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K-CONTACT A-MANIFOLDS

BY

W LODZIMIERZ J E L O N E K (KRAKÓW)

The aim of this paper is to give a characterization of regular K-contact
A-manifolds.

1. Introduction. The class of A-manifolds (for a definition see [G])
is an important class of Riemannian manifolds which has appeared in a
natural way during the investigation of spaces with volume preserving lo-
cal geodesic symmetries. In our paper [J-2] we have constructed a fam-
ily (Pc, gc) of A-manifolds on a circle bundle P over an arbitrary Kähler–
Einstein manifold M . If M is locally non-homogeneous, then P is also
locally non-homogeneous. Since there are many locally non-homogeneous
Einstein–Kähler manifolds, we have given in this way an answer to the open
question stated in the book [B]. The family Pc is parametrized by a real
number c > 0. For an appropriate choice of c we obtain a K-contact met-
ric structure on P (even Sasakian structure) which at the same time is an
A-manifold. In the present paper we consider a related problem and give
necessary and sufficient conditions for a regular K-contact metric manifold
to be an A-manifold (in the compact case our definition of regular contact
structure coincides with that in [B-W]).

2. Preliminaries. Throughout the paper we use the notations and
terminology of [O-1], [Bl]. Let P be a (2n + 1)-dimensional C∞-manifold.
We say that a Riemannian manifold (P, g) admits a contact metric structure
(g, ξ, φ, η) if it admits a tensor field φ of type (1, 1), a vector field ξ and a
1-form η such that

φ2 = − id+η ⊗ ξ, φ(ξ) = 0, η ◦ φ = 0, η(ξ) = 1,

g(φX, φY ) = g(X, Y )− η(X)η(Y ), g(X, ξ) = η(X),
g(X, φY ) = dη(X, Y ).

A contact structure (g, ξ, φ, η) is called a K-contact structure if the charac-
teristic vector field ξ is Killing, i.e. Lξg = 0, L being the operator of Lie dif-
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ferentiation. This is equivalent to Lξφ = 0 (see [Bl]) and then φX = −∇Xξ.
In the sequel we shall assume that P is a circle bundle over a 2n-manifold
M and ξ is (up to a constant factor) the fundamental vector field of the
action of the group S1 on P (we shall say in that case that the structure
(g, ξ, φ, η) is regular). By H (resp. V ) we denote the horizontal (resp. ver-
tical) distribution:

H = {X ∈ TP : η(X) = 0} and V = {X ∈ TP : X‖ξ}.
It is clear that TP = V ⊕ H and we denote by V, H the projections V :
TP → V and H : TP → H. By X∗ ∈ X(P ) we denote the horizontal lift
of a vector field X ∈ X(M). A K-contact metric structure (g, ξ, φ, η) on
P induces an almost Hermitian structure (J∗, g∗) on the manifold M such
that (M, g∗, J∗) is an almost Kähler manifold. The metric g∗ and the almost
complex structure J∗ satisfy the conditions

g∗(X, Y ) = g(X∗, Y ∗), dp ◦ φ = J∗ ◦ dp

for any X, Y ∈ X(M). The existence of such g∗ and J∗ follows from the fact
that ξ is a Killing field and that Lξφ = 0. The Kähler form Ω of (M, g∗, J∗)
satisfies the relation

p∗Ω(X, Y ) = dη(X, Y ) = g(X, φY ).

Note also that the mapping p : P → M is a Riemannian submersion (see
[O’N]) and if P is a Sasakian manifold, then (M, g∗, J∗) is a Kähler manifold.
In the sequel we shall use O’Neill’s tensors T and A. They are defined as
follows:

AXY = V(∇HXHY ) +H(∇HXVY ),
TXY = H(∇VXVY ) + V(∇VXHY ).

In view of the results of D. Blair [Bl] we have:

Proposition 1. A contact metric structure (g, ξ, φ, η) on a Riemannian
manifold (P, g) is a K-contact structure if and only if the characteristic
vector field ξ is an eigenfield of the Ricci tensor % of (P, g) with constant
eigenvalue λ = 2n.

