J_* = \sum_i J_i$, is a Hodge manifold. Hence using the result of S. Kobayashi [K] and our theorem we get a principal S^1 fibre bundle over M which is a Sasakian \mathcal{A} -manifold.

REFERENCES

- [B] A. Besse, Einstein Manifolds, Springer, Berlin, 1987.
- [BI] D. E. Blair, Contact Manifolds in Riemannian Geometry, Lecture Notes in Math. 509, Springer, 1976.
- [B-W] W. M. Boothby and H. C. Wang, On contact manifolds, Ann. of Math. 68 (1958), 721–734.
- [G] A. Gray, Einstein like manifolds which are not Einstein, Geom. Dedicata 7 (1978), 259-280.
- [J-1] W. Jelonek, Some simple examples of almost Kähler non-Kähler structures, Math. Ann. 305 (1996), 639–649.
- [J-2] —, On A-tensors in Riemannian geometry, preprint 551, Polish Acad. Sci., 1995.
 [K] S. Kobayashi, Principal fibre bundles with the 1-dimensional toroidal group, Tôhoku Math. J. 8 (1956), 29–45.
- [O-1] Z. Olszak, On contact metric manifolds, ibid. 31 (1979), 247-253.
- [O-2] —, Certain property of the Ricci tensor on Sasakian manifolds, Colloq. Math. 40 (1979), 235–237.
- [O'N] B. O'Neill, The fundamental equations of a submersion, Michigan Math. J. 13 (1966), 459–469.
- [S-1] K. Sekigawa, On some 4-dimensional compact Einstein almost Kähler manifolds, Math. Ann. 271 (1985), 333–337.
- [S-2] —, On some compact Einstein almost Kähler manifolds, J. Math. Soc. Japan 39 (1987), 677–684.
- [S-V] K. Sekigawa and L. Vanhecke, Symplectic geodesic symmetries on Kähler manifolds, Quart. J. Math. Oxford Ser. (2) 37 (1986), 95–103.

Institute of Mathematics	Institute of Mathematics
Technical University of Cracow	Polish Academy of Sciences
Warszawska 24	Cracow Branch
31-155 Kraków, Poland	Św.Tomasza 30
E-mail: wjelon@usk.pk.edu.pl	31-027 Kraków, Poland

Received 30 September 1996; revised 1 April 1997