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LOCAL SPECTRUM AND KAPLANSKY’S THEOREM
ON ALGEBRAIC OPERATORS

BY

DRISS DR I S S I (KUWAIT)

Using elementary arguments we improve former results of P. Vrbová [10]
concerning local spectrum. As a consequence, we obtain a new proof of
Kaplansky’s theorem on algebraic operators on a Banach space.

0. Introduction. Let T ∈ B(X) and x ∈ X. We define Ωx to be the
set of α ∈ C for which there exists a neighbourhood Vα and u analytic on
Vα with values in X such that (λ − T )u(λ) = x on Vα. This set is open
and contains the complement of the spectrum of T. The function u is called
a local resolvent of T on Vα. By definition, the local spectrum of T at x,
denoted by Spx(T ), is the complement of Ωx. So it is a compact subset of
Sp(T ). In general, Spx(T ) may be empty, even for x 6= 0 (see Example 1
below). But for x 6= 0, the local spectrum of T is non-empty if T satisfies
the uniqueness property for the local resolvent . That is, (λ − T )v(λ) = 0
implies v = 0 for any analytic function v defined on any domain D of C
with values in X. It is easy to see that T has this property if the spectrum
of T has no interior points (see [6]). So this happens if T has a finite,
countable or real spectrum. It is still an open problem whether the class
of commuting operators with uniqueness property for the local resolvent is
stable for addition. For more details on this interesting problem the reader is
referred to [2], [3] and [6]. For operators satisfying the uniqueness property
for the local resolvent there is a unique local resolvent which is the analytic
extension of (λ − T )−1x. Using this property and Liouville’s Theorem, it
is easy to conclude that Spx(T ) 6= ∅ for x 6= 0. Also in this case the local
spectral radius rx(T ) = max{|µ| : µ ∈ Spx(T )} is equal to limk→∞‖T kx‖1/k.
In general this last property is false.

In this note, we first introduce three simple examples to clarify the con-
cept of the local spectrum. Secondly, we use elementary arguments to im-
prove former results of P. Vrbová [10], which roughly say that ∂ Sp(T ) ⊂
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Spx(T ) for a large set of vectors x. As a consequence, we obtain an elemen-
tary proof of a well known result of Kaplansky, that is, a locally algebraic
bounded linear operator on a Banach space is in fact algebraic.

1. Results. The first example will show that even for x 6= 0, the local
spectrum of T at x is not in general non-empty. The third example will
show that Gelfand’s spectral radius formula is not in general true for the
local spectral radius. The second example will show that there are many
operators with the property of the uniqueness of the local resolvent.

Example 1. On the Hilbert space l2 consider the left shift operator

T : (ξ1, ξ2, . . .) → (ξ2, ξ3, . . .).

It is well known that the spectrum of T is the closed unit disc (see [8],
problem 82). Denoting by (en) the canonical orthonormal basis we have
T kek = 0 for k ≥ 1, so for λ 6= 0 the relation

(1) ek = (λk − T k)
ek

λk
= (λ− T )(λk−1 + . . . + T k−1)

ek

λk

implies that Spek
(T ) ⊂ {0}. If we consider the right shift operator

S : (ξ1, ξ2, . . .) → (0, ξ1, ξ2, . . .)

which is an isometry and satisfies TS = I, it is easy to verify that we have
for x ∈ l2, x 6= 0, |λ| < 1,

(2) (λ− T )
(
−
∞∑

n=0

λnSn+1x
)

= x.

The series defines an analytic function in λ, so we have Spx(T ) included in
the unit circle. Consequently, Spek

(T ) is empty for k ≥ 1, which implies that
Spx(T ) = ∅ if x is in the linear subspace F generated by e1, e2, . . . There
are some x not in F for which Spx(T ) is non-empty, in which case Spx(T ) is
included in the unit circle. For instance we may choose x =

∑∞
n=1(1/n)e2n

for which %x(T ) = 1. Consequently, by Theorem 1.2 below, rx(T ) = 1.

Example 2. Let {wn}∞n=1 be an arbitrary sequence of non-zero com-
plex numbers. On the Hilbert space l2 consider the operator Tk defined by
Tken = wnen+k for n = 1, 2, . . . It is well known that T0 has the property
of uniqueness of the local resolvent. We show here that this is true for all
Tk. In fact, suppose that (λ − Tk)v(λ) = 0 for every λ ∈ D(λ0, r). Then it
follows from the definition of Tk that if v(λ) = (v1, v2, . . .), then

(0, . . . , 0, w1v1, w2v2, . . .) = (λv1, . . .).