Let us recall that a Hodge manifold is a Kähler manifold whose Kähler
form is a multiple of an integral class. We shall use the following:

Definition. An almost Kähler manifold (M, g, J) whose Kähler form
Ω(X, Y ) = g(X, JY ) is a multiple of an integral class ω ∈ H2(M, Z) is said
to be an almost Hodge manifold .

R e m a r k. Note that there are many almost Hodge manifolds which are
not Hodge manifolds, i.e. which are not Kähler manifolds. Many examples
of such non-Kähler manifolds are given in [J-1].
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Finally, recall that a Riemannian manifold (M, g) is called an A-manifold
(see [G]) (we write M ∈ A) if the Ricci tensor of (M, g) satisfies the condition

∇X%(X, X) = 0

for all local vector fields X ∈ X(M). On Sasakian manifolds, this condition
is equivalent to the so-called η-parallelity of the Ricci tensor (see [O-2]).

3. K-contact regular A-manifolds. Assume that p : P → M is
a principal circle bundle admitting a K-contact metric structure (g, ξ, φ, η)
such that the fundamental vector field of the action of S1 on P coincides with
the characteristic vector field of the structure. Hence (g, ξ, φ, η) induces on
M an almost Hermitian structure (g∗, J∗) such that (M, g∗, J∗) is an almost
Hodge manifold. We denote by ∇ the Levi-Civita connection of the metric
g∗ and by ∇ that of g. We prove the following theorem:

Theorem 1. A K-contact regular metric space (P, g) is an A-manifold if
and only if the almost Kähler manifold (M, g∗, J∗) is an A-manifold whose
Ricci tensor %∗ satisfies the additional condition

(A) %∗(J∗X, J∗Y ) = %∗(X, Y ).

P r o o f. Denote by % the Ricci tensor of (P, g). We have to show that
condition (A) implies

CX,Y,Z∇X%(Y, Z) = 0
for all X, Y, Z ∈ X(P ) where C denotes the cyclic sum. We consider three
cases. Note first that ξ is a Killing vector field of constant length, hence
φ(ξ) = −∇ξξ = 0, which means that the fibres p−1(x) of P are totally
geodesic submanifolds. Hence the O’Neill tensor T vanishes (see [O’N]). It
is easy to compute the tensor A (see [B]). Note that AXY = AHXHY +
AHXVY and HX = X − η(X)ξ, HY = Y − η(Y )ξ, VY = η(Y )ξ. Hence we
obtain

AXY = AX−η(X)ξ(Y − η(Y )ξ) + AX−η(X)ξη(Y )ξ.
Assume now that X, Y ∈ X(P ) are two horizontal vector fields, i.e. X, Y ∈
Γ (H) (where we denote by Γ (H) the set of all local sections of the vector
bundle H). Then AXY = η(∇XY )ξ. We also have in this case

g(ξ,∇XY ) = η(∇XY ) = Xg(ξ, Y )− g(Y,∇Xξ)
= −g(∇Xξ, Y ) = g(φX, Y ).

Hence
AX−η(X)ξ(Y − η(Y )ξ) = g(φX, Y )ξ

for any X, Y ∈ X(P ). Since for any X, Y ∈ X(P ),

AX(η(Y )ξ) = H(η(Y )∇Xξ) = η(Y )∇Xξ = −η(Y )φ(X),
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we finally get the formula

(3.1) AXY = −g(X, φY )ξ − η(Y )φ(X),

where X, Y ∈ X(P ). Hence we obtain, in view of the results of O’Neill [O’N],
the following formulas for the sectional curvatures:

K(U ∧ V ) = K∗(U∗ ∧ V∗)− 3‖AUV ‖2 for U, V ∈ H,

K(U ∧ ξ) = ‖AUξ‖2 = ‖φU‖2 for U ∈ H,

where U∗ = p(U), V∗ = p(V ), g(U,U) = g(V, V ) = 1, g(U, V ) = 0 and
by K (resp. K∗) we denoted the sectional curvature of P (resp. M). Let
{E1, . . . , En} be an orthonormal local frame on M and U ∈ X(M). Then
{E∗1 , . . . , E∗n, ξ} is a local orthonormal frame on P . Then

%(U∗, U∗) =
n∑

i=1

K(U∗ ∧ E∗i ) + K(U∗ ∧ ξ)

=
n∑

i=1

(K∗(U ∧ Ei)− 3g(φU,Ei)2) + g(φU, φU)

= %∗(U,U)− 2g(φU, φU).

