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EMBEDDINGS OF KRONECKER MODULES INTO
THE CATEGORY OF PRINJECTIVE MODULES AND
THE ENDOMORPHISM RING PROBLEM

BY

RUDIGER GOBEL (ESSEN) axp DANIEL SIMSON (TORUN)

1. Introduction. Throughout this paper K is a field, R is a commuta-
tive ring with an identity element and (I, <) is a finite poset (i.e. partially
ordered set) with respect to the partial order <. We shall write i < jifi < j
and i # j. For simplicity we write I instead of (I, =).

One of the aims of this paper is to show that the category prin(K1)
of finite-dimensional prinjective right modules over the incidence K-algebra
K1 of I (defined below) is of infinite representation type if and only if the
category prin(K ) contains a full exact subcategory which is equivalent to

the category
mod K K
0 K

of Kronecker K-modules (see Theorem 1.7).

This together with Theorem 1.2 of [10] shows that if the category
prin(K7) is of infinite representation type then the category Modp (K I) of
propartite modules (defined below) over the incidence K-algebra KI con-
tains large objects with prescribed endomorphism K-algebras and contains
large rigid direct systems (see Theorem 1.8).

This is a Corner type result (see [3]) studied by many authors for nice
subcategories .4 of module categories Mod(A) over rings A with an identity
element (see [1], [2], 5], 6], [8], [9], [17], [19]).

Throughout denote by max I the set of all maximal elements of I (called
peaks of I). We suppose that

I={1,...,n,p1,...,pr}, maxI={p1,...,pr}

and that the order relation < in [ is such that ¢ < j implies that ¢ < j in
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214 R. GOBEL AND D. SIMSON

the natural order. We can always achieve this by a suitable renumbering of
the elements in [.

Usually we view the poset I as a quiver with the commutativity relations
induced by the ordering <, and we denote by RI the path algebra of I
with coefficients in the ring R (see Chapter 14 of [22]). It follows from
our assumption on the order < that RI has the following upper triangular
I x I-matrix form:

R Riy ... Ry, Rip, Rip, ... Ry,

0 R ... Ry, Ry, Rap, ... Rop,
4 |00 R Rup, Rupy - Rup,
0 0 0O R 0 ... 0
0 0 0 0 R ... 0
00 ..0 O O .. R

where R;; = R if i < j and R;; = 0 otherwise. For ¢ =< j we denote by
ejj € RI the matrix having 1 at the 4-j-th position and zeros elsewhere.
Given j in I we denote by e; = e;; the standard primitive idempotent
corresponding to j.

Right RI-modules will be identified with the systems

X = (Xi; jhi)ijer

where X; = Xe; is an R-module and jh; : X; — X, i < j, are R-homomor-
phisms such that ;h; - jh; = ¢h; for all t < 7 < ¢ in I. The module X is
finitely generated if X; is a finitely generated R-module for any j € I.

If K is a field then following [15] (see also [20], [28]) we call the right K I-
module X prinjective if X is finitely generated and the right K1~ -module
Xe™ is projective, where

(1.2) I" =1\ max/

and e~ = Y /- e;. It is easy to prove that a module X in mod(KT) is
prinjective if and only if there exists a short exact sequence

0—-P—-F—-X—-0
in mod(K 1), where Py, P; are projective K I-modules and P; is semisimple
of the form Py = @ cpmax 1 (e, K1), t, > 0.

We denote by mod(K1I) the category of finitely generated right KI-
modules and by prin(K 1) the full subcategory of mod(KI) consisting of
the prinjective modules. It follows from [15] that the category prin(K1T)
is additive, has the finite unique decomposition property, is closed under
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extensions in mod(K ), has Auslander—Reiten sequences, source maps and
sinks maps, and has enough relative projective and relative injective objects.
An interpretation of prin(K7) as a bimodule matrix problem in the sense of
Chapter 17 of [22] is given in [23].

Following [23] we define the poset I to be of finite prinjective type if
the category prin(K 1) is of finite representation type, that is, the number
of isomorphism classes of indecomposable modules in prin(K7) is finite. It
follows from [23] that the definition does not depend on the choice of K.

We recall that a right module X over a bipartite generalized triangular

matrix ring
(A aMp
s=(5 5"

can be identified with the system
X = (X4, Xp, )

where X’; is a right A-module, X7} is a right B-module and ¢ : X' ®
AMp — X}, is a B-homomorphism (see [22]). We recall from [26] that
the S-module X is said to be propartite if X') is a projective R-module
and X7 is a projective B-module. We denote by Modgi(S)g the category
of propartite right S-modules, and by modgi(S)g the full subcategory of
ModB (S )4 consisting of the finitely generated modules.

For any ring R with an identity element the generalized matrix R-algebra

03 nw=(5 %)

is called the Kronecker R-algebra, where the multiplication is defined by the

formula

D U\(F V\ _ (DF DV+UE

0 C 0 E) \ 0 CE ’
The right I's(R)-modules are called Kronecker R-modules. Following the
remarks above, the category Mod(I%(R)) of Kronecker R-modules X can

be identified with the category of R-representations of the Kronecker quiver
(see [17] and [22])

that is, the systems

(14) X — (X/,X//7 (‘0/,()0//)

where X’ and X” are R-modules and ¢/, ¢” : X’ — X" are R-homomor-
phisms. A morphism from X = (X', X", ¢, ¢") to X1 = (X, X7, ¢, ¢) is
a pair (f’, f") of R-module homomorphisms f’: X’ — X{, f": X" — X{
such that @} f/ = f"¢’ and ¢ f' = f"¢".
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The category Modpbi(/2(R)) will be called the category of R-projective
Kronecker modules. It is easy to see that Modpbj(/2(R)) can be identified
with the category of R-projective representations of the Kronecker quiver,
that is, the R-representations P = (P’, P" ¢’ ¢"), where P’ and P” are
projective R-modules.

Throughout we shall view RI as a bipartite R-algebra as follows:

(1.5) RI = <Ré_ z\g)

where B = R x ... x R (|max I| times), the free R-module

M = @ @eipR

pEmax [ i<p
i€l™
is viewed as an RI~-B-bimodule in the obvious way and multiplication is
matrix multiplication.
It is easy to see that the right R/-module X identified with the system
X = (Xi; jhi)i,jer is propartite if and only if X}, is a projective R-module for
any p € max [ and the restriction X~ = @;¢;- X; of X to I is projective
when viewed as a right R/~ -module. It follows that if R = K is a field then
modP (K'T) = prin(K1).
It was shown in [12] that there exists a full and faithful exact embedding

functor
K K3

0 K
if and only if there exists a nonzero vector v € N! such that ¢;(v) < 0, where
qr : Z' — 7 is the Tits quadratic form

(1.6) qr(z) = fo + Z TiTj — Z (Zazi)xp

i€l 1< pEmax ] i<p
jeI—

T : mod ( > — prin(KT)

of the poset I. Following an idea of [12] we prove the following theorem
which is one of the main theorems of this paper.

THEOREM 1.7. Let I be a finite poset. The following statements are
equivalent.

(a) The poset I is of infinite prinjective type.

(b) The Tits quadratic form qr : 71 — 7 is not weakly positive, that is,
there exists a nonzero vector v € NI with qr(v) < 0, where N={0,1,2,3,...}.

(¢) The poset I contains as a peak subposet one of the critical posets
P1,...,Pio listed in Section 5 of [23].