Hence,

λvn = 0 for n = 1, . . . , k and λvn+k = wnvn for n = 1, 2, . . .
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Case 1: If λ = 0, then vn = 0 for all n.

Case 2: If λ 6= 0, then vn = 0 for n = 1, . . . , k. On the other hand,
we have λvk+1 = w1v1 = 0. So, vk+1 = 0. Repeating this process, we get
vn+k = 0 for n = 2, 3, . . . Consequently, v = 0.

Remark. Using the same idea as above we can easily prove that quasi-
similarity preserves the property of uniqueness of the local resolvent.

We denote by r(T ) the spectral radius of T which is equal to
limk→∞ ‖T k‖1/k. By convention, for x 6= 0,

rx(T ) =
{

max{|α| : α ∈ Spx(T )} if Spx(T ) 6= ∅,
0 if Spx(T ) = ∅,

and %x(T ) = lim supk→∞ ‖T kx‖1/k ≤ r(T ). It is well known that in general,
‖T kx‖1/k has no limit. From the formal identity

(λ− T )
1
λ

∞∑
k=0

(
T

λ

)k

x = x,

we conclude that

(3) rx(T ) ≤ %x(T ) ≤ r(T ).

The next example shows that in general rx(T ) is less than %x(T ), even if
Spx(T ) is non-empty.

Example 3. Let X = l2 ⊕ C2, with the norm ‖(x1, x2)‖ = max(‖x1‖,
‖x2‖), on which we consider the left shift operator T on l2 and M a 2 × 2
matrix having eigenvalues 1/2 and 3/2. We have Sp(A) = Sp(I + T ) ∪
{1/2, 3/2} = D(1, 1), the closed unit disk centred at 1. So r(A) = 2. Let
u be an eigenvector of M corresponding to 1/2. Then we have %(e1,u)(A) =
max(%e1(I+T ), %u(M)) = 1. Moreover, since Spe1

(I+T ) is empty, we obtain

Sp(e1,u)(A) = Spe1
(I + T ) ∪ Spu(M) = Spu(M) = {1/2}.

So r(e1,u)(A) = 1/2.

Lemma 1.1. Suppose T ∈ B(X), x, y ∈ X, α ∈ C. Then

(i) %αx(T ) = %x(T ),
(ii) %Sx(T ) ≤ %x(T ) if S ∈ B(X), ST = TS,

(iii) %x+y(T ) ≤ max(%x(T ), %y(T )),
(iv) if %x(T ) > %y(T ) then %x+y(T ) = %x(T ).

The proof is straightforward. It follows from the conditions (i)–(iii) of
Lemma 1.1 that for a real number r, the set {x ∈ X : %x(T ) ≤ r} is a linear
(not necessarily closed) subspace of X, hyperinvariant under T. Apparently
nobody has noticed until now the following elementary results.
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Theorem 1.2. Let T ∈ B(X), x ∈ X, x 6= 0. If rx(T ) = r(T ) then
rx(T ) = %x(T ) = r(T ). If rx(T ) < r(T ) then %x(T ) < r(T ).

P r o o f. The first part is obvious by (3). Suppose that rx(T ) < r(T ),
which means that the circle Γ with centre 0 and radius r(T ) is included in
Ωx. For α ∈ Γ there exists a disk neighbourhood Vα and a local resolvent
u such that (λ − T )u(λ) = x on Vα. But if λ ∈ Vα with |λ| > r(T ) then
λ− T is invertible so u(λ) coincides with R(λ, x) = (1/λ)

∑∞
k=0(T/λ)kx. If

we now take α, β ∈ Γ with Vα ∩ Vβ 6= ∅, then the two corresponding local
resolvents coincide on Vα ∩ Vβ ∩ {z : |z| > r(T )}. By the Identity Principle
they coincide on Vα ∩Vβ . Using these arguments we can extend analytically
R(λ, x) onto {z : |z| > %} for some % < r(T ) so, by definition of the radius
of convergence of the series, we have %x(T ) < % < r(T ).

Theorem 1.3. Suppose T ∈ B(X) and r(T ) > 0. Then the set Y of
x ∈ X such that rx(T ) < r(T ) is a linear subspace of X which is an Fσ-set
invariant under any operator S commuting with T.