Consequently, if U, V ∈ X(M), then

(3.2) %∗(U, V ) = %(U∗, V ∗) + 2g(φU∗, φV ∗) = %(U∗, V ∗)− 2g(φ2U∗, V ∗),

which implies

(3.3) %∗(U, V ) = %(U∗, V ∗) + 2g(U∗, V ∗).

From (3.3) we get

(3.4) ∇U%∗(U,U) = ∇U∗%(U∗, U∗).

Hence, for all U ∈ X(M), the equality ∇U∗%(U∗, U∗) = 0 holds if and only
if ∇U%∗(U,U) = 0. The last equality is equivalent to (M, g∗) ∈ A.

From Proposition 1 we have Sξ = 2nξ, where S is the Ricci endomor-
phism of (P, g). Taking account of φξ = 0 we obtain

(3.5) ∇S(ξ, ξ) = 0.

Hence

(3.6) ∇%(ξ, ξ, V ∗) = 0

for any V ∈ X(M). On the other hand, %(ξ, ξ) = 2n is constant and conse-
quently

∇V ∗%(ξ, ξ)− 2%(φV ∗, ξ) = 0.

The equation %(φV ∗, ξ) = 2ng(ξ, φV ∗) = 0 implies

(3.7) ∇V ∗%(ξ, ξ) = 0.
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As a result, CV ∗,ξ,ξ∇V ∗%(ξ, ξ) = 0. Let now U, V ∈ X(M). We compute the
cyclic sum

Cξ,V ∗,U∗∇ξ%(U∗, V ∗).
Since ξ is a Killing vector field we have Lξ% = 0, and consequently

(3.8) ∇ξ%(U∗, V ∗) = (∇ξ − Lξ)%(U∗, V ∗) = %(φU∗, V ∗) + %(U∗, φV ∗).

Similarly from the equality Sξ = 2nξ it follows that

∇U∗%(ξ, V ∗) = g(∇S(U∗, ξ), V ∗) = g((2nI − S)(∇U∗ξ), V ∗)(3.9)
= −2ng(φU∗, V ∗) + %(φU∗, V ∗).

Consequently, (3.8) and (3.9) give

(3.10) Cξ,U∗,V ∗∇ξ%(U∗, V ∗) = 2(%(φU∗, V ∗) + %(U∗, φV ∗)).

In view of (3.3) we conclude that

(3.11) %(φU∗, V ∗) + %(U∗, φV ∗) = %∗(J∗U, V ) + %∗(U, J∗V ).

Hence Cξ,U∗,V ∗∇ξ%(U∗, V ∗) = 0 if and only if equation (A) is satisfied.
From the above considerations it is clear that if (P, g) is an A-manifold,
then (M, g∗, J∗) is an A-manifold satisfying (A), and if M with the induced
almost Kähler structure (g∗, J∗) is an A-manifold satisfying (A), then (P, g)
is an A-manifold.

Theorem 2. If (M, g∗, J∗) is an almost Hodge A-manifold satisfying
condition (A) then there exists a circle bundle p : P → M such that P
admits a K-contact metric structure (g, ξ, φ, η), (P, g) is an A-manifold and
p is a Riemannian submersion.

To prove Theorem 2 recall the following theorem by S. Kobayashi ([K]):

Proposition 2. Let ω ∈ H2(M, R) be an integral cohomology class and
let a 2-form Ω ∈ A2(M) belong to ω. Then there exists an S1-principal
fibre bundle p : P → M and a connection Γ on P with connection form
θ ∈ A1(P ) such that

dθ = 2πp∗Ω.

P r o o f o f T h e o r e m 2. Assume that (M, g∗, J∗) is an almost Kähler
manifold and Ω∗(X, Y ) = g∗(X, J∗Y ) is its Kähler form. Assume that
Ω∗ = cΩ, where c ∈ R and {Ω} ∈ H2(M, Z). By Proposition 2 there exists
an S1-principal fibre bundle p : P → M with connection form θ such that

dθ = 2πp∗Ω.