(d) For any commutative field K there exists a full and faithful eract
functor T : mod([»(K)) — prin(KI), where I'5(K) is the Kronecker K-
algebra (1.3).
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(e) For any commutative ring A which is an algebra over a field K there
exist full, faithful and exact functors

T : Modbi(I32(A)) — Modbi(AI) and T':modd(I3(A)) — modbi(Al)
where I5(A) is the Kronecker A-algebra (1.3).

We recall from [23] that a subposet L of I is a peak subposet if L N
(max I) = max L.

By applying Theorem 1.7 and the results of [8] and [9] we prove our
second main theorem.

THEOREM 1.8. Let I be a finite poset of infinite prinjective type, K a
field and K I the K-incidence algebra of I.

(a) For any K-algebra A generated by at most A elements, where \ is an
infinite cardinal number, there exists a direct system

F = {Fg, upy }pchca
of K-linear additive functors Fg : Mod(A) — Modpb(KI) connected by in-
jective functorial morphisms ugy : Fg — [, satisfying the following condi-
tions:
(i) If M is a module in Mod(A) which is A-projective, then the K1I-
module Fg(M) is A-projective for all 3 C X,
(ii) Suppose that M and N are modules in Mod(A). Then

Homp [ (Fg(M),Fy(N)) =0 if 8L,
and the natural R-homomorphism
Homa (M, N) — Homg(Fg(M),F,(N)),

[ = ugy(N) oFg(f), is an isomorphism for all 3 C v C A.
(b) Any K-algebra A is isomorphic to an algebra of the form End X,
where X is a module in Modb (KT).

In view of Theorem 3.1 of [23] the proof of Theorem 1.7 reduces to the
proof of the implications (a)=-(d)=-(e). The first implication will follow from
Proposition 3.1 and Theorem 4.4, because Proposition 2.2 and Lemma 2.8
reduce the problem to the case where I is any of the peak-irreducible posets
listed in Tables 4.7 of Section 4. For any such poset I we construct in Theo-
rem 4.4 a pair of modules S(a) and V' in prin(K) satisfying the conditions
(i)—(iii) of Proposition 3.1, and inducing an embedding functor 7" required
in Theorem 1.7(d). The implication (d)=-(e) is proved in Theorem 5.8 of
Section 5. The proofs of Theorems 1.7 and 1.8 are presented in Section 6.

The statement (b) of Theorem 1.8 follows from (a). In view of Theorem
1.7, the statement (a) of Theorem 1.8 reduces to an analogous statement
proved in [10] with ModBi(RI) and Modbi(12(R)) interchanged.
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A result analogous to Theorem 1.8 for loop finite K-algebras is proved in
[10, Section 4] by applying the characterization of minimal representation-
infinite loop-finite artin algebras given by Skowronski in [27].

2. Preliminaries and notation. We recall from [15] and [23] that the
coordinate vector cdn X € N! of a module X in prin(K 1) is defined by the
formula

o [ dimg(X;) for j € max 1,
(2.1) (edn X)(5) = {dimK(tOp X)e; for jel\maxlI.
We consider cdn X as a map cdn X : I — N. Note that if X is an indecom-
posable module in prin(KJ) which is not isomorphic to any of the simple

projective modules e, K1, ..., e, KI then the projective cover P(X) of X
has the form

P(X) = P (e;KI)le»X0),
jel—
Throughout we shall frequently use the following connection between

prinjective modules over KI and over K.J for a peak subposet J of I.

PROPOSITION 2.2. Let J be a peak subposet of I and consider the idem-
potents ey =3 ;cye; and eyyr- = > ;e ur- €5 of KI. Then there exists an
algebra isomorphism ej(KI)ey = KJ, and the subposet induction functor

(2.3) Ty = () @xses(KI)e - : prin(K.J) — prin(KT)

s full, faithful and carries exact sequences to exact ones. Moreover, given
X in prin(KJ) we have

(cdn X)(j) for jel,
0 for j&1.

For the proof we refer to Proposition 2.4 of [12]. m

(2.4) (cdn T, X)) = {

We extend Proposition 2.2 in Proposition 5.2 to propartite modules over
RI, where R is a commutative ring.

Most of the problems studied in this paper for prinjective modules over
K I reduce to the case when I is a peak-irreducible poset. For this purpose we
recall from [11] and [12] that if ] is a poset with |max I| > 2 then ¢ € max I
is said to be a reducible peak if there exists an element ¢ € I such that

(i) The set ¢¥ N (Ugstpemax 1 pYV) consists of one element c.
(ii) There is no element ¢ € I such that ¢ <t < g.
(iii) The subposet I, := ¢ \ {c} of I is linearly ordered.

HeregivenjEIweseth:{z'GI:ijj}.
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The poset I is said to be peak-reducible if there exists a reducible peak
in I; otherwise I is said to be peak-irreducible. If ¢ € I is a reducible peak,
we associate with I a g-reflection poset Syl defined as follows. We assume
that I, = {b1 < ... < by} and we set

(2.5) Sel = {c,bicq, ..., bypeg,cqt U1\ qv)
where bycq, . .., bycq, cq are new points. The partial order in S,/ is generated
by the partial order < in I\ ¢V and the following relations:

(i) ¢ < bieg < ... < bpeq < cg;
(ii) cg <iifc<iin Tandi € I\ qV.

The construction I — S,I can be visualized by the following picture:

b1 - i
L
1 .
I: —  Sql :
L s L
bm. c— | T \ qV bmcq

The poset I is said to be peak-reducible to a poset L if there exists a sequence
of posets Jg, Ji,...,Js such that Jo =2 I, J; &2 L and for any ¢ = 1,...,s
there exists a reducible peak ¢;—1 in J;—1 such that S, | J;—1 = I;.

Let I be a peak-reducible poset with a reducible peak ¢ and let S,I be
the g-reflection form (2.5) of I. Following [21], [13] and [14] we define the
functor

(2.6) G, : prin(K S,I) — prin(KT)

as follows. Given a prinjective module X in prin(KS,I) we view it as a
system X = (Xj, jhy)ijies,1,i<j, Wwhere X; = Xe; and jhy : X; — X is the
K-linear map defined by multiplication by e;; € KSyI. Here ¢;; € KS,I is
the matrix having 1 at the [-j-th entry and zeros elsewhere. We set éq (X) =
(X, M)ijier1<;, where

X; ificl\qV,
v _ ) Xy it i =,
(2.7) Xi= Xeg/Im eghe  if i =g,
Xpeg/Im cghe if i€ 1, =qV \ {c}.

Here we use the notation from (2.5). We set jﬁl = jh, jﬁc = jheg fgr
g lel\ qv, qhe + X — X, is the natural projection, and we take for 4 hy
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and qﬁb the K-linear maps induced by pcqhpeq and cghpeq, respectively, if
b,b' € SyI. The functor éq is defined on morphisms in a natural way. It is
easy to check that éq carries prinjective modules to prinjective ones.

The following lemma follows from Theorem 2.15 of [14].

LEMMA 2.8. If I is a peak-reducible poset with a reducible peak q then
the functor Gy : prin(K.SyI) — prin(K1) is full, faithful and ezact.

We shall extend Lemma 2.8 in Lemma 5.4 to propartite modules over
RI, where R is a commutative ring.

3. The main embedding functor. Our construction of embeddings of
Kronecker modules into categories of prinjective modules and of propartite
modules announced in Theorem 1.7 will essentially depend on the following
result.

PROPOSITION 3.1. Let R be a commutative ring and let A be an R-
algebra which is a finitely generated R-module. Assume that there exists a
pair (U, V) of modules U and V' in mod(A) satisfying the following three
conditions:

(i) Ends(U) 2 Endy (V) & R,
(ii) Homa(U, V) = Homu(V,U) = 0,

(iii) The Enda(U)-Endy(V)-bimodule ExtY(V,U) contains a subbimod-
ule N, which is a free R-module of rank two when viewed as an R-module.