P r o o f. Obviously Y contains zero. Suppose x 6= 0. By Theorem 1.2,
rx(T ) < r(T ) is equivalent to %x(T ) < r(T ). By Lemma 1.1(i)–(iii), Y is a
linear subspace of X invariant under any S commuting with T. Moreover,
we have Y =

⋃
p,q∈N Yp,q where

Yp,q =
{

x ∈ X : ‖T kx‖ ≤
(

r(T )− 1
p + 1

)k

for k ≥ q

}
is closed, so Y is an Fσ-set.

Supposing that T has the uniqueness property for the local resolvent,
Dunford proved that Sp(T ) =

⋃
x∈X Spx(T ). The argument is very simple.

Let α ∈ Sp(T ) \
⋃

x∈X Spx(T ); from the definition of Ωx this implies that
α− T is onto, so it is not one-to-one. Consequently, there exists u 6= 0 such
that (α−T )u = 0, in which case (λ−T ) u

λ−α = u for λ 6= α, so Spu(T ) ⊂ {α};
but Spu(T ) is non-empty and this implies that Spu(T ) = {α}, which gives
a contradiction. If Spx(T ) is empty for some x 6= 0, then Example 1 shows
that this result cannot be true in general. Gray [7] claims to prove this
result in general, but his argument is invalid.

P. Vrbová [10] improved Dunford’s result when T has the uniqueness
property for the local resolvent. She proved that there exists x ∈ X such that
Sp(T ) = Spx(T ), a result which is obviously false for the general case. She
also proved that the set of x ∈ X for which Spx(T ) contains the boundary
of Sp(T ) is non-meager (i.e. it is not of the first category) in X.

We now improve Vrbová’s theorem using an elementary argument.

Lemma 1.4 (Holomorphic Functional Calculus for Local Spectrum). Let
T ∈ B(X), x 6= 0, and f holomorphic in a neighbourhood D of Sp(T ). Then



LOCAL SPECTRUM AND KAPLANSKY’S THEOREM 163

f(Spx(T )) is included in Spx(f(T )). If f is injective on D then f(Spx(T )) =
Spx(f(T )). Moreover , if T has the uniqueness property for the local resolvent
then we have the same property for any f holomorphic.

P r o o f. The proof is essentially given in [5], Theorem 1.6, p. 6. The
injective case is obtained by applying the first case to f−1 and the operator
f(T ).

Corollary 1.5. Let T ∈ B(X) be invertible. Then

dist(0,Spx(T )) = 1/rx(T−1).

P r o o f. If Spx(T ) is empty then dist(0, Spx(T )) = ∞, so the formula
is obvious. Suppose Spx(T ) is non-empty. By Lemma 1.4 applied to 1/z,
which is holomorphic and injective on a neighbourhood of Sp(T ), we have
Spx(T−1) = {1/z : z ∈ Spx(T )}, so we get the result.

Lemma 1.6. Let T ∈ B(X) be invertible. Then there exists an x ∈ X
such that dist(0,Spx(T )) = dist(0,Sp(T )).

P r o o f. Without loss of generality, we may suppose that dist(0,Sp(T ))
= 1. Since Spx(T ) ⊂ Sp(T ) we have dist(0,Spx(T )) ≥ 1. Suppose that
dist(0,Spx(T )) > 1 for every x ∈ X. By Corollary 1.5, we have rx(T−1) < 1.
Consequently, by Theorem 1.2, %x(T−1) < 1 for every x ∈ X. Hence, for
every x ∈ X there exists %x < 1 and an integer Nx such that

‖T−kx‖ ≤ %k
x for k ≥ Nx.

Let λ be fixed with |λ| = 1. Then we have
∞∑

k=Nx

∥∥∥∥T−k

λk
x

∥∥∥∥ =
∞∑

k=Nx

‖T−kx‖ ≤
∞∑

k=Nx

%k
x < ∞.

Setting

Snx =
1
λ

n∑
k=0

T−k

λk
x,

we have Sn ∈ B(X) and by the previous inequalities,

sup
n
‖Snx‖ < ∞

for every x ∈ X, so by the Banach–Steinhaus Theorem the operator defined
by

Sx =
∞∑

k=0

(
T−1

λ

)k

x

is bounded. Moreover, we have (λ− T−1)Sx = S(λ− T−1)x = x for every
x ∈ X, so λ 6∈ Sp(T−1). Consequently, we proved that the unit circle is
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disjoint from Sp(T−1), so it is also disjoint from Sp(T ), and this is a con-
tradiction because dist(0,Sp(T )) = 1. Hence, there exists some x ∈ X for
which dist(0,Spx(T )) = 1.