Define η := (2π/c)θ. Then

(3.12) dη = p∗Ω∗.

Next we define the metric g on P by g = η ⊗ η + p∗g∗. It is clear that p
is a Riemannian submersion p : (P, g) → (M, g∗). If ξ is the fundamental
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vector field of the action of S1 on P , then write ξ = (2π/c)ξ. Then η(ξ) = 1
and η(X) = g(ξ,X). Note also that Lξη = 0 (since η = (2π/c)θ and θ is a
connection form, which implies Lξ̄θ = 0). Define a (1, 1)-tensor field φ on P
by

(3.13) φ(X∗) = (J∗X)∗ if X ∈ TM and φ(X) = 0.

The tensor field φ is well defined and satisfies the following conditions:

φ2 = − id+η ⊗ ξ, φ(ξ) = 0, η ◦ φ = 0,

g(φX, φY ) = g(X, Y )− η(X)η(Y ), g(X, ξ) = η(X).

We show that

(3.14) dη(X, Y ) = g(X, φY )

for all X, Y ∈ X(M). Note that if X, Y are horizontal, the equality follows
from formulas (3.12), (3.13) and definition of g. Since Lξη = 0 and 0 =
Lξη(X) = (d ◦ iξη)(X) + (iξdη)(X) = dη(ξ,X), it is clear that (3.14) holds
for all X, Y ∈ X(M). Note also that since Lξη = 0 and consequently
Lξg = 0, the field ξ is a Killing vector field on P . Hence (g, ξ, φ, η) is a
K-contact structure. From the previous theorem it follows that if (M, g∗) is
an A-manifold, then so is (P, g), which concludes the proof.

R e m a r k. Note that every Kähler manifold (M, g∗, J∗) satisfies condi-
tion (A). On the other hand, a general almost Kähler manifold does not
satisfy this condition. It is clear that every almost Kähler Einstein manifold
satisfies both conditions; however, the Goldberg conjecture says that every
such (compact) manifold is Kähler (see [S-1], [S-2]).

Taking account of the result of A. Gray [G] and K. Sekigawa and L. Van-
hecke [S-V] we obtain:

Corollary. A K-contact metric regular manifold (P, g) is a Sasakian
A-manifold if and only if (M, g∗, J∗) is a Kähler manifold with parallel Ricci
tensor ∇%∗ = 0. If M is complete and simply connected , then the last
condition is equivalent to the fact that M = M1 × . . .×Mr, where each Mi

is a Kähler–Einstein manifold.
Moreover , if M = M1 × . . . ×Mr, where each (Mi, gi, Ji) is a Kähler–

Einstein manifold with non-zero scalar curvature (or more generally , which
is a Hodge manifold), then there exists a circle bundle p : P → M such
that P admits a Sasakian structure (g, ξ, φ, η), (P, g) is an A-manifold and
p : (P, g) → (M, g∗) is a Riemannian submersion, where g∗ =

∑
αigi for

some αi ∈ R+.

P r o o f. Recall that in our case P is a Sasakian manifold if and only
if (M, g∗, J∗) is Kähler manifold ([Bl]). Hence in view of the results of
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A. Gray [G] and K. Sekigawa and L. Vanhecke [S-V], (M, g∗, J∗) ∈ A im-
plies ∇%∗ = 0. If M is complete and simply connected, then (as is well
known) the de Rham theorem gives M = M1 × . . .×Mr, where each Mi is
a Kähler–Einstein manifold.

On the other hand, if M = M1 × . . . × Mr, where each (Mi, gi, Ji) is
a Kähler–Einstein manifold with nonzero scalar curvature (or Hodge man-
ifold if it has zero scalar curvature), then for some αi ∈ R+ the manifold
(M, g∗, J∗), where g∗ =

∑
i αigi, J∗ =

∑
i Ji, is a Hodge manifold. Hence

using the result of S. Kobayashi [K] and our theorem we get a principal S1

fibre bundle over M which is a Sasakian A-manifold.
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