Then there exists a full faithful exact functor

R R?

TV,U : Modgi ( 0 R

) — Mod(A)

satisfying the following conditions.

(a) The image category Im Ty of the functor Ty is equivalent to the

full subcategory STV\TN(V, U) of Mod(A) formed by all A-modules Z which
are middle terms of exact sequences

(3.2) ez: 0—-2Zy—72—71—0

in Mod(A), where Zy is a direct summand of a direct sum @;co Vi, V; 2V,
Z is a direct summand of a direct sum @,cx. U;, U; = U, and the equivalence
class [ez] of ez in the extension group ExtY(Zy, Zs) belongs to the subgroup

N(Z1,22) = [ @ NV, Ui)

jeRiex

of EXt}l(Zl, ZQ) .
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2
(b) For any module X in modb; (JS ]]%% ) there exists a short exact
sequence
(3.3) 0—-Uy—Tvy(X)—Vo—0

in mod(A), where Uy and Vyy are direct summands of U™ and Vt withr,t > 0.

Proof. If R is a field, the proposition generalizes Lemmata 1.5 and 8.6
of [16] (see also Gabriel [7]).

Suppose that R is an arbitrary commutative ring. We shall apply the
bimodule matrix problem technique developed by the second author in [26],
and the categories of extensions developed in [24] and [25]. We follow the
proof of Theorem 3.12 of [25].

For this purpose we consider two full additive subcategories K = Add(V)
and L = Add(U) of Mod(A) consisting of the modules isomorphic to direct
summands of direct sums of copies of the module V and U, respectively.
Denote by K = add(V) and L = add(U) the full additive subcategories of
K and LL consisting of the finitely generated modules. We associate with the
End(U)-End(V)-subbimodule N of Ext}(V,U) two R-linear bifunctors

N(—,—):K%® x L — Mod(R),  N(—,—):K x L — mod(R)
defined by the formulae

N(Bv,.PU:) =[] DNV,

JESN i€ jENIeX
N(DV;. D) = DD N Vi),
j=1 i=1 j=1i=1

We shall prove the proposition by constructing a commutative diagram
— g o R R?
EXT N (V,U) - Mat(=Ng) —- Mod®: (0 R)
J J J

2
EXTN(V,U) L Mat (. Nk) 25 mods: (f i )
where EXT n(V,U) is the full subcategory of EjY\TN(V, U) formed by the
finitely generated modules and the vertical arrows denote the natural em-
bedding functors.

Here Mat (. Nx) is the category of matrices in the sense of Drozd [4],
that is, the objects of Mat(,Nk) are triples (z,y, m), where z is an object
of K, y is an object of L and m € N(z,y). A morphism from (z,y,m) to
(«',y',m") in Mat(pNk) is a pair (¢, 1), where ¢ € K(z,2’) and ¢ € L(y, /)
are such that N(z,¢)m = N(p,y")m’ (see also [22, Chapter 17, p. 466]).
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It is easy to check that Mat(;,Nk) is an additive category. The direct
sum of two objects (z,y,m) and (z/,y’,m’) of Mat( Ng) is the object
(x @2,y Dy ,mdm’), where

m 0 N($7y) N(ﬂ?,y,)
0 m/> < ! !t
N(z',y) N(z',y)
under the obvious identifications. The category Mat(ﬁﬁk) is defined in a
similar way. R
In order to define the functors S’ and S’ we observe that the module Z
in the exact sequence (3.2) determines the modules Z; and Z uniquely up
to isomorphism, because of the assumption Hom (U, V) = 0. Given such a
module Z we set

m®m'=< )ZN($@$',y®y/)-

S(2) = (%1, Z2,m)
where m = [e] is the element of N(Z1, Z3) C Ext!(Z1, Z2) determined by
the short exact sequence ey.
It f:Z — Wis a A-homomorphism and the modules Z and W are in
EXT n(V,U), then in view of the equality Hom(Z2, W1) = 0 there exists a
commutative diagram

ez: 0 — Zy —- Z — Z1 — 0

lf2 lf lfl
ew: 0 — Wy — W — W; — 0

and the A-homomorphisms f; and f; are uniquely determined by f. It is
easy to check by a standard pull-back and push-out arguments that (fi, f2) :
(Z1, Zs,lez]) — (W1, W, [ew]) is a morphism in the category of matrices
(see [25, Section 3]). We set S/(f) = (f1, f2). The functor S’ is defined in a
similar way.

It follows from the definition and our assumptions that the functors S
and S’ are equivalences of categories.

The functors S” and S” will be constructed by applying [26, Theorem
2.8] to our situation. We note that in view of the R-algebra isomorphisms
End(V) = R and End(U) = R the Yoneda correspondences w(—) = K(V, —)
and w'(—) = L(U, —) induce the equivalences of categories

K = pr(End(V)) = pr(R) and L % pr(End(U)) = pr(R)

where pr(A) is the category of finitely generated projective modules over a
ring A. Since by our assumption the End(U)-End(V)-bimodule N(V,U) is
isomorphic to R?, Theorem 2.8 and the formula (2.9) of [26] apply to yield
a functorial isomorphism

pay : N(z,y) — Homp(w(z) @ (R*)r, w'(y))
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for all objects x in K and y in L. We define the functor S” by the formula

§"(z,y,m) = (w(2), W' (y), oy (M));
on morphisms it is defined in a natural way. It is easy to check that S” is an
equivalence of categories. .

The equivalence S” extends to an equivalence §” in a natural way. For
this purpose we note that given Z; = @jeg V;in K with V; £V, and Z =
Diex U in L with U; U, we get the composed functorial isomorphism ji

N(Z1,25) — [[ PNWV;. Us)
T jeniex
— [ @Homp(w(V)) @ (R*)r, o' (Vi)
T jeniex
— Homp(&(Z1) ®r (R*)R, w'(22))
where we set &(Z1) = @jeow(V;) and W'(Zy) = @Dicy w'(V;). Hence we
derive equivalences of categories
©:K = Pr(R) and «':L =5 Pr(R)
and a functorial isomorphism
iz N(@,5) — Homp(@(2) @r (F?)r, (7))
for all objects ¥ in K and ¥ in Iﬁ, where Pr(R) is the category of projective
R-modules. We define the functor S” by the formula
§"(z,y,m) = (&(Z), w'(9), ﬂaa(m))v
on morphisms it is defined in a natural way. It is easy to check that S is an
equivalence of categories. The details are left to the reader (see [22, Theorem
17.89] and [26, Theorem 2.8]).
We take for the functor
R R?
TV,U : Modgi < 0 R

the inverse of the functor §”oS. Tt is easy to check that Ty 7 has the required
properties. This finishes the proof of the proposition. m

> — Mod(A)

4. Embeddings of Kronecker modules over a field. Throughout
we fix a maximal element a € I~ = I \ max ] and we set

Il =1\ {a}.
We view I] as a peak subposet of I.
Let S(a) = e, KI~ /rad(e, KI™) be the simple K I-module corresponding
to the point a. We shall denote by

(4.1) T, : prin(K 1)) — prin(KI)
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the full, faithful and exact functor T 1. induced by the subposet J = I, Lof T
according to Proposition 2.2.

The proof of the implication (a)=-(d) of Theorem 1.7 essentially depends
on the following two results, which are of type similar to the main lemmata
of [12].