Theorem 1.7. Let T ∈ B(X). There exists a subset E of X, which is
a countable union of linear subspaces of X invariant under any operator
commuting with T, such that X \E is a dense Gδ-subset of X and such that
x 6∈ E implies ∂ Sp(T ) ⊂ Spx(T ).

P r o o f. Let (sn) be an enumeration of the countable set (Q+iQ)\Sp(T )
and let Yn = {x ∈ X : dist(sn,Spx(T )) > dist(sn,Sp(T ))}. By Corollary
1.5 and Theorem 1.3 applied to (T − sn)−1 we know that Yn is a linear
subspace of X invariant under any operator commuting with T, and it is
also an Fσ-subset of X. Let E be the union of all those Yn; is an Fσ-subset
of X. First we prove that X \E is dense in X. Suppose the contrary. Then
there exists an open ball included in E, so by Baire’s Category Theorem,
one of the Yn,p,q, as defined in the proof of Theorem 1.3 for the operator
(T − sn)−1, contains interior points. So this is also true for Yn. But Yn is a
linear subspace of X, which implies that X = Yn for some integer n. But,
by Lemma 1.6 applied to T − sn, we get a contradiction.

We now prove that x 6∈ E implies ∂ Sp(T ) ⊂ Spx(T ). Suppose that
α ∈ ∂ Sp(T ) and α 6∈ Spx(T ). Let % > 0 be such that the closed disc
D(α, %) is disjoint from Spx(T ). Since α ∈ ∂ Sp(T ) there exists n such that
|α− sn| < %/2. Therefore if x 6∈ E we have

%/2 > |α− sn| ≥ dist(sn,Sp(T )) = dist(sn,Spx(T )) ≥ %/2,

which is absurd. Therefore the result is proved.

Remark. If instead of one operator T ∈ B(X) we have a sequence (Tn)
of operators, then for each n there exists some subset En as defined by
Theorem 1.7. Consequently, the union E of all those En has the properties
of Theorem 1.7 for any Tn. Therefore, Theorem 1.7 generalizes previous
results on %x(T ).

We say that T ∈ B(X) is locally algebraic if for every x ∈ X there exists
a non-zero polynomial p such that p(T )x = 0. A well-known result due to
Kaplansky [9] states that a locally algebraic bounded linear operator on a
Banach space is in fact algebraic. Several different proofs of this important
result are known (see for instance [1], p. 86, and [9]). We add a new one as
an application of Theorem 1.7.

Corollary 1.8. If T ∈ B(X) is locally algebraic then it is algebraic.

P r o o f. From Baire’s Category Theorem, it is easy to prove that there
exists an integer N such that for every x ∈ X there exists a non-zero poly-
nomial p satisfying p(T )x = 0 and the degree of p is less than or equal
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to N (see the proof of Corollary 4.2.8 in [1]). By Lemma 1.4 we have
p(Spx(T )) ⊂ Spx(p(T )) ⊂ {0} because %x(p(T )) = 0. So, for every x ∈ X,
Spx(T ) has at most N points. By Theorem 1.7, ∂ Sp(T ) has at most N
points, so the same is true for Sp(T ). Denote by β1, . . . , βm (m ≤ N) the m
distinct points of Sp(T ). Let x be arbitrary in X and let p of minimal degree
and leading coefficient one be such that p(T )x = 0. Denote by βx

1 , . . . , βx
k

(k ≤ N) the distinct zeros of p (depending on x). We have

p(T )x = (T − βx
1 ) . . . (T − βx

k )x = 0,

and the k elements βx
1 , . . . , βx

k are in Sp(T ), otherwise, if for instance βx
1

6∈ Sp(T ), then the operator T−βx
1 is invertible and we would have q(T )x = 0

with q(z) = p(z)/(z − βx
1 ), which contradicts the minimality of the degree

of p. So, we have

(T − β1)N . . . (T − βm)Nx = 0 for every x ∈ X.

Hence (T − β1)N . . . (T − βm)N = 0.
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[6] C. Foia ş and F.-H. Vas i l e scu, On the spectral theory of commutators, J. Math.

Anal. Appl. 31 (1970), 473–486.
[7] J. D. Gray, Local analytic extensions of the resolvent , Pacific J. Math. 27 (1968),

305–324.
[8] P. R. Halmos, A Hilbert Space Problem Book , D. Van Nostrand, 1967.
[9] I. Kaplansky, Infinite Abelian Groups, Univ. of Michigan Press, 1969.
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