LEMMA 4.2. Assume that a € I~ = I\ max [ is a mazimal element and
let V.= (Vj, jh; : Vi = Vj)i<; be an indecomposable module in prin(K1T).

(a) Suppose that there exists p € max I such that p > a and V), # 0, and
the element a is such that the subposet a¥ = {j € I : j < a} of I~ = I\max I
is linearly ordered and each of the elements of a¥ is incomparable with all
elements of I~ \ a¥. Then the induced map

ha = (pha)pra : Va — @ Vp
a<pEmax]
is ingective and Homgr(S(a),V) = 0.
(b) If V is such that the map hq = (pha)psa is injective and (cdnV')(a)
= 0 then Homg(S(a),V) = 0 and dimg Ext;(S(a),V) = £y(cdnV),
where we have set

(4.3) la() = > ulp) =D (i)

a<p€Emaxl] i<a
for any v € N (see (3.7) in [12]).

Proof. By our assumption the subposet C :=a¥ = {j € I : j < a} of
I! is linearly ordered. Assume that C' = {a; — ... — as = a}. Since V is
prinjective, by our assumption the restriction

Vo=Voy — ... & Vo, , = Vo)

of V to C is a projective K(C-module and without loss of generality we
can suppose that the arrows in Vi are represented by K-space injections
Va, ., CVg, fort=2,...,s.

Now suppose to the contrary that the map h, = (pha)pra @ Vo —
@Do<pemax 1 Vp is not injective, and fix a nonzero element y in

Ker h, = ﬂ Kery, hg.
a<pEmax
Define the K C-projective submodule U = (U,, € ... C Uy, , € U,) of
Ve by setting U, = Ky and U,; = KynV,, for j =1,...,5s — 1. Note
that the induced maps Va, / Usj = Va4 / Ua,,, are injective and therefore
the factor KC-module Vi /U is projective (see Corollary 5.7 of [22]). Conse-
quently, the projective KC-module U is a K(C-module direct summand of
V. By the choice of y and our assumption on C' the module U is a projec-
tive K1~ -module and it is a K I-module direct summand of V. Since V is
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indecomposable, it follows that V = U and V,, = U, = 0 for any p € max I,
p > a. This contradicts our assumption.

In order to prove the second statement of (a) and the statement (b) we
note that there exists an exact sequence

0= @ eKI“e,KI = 5(a)—0
a<pEmax]
as a is maximal in /™. There is a natural isomorphism Homg(e; K1,V') =
Ve; = V; for any j € I, and so the sequence above induces the commutative
diagram

*

Homp (e K1,V) (), Homg ( @ e,KI,V)— BExtk (S(a),V)—0

a<pEmax]

| = Ji

Va ha e Vv, — Extl(S(a), V) =0
a<pEmax]

with exact rows and Ker(u,) = Im Hom (e, idy) = Homg;(S(a), V). We
conclude that Homg(S(a), V) = 0 if and only if the map h, is injective. In
particular, this finishes the proof of (a).

Further, the exactness of the lower row of the diagram and the injectivity
of h, yield

dimg Extl;(S(a), V) = Z v(p) — dimg V,
a<pEmax]
and the required equality will hold if we prove that dimg V, = >2,_,v(7).
In order to prove this we set v = cdnV and we note that the restriction
V= =Ve™ of V to I is a projective module. By applying the formula (2.1)
to X =V we get VT = G}a#jep(ejK[—)”U). Since V, = Ve, = Ve,
ej(KI7)e, =0if j A a,and ej(KI7)e, = K if j = a, we get

dimy Vo= dimg Ve = dimg | €D (e;KTeq)"?]
aFjel—
= Z v(j) dimg (e; K1 e,) = Z v(7).
Jj=a j=<a
This finishes the proof of (b) and the lemma follows. m

THEOREM 4.4. Let I be a peak-irreducible minimal poset of infinite prin-
jective type among the posets Py, ..., Piig listed in Section 5 of [23]. Then:

(a) I is one of the 28 posets listed in Tables 4.7 at the end of this section.

(b) There exist a maximal element a € I~ = I \ maxI and an inde-
composable module V' in prin(K1I)), Il = I\ {a}, satisfying the following
conditions:
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(i) The subposet a¥ = {j € I : j < a} of I~ is linearly ordered and
each element of a¥ is incomparable with any elements of I~ \aV .
(ii) The difference
(45) L= Y v - V)
a<p€Emaxl] i<a
is equal to two, where v' = cdnV’ (see (3.10) in [12]).
(¢) If a and V' are as in (b) and we set V. = To(V'), where T, :
prin(K1I)) — prin(K1) is the functor (2.3) with J = I!, then
(i) EndKI(S(a)) = EndK](V) = K,
(ii) Homg(S(a), V) = Homg(V, S(a)) = 0,
(iil) dimg Extl;(S(a), V) = 2.

Proof. (a) It is easy to see that a minimal poset P; € {P1,...,Piio}
of infinite prinjective type is peak-irreducible if and only if P; is one of the
28 posets listed in Tables 4.7 at the end of this section (see Remark 5.0" in
[11, p. 275]).

(b) Let I = P; be any of the 28 peak-irreducible posets listed in Tables
4.7. In each such P; we have marked in Tables 4.7 a point a € P; such that
a € max(P; \ maxP;) and the condition (b)(i) is satisfied.

Now we shall find for any such P; an indecomposable prinjective module

V(’j) in prin(KP}), where P; = P; \ {a}, such that the coordinate vector

/ o /
vy = edn )
satisfies the equation

lo(v)) = 2.

We shall prove this by a case-by-case inspection of the 28 peak-irreducible
critical posets listed in Tables 4.7.

If P; is any of the posets P1pny1,P5 41, P3ps1s Piner in Part 1 of Ta-
bles 4.7 we take for V(’]) the following prinjective module in prin(K PJ’»):

/ .
Vl,n+1 .

X

K K K
K K K

v ) K K2 K? K
2n+1: NN o N

K K2 K? K?

=
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K

V! . K? K? K? K? K
Sntl- L L L NN
K K? K? K? K? K

K
v . i{z K? K? K? K
dmtls LN L S N
K2 2 K2 K2 K2

respectively. It follows that the vectors

Ué,n+1) = cdn V(,3/,n+1) =

satisfy the required condition.

Next we consider the posets Py = Kj,...,Ps = Ki of Part 2 of Ta-
bles 4.7, which are one-peak enlargements of the critical Kleiner posets
Ki,...,Ks. In this case P; = P; \ {a} is the sincere poset F(j —2)* of
Kleiner (see Chapter 10 of [22]) and V(’]) can be chosen from the list of the
sincere representations of the poset F(j — 2)* presented in Tables 10.20 of
[22], for j = 4,...,8. It is easy to check by consulting Tables 10.20 of [22]
that the modules

Vip =83, Vi =83 Vig =55 Vin =35 Viy=5n
have the required property, and UE4) = cdn 82, UE5) = cdn S3, UEG) = cdn 82,
’UE7) = cdn S, vgg) = c¢dn 89, are the following vectors:

! / / / /
V() Y(5) Y(6) Y(7) Y(s)
1
1 1 1
11 11 121 21
111 ] 111 | 211 | 211 | 321
2 3 4 5 6

Now we consider the remaining 19 peak-irreducible posets P; presented
in Part 3 of Tables 4.7. It follows from Theorem 3.1 and Corollary 3.2 of
[23] that for each such P; the poset P; = P; \ {a} is of finite prinjective
type, the Auslander-Reiten quiver I'(prin K'P}) of the category prin(K7P})
is finite and coincides with its preprojective component, End(X) = K for
any indecomposable module X in prin(K 77]’-), and X is determined by the
vector cdn X uniquely up to isomorphism.
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By the modification given in [14, Section 4] of the algorithm described
in Theorems 11.52 and 11.80 (see also 11.87) of [22] we shall construct
the finite Auslander—Reiten quiver I'(prin K 77]’) for each of the posets P;
presented in Part 3 of Tables 4.7 and we shall find an indecomposable sincere
module V) in prin(KP;) such that End(V;)) = K and v(;) = cdnV/} is
the corresponding vector in the following tables:

! / ! / ! / ! ! !
V(10) Y1) V(12) V(15) V(19) V(20) V(21) V(23) V(25) V(27)
1 1
1 1 1 11 1 1 1 12
1 11121 11 1 2 111 12 1 1 1 3 12
11 121 21 1 312 312 21 12 32 2
2 2 2 3 3 3 3 2|4 4 3 4 4 3 42 5 4 53
”Ezg) 7"231) 7"247) ’0248) 7"249) 7"2100) UElOG) ”Ews) 7"2110)
1
1
1 1 1
1 1 1 1 2 1
1 1 1 1 2 1 1 3 1 1 1 1 1
23 2 1 1 111 111 21 21 12 121
52 3 4 121 222 221 432 332 232 12 3

If 5 = 10 or j = 47, we can easily construct the representation V(’]) with-

out looking at the Auslander—Reiten quiver I'(prin K Pj’) We note that the
representations

K K
i SN\
, K K? K , K2 K2
Vip: L./ NL Vi 1T\ /1
K? K? K K? K

satisfy the required condition.
In order to construct the remaining 17 representations V’j we shall look

at the Auslander—Reiten quiver I'(prin K 77]’) We shall give a detailed proof

only in three cases j = 11, j = 12 and j = 19. The proof in the remaining
cases is analogous, and we leave it to the reader.

Case 7 = 11. Assume that the vertices of P;; are enumerated as follows:

1 3
Ve
Pii: 2 4 5 6
Nl N
* +

and a = 2. Then Pj; = Pi1 \ {2} is of finite prinjective type and the
Auslander—Reiten quiver I'(prin K'P};) coincides with its preprojective com-
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ponent and looks as follows (see [25], Example 4.17]):

Bkt  mmmmmman 156%+ - - - === 45%
/! N / N /!
| IR 455+ 1356%2 42 14526x2+
/S N /! N /! N /! N
% — dx — 145x24 —  15x+ — 145264242 —  456x+ — 134526x342 —  135x24 — 12345264342
N / N /! N / N /!
5%t 145652 + 1452524 13456+2 42
/S N /! N /! N /! N
+ 56%+ 145%2 145+ 356%+2
N / N /! N / N /!
64+ -=====---= T 14%x === -- - 54 ---
45%  mmm - 18%4 = - === - B6f == m==m=== : T - 1
N /! N /! N /! N /S
13452+ 1356 +2 356+ 13
/! N /! N /! N /! N
12345264342 —  1456%+ — 134526+242 —  35x+ — 132564242 — 136%4 — 1356x+ — 5 — 3
N / N /! N /! N /!
13526x242 13456%2 + 1355+ 36+
/! N /! N /! N /! N
356%+2 1356%2 + 145 3+ ----- 6
N /! N / N /!
———————— 364+ B 15% I 4

Here we write the coordinate vectors v = cdn V' instead of indecomposable
modules V', and we use the exponential notation of coordinate vectors in-
troduced in [22, 11.88], that is, the vector v = ednV = (vy,...,v;) € N/ is
written in the form
v=cdnV = 1"12"2 "

where we omit 5% if v; = 0, and we set j°U) = j if v(j) = 1.

Note that the additive function (4.5) on I'(prin K'P}) is defined by the
formula £, (v) = v(%) —v(1) and therefore the value diagram of the function

Ea(_) is
/\/\/\/\/\/\/
/\/\/\/\/\/\/\/\
RIPRARIZR RIS
0/ \1/ N \O/ \1/ \1/ \0/ \O/ N
NONTNTNTNTNT N
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It follows form the above diagram that there is a unique module VvV’ in
prin(KPj) such that £,(cdnV’) = 2 and cdnV’ = 1234526+ +2. We take
for V(’ll) the module V'. Tts coordinate vector is just the vector qull) shown
in the table above.

Case j = 12. Suppose that P15 and the point a are as in Tables 4.7. Let
us enumerate the vertices of Py = P12 \ {a} as follows:

5 4
Il

Plo: 6 1 3
LN\l

+ *

Then Pj, is of finite prinjective type, Za(v) = v(+) —v(6) and the beginning
of the Auslander-Reiten quiver I'(prin K'P},) looks as follows:

4% mmmmm--- 14 mmmmm--- 56%+
/! N /! N / N /!
3% 14%+ 156542 135642+
/S N /S N /! N / N
* 13%+ 1456%2 42 12356%242 cee
N /! N /! N /! N /S
1x+ — Baxt — 1356+2+2 — 136x+ — 123456x542 —  145x24+ — 12345264343
/S N /! N /! N /! N
n 165+ 135%2 4 13456%2 42
N /! N /! N / N /!
6+ -======- T 35k = mm------ 146+

The value diagram of the additive function Za(—) is

0/\/\f%f\/\/%f%fx
INSININ NN NN N
NNN N N N NN N

1—1—1—0—1—1—2—1—1—0—1—1—1—0—0—0—0

NN NSNS
\O/ \O/ \1/ \0/ N \O/ \0/ \1/ N

It follows from the above diagram that there is a unique module V' in
I'(prin K'P}) such that £,(cdnV’) = 2. Note that cdnV’ = 12345%6x°43.
We take for V(,12) the module V. Its coordinate vector is just the vector U212)

shown in the table above.



Bk m===-- 24 m----- 56+ 0 == === 2% m—--- - 14x+ - --- == 236%+ ---

/! N /! N / N /! N / N /! N
4% 23+ 25642 256+ 124524 1234652 +2
SN /! N /! N /! N / N /! N /!
* 24+ 2356%+2 225642 12456+2 42 1223465342 1223456+2 43
NS N / N / N / N / N /! N
254 2456%+2 22356%2 42 122456%2 43 12234562 3 43 12334563 4.3
0N /! N /! N /! N /! N /! N /!
4 — Bt — 256%+2 — 26x+ — 22456%2+2 — 245%+ — 1223456x3 43 — 12362 +2 — 123345624344 — 22456%+2 — 12334526243 +4 — 12356x2+2 — 122334562 5% 14
NS N / N /! N / N /! N /! N
6+ ------ 25%+ 1246242 223456%2 42 122356%2 43 12245624243
N /! N /! N /! N / N /
L 2464+ = - - - - - - 23544+ - -- - - 126542 - - - - - - 2456%+ ---

Fig. 1. The Auslander-Reiten quiver of prin(K 73{9)

SHTAAON HAMOHANOYM A0 SONIAAHINH

1€¢
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Case j = 19. Suppose that P19 and the point a are as in Tables 4.7. Let
us enumerate the vertices of Pjg = P19 \ {a} as follows:

301
N

Plg: 4 2 5 6
W N\
0+

Then P}y is of finite prinjective type, l4(v) = v(*) — v(3) — v(4) and the
beginning of the Auslander—Reiten quiver I"(prin KP}g) looks as in Figure 1.
The value diagram of the additive function Za(—) is

/\/\/\/\/\/\/\/\/\/\/\/\
1/\/\/\/\/\/\/\/\/\/\/\/\/\/ \1
NONSNSSN SN IN SN SN SN SN SN SN SN SN S
ANN NN N N N N AN N N N N N

0—0—1—1—1—0—1—1—1—0—1—1—2—1—1—0—1—1—1—0—1—1—1—0—0—0—0—0 —0

\/\/\/\/\/\/\/\/\/\/\/\/\/\ /!
\/\/\/\/\/\/\/\/\/\/\/\/ N

It follows that there is a unique module V' in the I'(prin KPjy) such that
l,(cdn V') = 2. Note that cdn V' = 122334562544, We take for V(/19) the
module V. Its coordinate vector is just the vector UElg) shown in the table
above. This finishes the proof of (b).

(¢) Let a and V' be as in (b) and let v/ = cdnV’. Since l,(v/) = 2,
there exists p € maxI such that p > a and v/(p) # 0. It follows from the
formula (2.4) applied to J = I, and X = V' that (cdnV)(p) = v'(p) # 0
and therefore V,, # 0. Moreover, it follows from Proposition 2.2 that V =
T, (V") is indecomposable and (cdnV)(a) = 0. Then according to Lemma 4.2
the map h, is injective, Homg7(S(a),V) = 0 and dimg Ext};(S(a), V) =
lo(cdn V) = l,(v') = 2. Then (iii) follows.

(i) Since S(a) is simple, End(S(a)) = K. The poset I is of finite prinjec-
tive type, because [ is a minimal poset of infinite prinjective type. It follows
from Corollary 3.2 of [23] that the indecomposable K I/-module is preprojec-
tive and End(V’) 2 K. Then Proposition 2.2 yields End(V) = End(V') 2 K
and (i) follows.

(ii) Since it was shown above that Homg(S(a),V) = 0, it remains to
prove that Homg(V,S(a)) = 0. For this purpose we note that the prin-
jectivity of V' implies that the restriction V- = Ve~ of V to I~ is a
projective module. By applying formula (2.1) to X = V we get V7= =
Daorjer- (e; KI7)*U). Hence we get
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Hompg(V, S(a))= Homg ;- (V~,S(a))

=~ D (Homy ;- (e; K1, 8(a))*)
aFjel—

=~ P (S(a)e;)") =o.

a#jel—
This finishes the proof of Theorem 4.4. m

COROLLARY 4.6. If I is a finite poset of infinite prinjective type then for
any field K there exists a full and faithful exact functor

2
IO{ I[(( ) — prin(K1T).

Proof. Let I be a finite poset of infinite prinjective type. It follows
from Theorem 3.1 of [23] that I contains as a full peak subposet a poset J
isomorphic to one of the critical posets Pi,..., P10 listed in Section 5 of
[23]. In view of Proposition 2.2 it is sufficient to prove the corollary for the
critical posets Py, ..., P119. Moreover, in view of Lemma 2.8, it is sufficient
to prove the corollary for each of the peak-irreducible posets from the 28
critical posets among P, ..., P110o.

Assume that I is one of the 28 peak-irreducible critical posets in Tables
4.7. Tt follows from Theorem 4.4 that there exists a maximal point a € I~
and an indecomposable module Vinprin(KI) such that the modules S(a)
and V satisfy the conditions (i)—(iii) in Theorem 4.4(c). By applying Propo-
sition 3.1 to A = KI, V = S(a) and U =V we get a full and faithful exact
functor

T:mod(

K K?
Ts(a),v - mod( 0 K ) — mod(KT).

Since the modules S(a) and V' are prinjective and the subcategory prin(K 1)
of mod(KI) is closed under forming extensions, by the final statement of
Proposition 3.1 the image of T () is contained in prin(K 7). This finishes
the proof. m

We finish this section by presenting a list of minimal peak-irreducible
posets of infinite prinjective type used in the proof of Theorem 4.4.

Tables 4.7
Minimal peak-irreducible posets of infinite prinjective type

In each of the diagrams P; below we denote by a an element satisfying the following
conditions stated in Theorem 4.4 and its proof.

(al) a€e P, =P \ maxP; and a is a maximal element in P
(a2) The subposet aV = {jeP;:j=2a}of P; is linearly ordered and each element

of aV is incomparable with any element of Pj_ \av.
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(a3) The poset ’PJ/» = P; \ {a} is sincere of finite prinjective type and there exists an

indecomposable prinjective KPJ/--module V('j) such that the additive function

PACOEEIE RO PR

a<pcmax] i<a

has the value 2 on the coordinate vector véj) =cdn V('j) (see (4.5)).

Part 1. Peak-irreducible critical posets of type ;&Z and fDZ
Proi s ININDe=SIN]
*T kX *x K
/ . . . . . ° o 5
Pantr NI/ N o /N
* * * *
P/ l/ ] L[] l/ a
dntle L NN
* Kk X *

® a

i
Pint1: N L/ /L NS
* * * *

Pl

ProoNLe 0 P NI
. ;
.o ! !
b . .
A N T
e N P N P NI

Part 3. Peak-irreducible critical posets P;, where
j €{10,11,12,15,19, 20, 21, 23, 25, 27, 29, 31, 47, 48, 49, 100, 106, 108, 110}
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Lo . | i\ I
I A |
L N\ L N\ LN\ N
ES ES 19 ES ES 20 ES * 21 ES * 23
l
. . . l
l Lo l
L, Lo
S
T T T T T D
: . ./[
20 T S
Ny W o WL
. . .\“.
Lo : J\. l o
s b bl SN L
i/i/i 100 i/i/i 106 i/i/i 108 */i/ \i/ 110

5. Embeddings of Kronecker modules over commutative rings.
The main aim of this section is to show how a full faithful exact functor
R R?
0 R

required in Theorem 1.7(e) can be constructed for any commutative ring
R. Although a complete construction is given only in the case where R is a
commutative K-algebra, we give an idea of this construction for R arbitrary.

Assume that I is a finite poset of infinite prinjective type. We shall
construct the Kronecker embedding functor (5.1) by applying Proposition
3.1. For this purpose it is sufficient to find a pair of modules U and V
in modpi(RI) satisfying the conditions (i)—(iii) of Proposition 3.1. Since I
contains as a peak subposet a poset J isomorphic to one of the 110 critical
posets P1,...,Piig listed in [23, Section 5], it is sufficient to find such a
pair of modules U and V' in modp(R.J) for J critical, and to construct a

full faithful exact functor T : modBi(RJ) — modpb(RI). The functor Ty is
constructed in Proposition 5.2 below by a generalization of Proposition 2.2.

(5.1) T : Mod?! ( ) — ModE!(RI)
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Next we extend Lemma 2.8 from prinjective modules to propartite RI-
modules in Lemma 5.4 below. This will reduce the problem to the case of J
being one of the 28 peak-irreducible posets listed in Tables 4.7.

In this case we need an extension of Theorem 4.4 to propartite RI-
modules. We recall that for each of those peak-irreducible posets J we have
constructed in Theorem 4.4 an element a € J\ max J and a pair of indecom-
posable modules S(a) and V in prin(KJ) satisfying the conditions (i)—(iii)
of Theorem 4.4(c).

From Proposition 3.1 and the discussion above it follows that, in order to
construct a Kronecker embedding (5.1) for I = J, it is sufficient to construct
a pair of indecomposable modules S(a) and V' in modpy(R.J) satisfying the
natural extensions of the conditions (i)—(iii) of Theorem 4.4(c), where J is
one of the peak-irreducible posets listed in Tables 4.7.

We can take for S(a) the unique KJ-module such that S(a)e, = R and
S(a)ej = 0 for all j # a. If J = P; is any of the 11 posets Py 11, Py ni1s
P4 st P st Pa, Ps, Ps, Pr, Ps, Pio, Py we can take for V the R-form of
the corresponding K-form V{;y constructed and listed in the proof of Theo-
rem 4.4. In this case the extensions of the conditions (i)—(iii) are satisfied,
because the arguments given in the proof of Lemma 4.2 generalize to our
situation. However, the isomorphism Endg J(V) >~ R has to be checked di-
rectly using the definition of V. The same arguments apply to the remaining
17 peak-irreducible posets P;, j € {11,12,15, 19,20, 21,23, 25,27,29, 31, 48,
49,100, 106, 108,110}, if we were able to define ‘A/(j) in such a way that

Endgp, (‘7(]-)) = R for each of the remaining 17 posets P;.
At present we can do it only in the case where R is a K-algebra. In this
situation we set V(;) = V(;) ®x R and we apply Corollary 5.7 below.

First we extend Proposition 2.2 to propartite AI-modules as follows.

PROPOSITION 5.2. Let A be a ring with an identity element, and let
J C I, ey, ey - be idempotents of the incidence A-algebra Al defined as in
Proposition 2.2 (see also below). Then there exist an A-algebra isomorphism
ej(Al)ey = AJ and the subposet induction functor (see [22, Section 5.3],
[12, Proposition 2.4])

(5.3) Ty = (=) ®ages(Al)e -  ModPE(AJ) — ModBi(AI)
with the following properties.

(a) Ty is full, faithful and ezact. R
(b) If X is a finitely generated module_then so is T7(X).
(c) If X is a free A-module then so is Tj(X).

Proof. We assume that J C [ is a peak subposet. We set I~ = I\ max [
and J~ = J \ maxJ. For i < j we denote by e;; € Al the matrix having
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1 at the i-j-th position and zeros elsewhere. Given j in I we denote by
ej = ej; the standard primitive idempotent corresponding to j. We define
the following idempotents of AI:

€J=Z€j7 €j- = Z €5

Jjed jeJ—
— + _
er- = Z €j, €y =€jui—- = Z €j,
JjeI— jeJUl—
— A
=Y o A=Y e
pEmaxl] pEmax.J

The A-algebra isomorphism AJ = e;(Al)e; follows easily.
First we shall show that T7(X) is a right AI-module for any AJ-module
Y. For this we note that the map AI — e} (Al)ef = A(JUI7), X — etAet,
is a surjective A-algebra homomorphism, because Al has the triangular form
(1.1). It follows that any right e} (AI)et-module is a right AI-module via
Al — e} (Al)el . In particular, T7(X) is a right AI-module as required.
Following (1.5), the A-algebras Al and AJ can be viewed as bipartite

A-algebras
Al M AJ- M’
AI:(O B)’ AJ:(O B’>

where B = e, (Al)e, = A x ... x A (lmaxI| times), B" = ¢, (AJ)e., =
Ax...x A (Jmax J| times), the free A-modules

M= @ PeyrR M= P P epR

pEmax I 1<p pEmaxJ i<p
iel~ i€~
are viewed as an Al -B-bimodule and an AJ~-B’-bimodule respectively
in the obvious way, and multiplication is matrix multiplication. Note that
AlI~ = e;-(Al)e;- and AJ~ ey (Ad)ey-.
We recall that a right AI-module Y = (Y'Y, ¢) is propartite (that is,
Y is in Modb(AT)) if and only if Y' = Ye;- is a projective AI~-module
and Y/ = Ye, is a projective B-module. Similarly a right A.J-module X =
(X', X'/, p) is propartite (that is, X is in ModBi(AJ)) if and only if X' =
Xej- is a projective AJ -module and X% = Ye¢, is a projective B'-module.
First we shall show that the AI-module T;(X) is propartite if the AJ-
module X is propartite. For this purpose we prove the following two state-
ments:

(al) For any AJ-module X there exists a natural B-module isomorphism
Tr(X)e, = Xe.
where the B’-module Xe! is viewed as a B-module via the natural direct

summand projection B — B’. If the B’-module Xe¢, is projective then
T7(X)e, is a projective B-module.
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(a2) For any j € J there exist natural AI~-module isomorphisms

e;AI~ for jeJ,

TylejAT)er- = {O for j € maxJ

along the A-algebra isomorphism e;— (Al)e;- = AI™.

Since e}'e* = eje; =eye), and ej(Al)e; = AJ, we have
Ty(X)es = (X @ayes(Al)el)e. = X @ay e(Al)e e,
= (X ®agej(Al)eg)e, = (X ®ay AJ)el = X¢,

and (al) follows.

For the proof of (a2) we note that e¥e;— =e;— and therefore fJ(EjAJ)elf
= (e;AJ ®ayes(Alel e~ = (ejAl)efer— = (e;Al)er-.

If j € J~ then eje;- = e;. Hence (e;Al)e;- = ej(e;- Ale;-) = e; Al
and the first isomorphism in (a2) follows. If j € maxJ then (e;Al)e;- =
(ejel A€, )e;- = 0. This finishes the proof of (a2).

_ Now we show that for any propartite AJ-module X the AI-module Y =
T;(X) is propartite.

It follows from (al) that the B-module T;(X e, is projective. It remains
to show that the AI~-module T7(X)e;- is projective. This follows from (a2)
for X = e;jAJ; hence for any AJ-projective module X, because any such X
is a summand of a direct sum of modules of the form e;AJ, j € J. If X is
an arbitrary propartite AJ-module then according to [26, Proposition 3.7],
X admits an AJ-projective resolution

(%) 0P 5Py -0
where P; is a projective B’-module and Pye;- = 0. For this we note that

the bimodule module M’ in the matrix form of A.J above is projective when
viewed as a right B’-module.

By applying the functor T from (5.3) to the short exact sequence (x)
we derive the four-term exact sequence

~

) TJ(T]l) fJ(PO) TJ(”O) TJ(X) =0.

(#%) 0 — Tor{ (X, es(AI))el — Ty(Py

Since e;- € Al is an idempotent and Piej- = 0, by (a2) the module
T7(P1)e;- is zero, and from (xx) we conclude that Tori'” (X, es(Al))eler-
is zero and we derive the isomorphism f](Pl)eIfA% Tr(X)e;- of KI™-
modules. It follows from the discussion above that 7);(X)er- is a projective
KI~-module and consequently 7;(X) is in Modb}(AI) as we required.
Finally, we show that T is exact. Since Torf’(X, es(Al))eler- is
zero and 1 = e;- + ey, the exactness of f] will follow if we show that
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Tor{ (X, e;(AI))eTe, is zero, because this will imply that the left hand
term in (kx) is zero.
To see this we apply (x*) and we note that according to (al) the sequence

Ty (771 )e*
—_—

0 — Ty(P)e. Ty (Po)er 220 T (X e, — 0

is isomorphic to the sequence
0 — Pie, — Pyel, — Xe, — 0
which is exact, because (x) is exact and ¢/, is an idempotent of AJ.

The statement (a) immediately follows from the natural isomorphism
Homa;(T;(X), T;(Y)) = Homa (X, Z) for X, Z in Modp(AJ), which can
easily be obtained as follows (see also the proof of Proposition 2.4 of [12]):

Hom a7 (T7(X), T;(Z))

>~ Hom (X ®47 EJ(AI)Ej, Zag eJ(AI)e:',')

>~ Hom (X, Homas (e (Al)el, Z ®ay e (Al)el))

=~ Hom 47 (X, HomeﬂAI)ej(eJ(AI)e}', Z ®@agej(Al)e}))
=~ Homy (X, Z ®ayej(Al)ey)

=~ Hom (X, Z2).

Since the statements (b) and (c) follow easily the proof is complete. m

Next we extend Lemma 2.8 to propartite AI-modules as follows.

LEMMA 5.4. Let I be a peak-reducible poset with a reducible peak q, and
let A be a ring with an identity element. In the notation of Section 1 the
formula (2.7) defines an additive functor

(5.5) G, : modPi(AS,I) — modP:(AT)

which_is full, faithful and exact. Moreover, if X is a projective A-module
then G4(X) is a projective A-module.

Proof. We shall use the notation introduced in Section 2. In par-
ticular we view any propartite module X in modpi(AS,I) as a system
X = (Xi, jhi)ijes,1i<j, where X; is the A-module Xe; and ;h; : X; — X
is the A-module homomorphism defined by multiplication by e;; € AS,I.
We define G4 (X) = (X, jh)ijaeri<; by the formula (2.7).

In order to show that éq(X ) is propartite we need to show that ;h; :
X; — X is a splittable A-module monomorphism for every pair ¢ < j in
the chain

C={c—bicqg— ... > bncg— cq}
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contained in S,I. For this purpose we note that the incidence A-algebra of
C' has the form

A
0 A ... A

AC =
0o 0 ... A

Since X is propartite and there is no relation ¢ < ¢ with ¢t € C and ¢ € C,
the restriction Y of X to C is a projective AC-module. It follows that the
AC-module Y = (Xj, jhi)i jec has the following property: “h; : X; — X;
is a splittable A-module monomorphism for every pair i < j in C” because
this property is enjoyed by the AC-module AC’; hence also by every free
right AC-module and by every projective right AC-module. In particular,
Y has this property.

Hence we easily conclude that the module éq(X ) is propartite. Moreover,
this allows us to prove the lemma by repeating the arguments used in the
proof of Theorem 2.15 of [14]. This is an extension of the case where A is a
field to the case where A is a ring. We leave it to the reader. m

From now on we assume in this section that A is a K-algebra and [ is a
finite poset. Homological connections between Al-modules and K I-modules
are discussed in the following simple lemma.

LEMMA 5.6. Let A be an algebra over the field K. If X, Y are modules
in Mod(K1I) and the projective dimension of X is < 1, then there exist
functorial isomorphisms

(a) HOInA[(X RK A,Y RK A) = HOIHK[(X, Y) RK A,
(b) Exty; (X @K A, Y ®k A) = Extl(X,Y) @k A.

In particular, if the module X is prinjective then (a) and (b) holds.

Proof. Let Y and X be modules in Mod(K). If the projective dimen-
sion of X is < 1 then there exists an exact sequence

0O—-P—-F—->X—0

where Py and P; are projective K I-modules. Tensoring the sequence over
the field K we derive the exact sequence of Al-modules

0P RA—-FPRIA—-XRA—0

where Py® A and P; ® A are projective AI-modules. The obvious Hom-Ext-
sequences yield the commutative diagrams
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0— HOHlK](X,Y)(X)A — HOHlK](Po,Y)(X)A — HOHlK[(Pl,Y)®A

l*" lwo lm

0 — Homu (X ®AY®A) — Hompar(Ph® A, Y ® A) » Hom4; (P @ A, Y ® A)

(%)
Homg(Pp,Y)® A — Hompg(P1,Y)®A — Exth (X, Y)@A4 —0
l% lﬁ"l lw

Homar(Py® A, Y ® A) — Homa7(P1 ® A,Y ® A) — Exth (X ® A,Y ® A) — 0
where the vertical homomorphisms ¢, ¢g and ¢; are defined by the formula
fe@r— (@A — f(z) ® Ar). Since Py and P, are projective modules,
obviously ¢ and ¢ are isomorphisms. It follows that ¢ is an isomorphism,
and there exists a unique isomorphism v making the remaining square in
(*) commutative. Hence the statements (a) and (b) follow.

For the final statement we recall from [23] or from Section 1 that every
prinjective K I-module has the projective dimension 0 or 1. m

Theorem 4.4 and Lemma 5.6 immediately yield

COROLLARY 5.7. Let A be a K-algebra and let V., S(a) be the prin-
jgective KI-modules chosen as in Theorem 4.4(c). Then V=V®&gAad
S(a) = S(a)®x A are propartite AI-modules, they are A-free and there exist
isomorphisms

(a) EHdAI(S(a) RK A) = EndA[(V R A) = A,

(b) Homyur(S(a) @ A,V ®@x A) = Homu(V @k A, S(a) @ A) =0,
(c) Exty;(S(a) @ A,V ®@ A) = A% u

The discussion presented at the beginning of this section and the results

of Proposition 5.2, Lemma 5.6 and Corollary 5.7 can be summarized as
follows.

THEOREM 5.8. Let I be a poset of infinite prinjective type and let A be
a K-algebra. Then there exist full, faithful and exact functors
A A2 A A2
0 A 0 A
If X is a projective A-module then so are T(X) and T'(X). m

T Modg;< ) . ModBi(AT), T’ modg;( > ~ modBE(AT).

6. Proof of main theorems

6.1. Proof of Theorem 1.7. In view of Theorem 3.1 of [23] the proof of
Theorem 1.7 reduces to the proof of the equivalences (a)<(d) and (d)<(e).
The implication (a)=-(d) follows from Corollary 4.6 and the implication
(a)=(e) is a consequence of Theorem 5.8. Since the category of Kronecker
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modules over a field is of infinite representation type (see [18] and [22, Ex-
ample 1.5]), the implications (e)=-(d)=-(a) follow and the proof of Theorem
1.7 is complete. m

6.2. Proof of Theorem 1.8. Let K be a field, let A be a K-algebra and
let
K K?
I 2(K ) - < 0 K >
be the Kronecker K-algebra. It follows from [10, Theorem 1.2] that for any
K-algebra A generated by at most A elements, where A is an infinite cardinal
number, there exists a direct system

G = {Gp, upypcycn
of K-linear additive functors Gg : Mod(A) — Mod(/%(K)) connected by
functorial morphisms ug, : Gg — G, satisfying the following conditions:
(i) If M is a module in Mod(A) which is A-free, then the Kronecker
module Gg(M) = (Mj, Mj, pj3, pj5) is A-free for all 8 C A.
(ii) If M and N are modules in Mod(A) then

and the natural A-homomorphism
HOIIlA(M, N) — HOH]FQ(A)(Gﬁ(M), G»Y(N)), f — UQ,Y(N) o Gg(f),

is an isomorphism for all 5 C v C A.
On the other hand, if I is a finite poset of infinite prinjective type then
according to Theorem 1.7 there exists a full, faithful and exact functor

T : Mod(T(K)) — ModB(KT).

Note that ModBi(I2(K)) = Mod([/2(K)). In view of Theorem 5.8 and its
proof, it is easy to see that the direct system F = {F3,v3,}3cyca of the
K-linear composed functors Fg = Ggo T : Mod(A) — Mod(K1) connected
by the induced functorial morphisms vg,(—) = T'(ugy(—)) : Fg(—) — F,(-)
satisfies the conditions required in Theorem 1.8. m

It seems to us that following the idea explained at the beginning of
Section 5 one can solve the following problem, which extends Theorem 5.8
from K-algebras A to arbitrary rings A with an identity element.

PROBLEM 6.3. Prove that for every ring A with an identity element and
for every poset I of infinite prinjective type there exist full, faithful and exact
functors

A A2
0 A

A A2

T:Modg§<0 A

) — Modbl(AI), T':modb; ( ) — modb (AT).
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