VOL. 76

1998

NO. 1

ON A THEOREM OF MIERCZYŃSKI

BY

GERD HERZOG (KARLSRUHE)

We prove that the initial value problem $x'(t) = f(t, x(t)), x(0) = x_1$ is uniquely solvable in certain ordered Banach spaces if f is quasimonotone increasing with respect to x and f satisfies a one-sided Lipschitz condition with respect to a certain convex functional.

1. Introduction. Let $(E, \|\cdot\|)$ be a real Banach space and E^* its topological dual space. We consider a partial ordering \leq on E induced by a cone K. A cone K is a closed convex subset of E with $\lambda K \subseteq K$, $\lambda \geq 0$, and $K \cap (-K) = \{0\}$. In the sequel we will always assume that K is solid (i.e. Int $K \neq \emptyset$). We define $x \leq y \Leftrightarrow y - x \in K$, and we use the notations $x \ll y$ for $y - x \in$ Int K and K^* for the dual cone, i.e., the set of all functionals $\varphi \in E^*$ with $\varphi(x) \geq 0$, $x \geq 0$. Thus E^* is ordered by $\varphi \leq \psi \Leftrightarrow \psi - \varphi \in K^*$. The cone K is normal if there is a $\gamma \geq 1$ such that $0 \leq x \leq y \Rightarrow ||x|| \leq \gamma ||y||$. For $x, y \in E$ with $x \leq y$, we define the order interval $[x, y] = \{z \in E : x \leq z \leq y\}$. By K(x, r) we will always denote the open ball $\{y \in E : ||y - x|| < r\}$.

Now fix $p \gg 0$. In the sequel we will assume that $\|\cdot\|$ is the Minkowski functional of [-p, p]. This is an equivalent renorming of E (see e.g. [7]). Then for $x, y \in E$ we have $0 \le x \le y \Rightarrow ||x|| \le ||y||$, and $||x|| \le c \Leftrightarrow -cp \le x \le cp$.

Let $f : [0,T] \times E \to E$ be continuous and let $x_1 \in E$. We consider the initial value problem

(1)
$$x'(t) = f(t, x(t)), \quad x(0) = x_1$$

Let $D \subset E$. A function $f : [0,T] \times D \to E$ is called *quasimonotone* increasing (in the sense of Volkmann [12]) if

 $\begin{aligned} x, y \in D, \ t \in [0, T], \ x \leq y, \ \varphi \in K^*, \ \varphi(x) = \varphi(y) \\ \Rightarrow \varphi(f(t, x)) \leq \varphi(f(t, y)). \end{aligned}$

In [10] Mierczyński proved the following theorem (for a more general result see Mierczyński [11]):

¹⁹⁹¹ Mathematics Subject Classification: Primary 34G20.

^[19]

THEOREM 1. Let $E = \mathbb{R}^n$, $K = \{(x_1, \ldots, x_n) : x_k \ge 0, k = 1, \ldots, n\}$ and let $f : [0,T] \times E \to E$ be continuous and quasimonotone increasing with

$$\sum_{k=1}^{n} f_k(t, x) = 0, \quad (t, x) \in [0, T] \times E$$

Then there exists precisely one solution of problem (1).

References [1], [3], [4], [5], [6], [7] and especially [13] give a survey on quasimonotonicity as applied to problem (1). For example, if f is continuous, bounded and quasimonotone increasing and if the cone K is regular then problem (1) is solvable on [0, T]; see [7]. A cone is called *regular* if every monotone increasing sequence in E which is order bounded, is convergent. If K is only supposed to be normal, even monotonicity of f does not imply existence of a solution; see [4]. So in this case additional assumptions on f are needed to obtain existence of a solution of problem (1).

In Theorem 1 we have $E = E^*$, $K = K^*$, and with $\psi(x) = (1, \ldots, 1)x$ condition (2) says: $\psi(f(t, x)) = 0$, $(t, x) \in [0, T] \times E$.

Conditions of this type are considered in several papers pertaining to limit sets of autonomous differential equations in \mathbb{R}^n with the natural cone (see e.g. [9], [10] and the references given there). We will study conditions of this type which imply both uniqueness and existence of a solution for problem (1). To this end we consider the set W of all continuous functions $\psi: E \to \mathbb{R}$ with the following properties:

1.
$$\psi(x) \ge 0, x \in K$$

2.
$$\psi(x+y) \leq \psi(x) + \psi(y), x, y \in E.$$

3.
$$\psi(\lambda x) = \lambda \psi(x), x \in E, \lambda \ge 0.$$

4. Every monotone decreasing sequence $(x_n)_{n=1}^{\infty}$ in K with $\lim_{n\to\infty} \psi(x_n) = 0$ tends to zero with respect to the norm.

For $\psi \in W$ we consider the one-sided derivative

$$m_{\psi-}[x,y] = \lim_{h \to 0^-} (\psi(x+hy) - \psi(x))/h, \quad x, y \in E.$$

For $x, y, z \in E$ we have

$$m_{\psi-}[x,y] \le \psi(y), \quad m_{\psi-}[x,y+z] \le m_{\psi-}[x,y] + \psi(z)$$

and if $u: [0,T] \to E$ is left-differentiable on (0,T], then

$$(\psi(u))'_{-}(t) = m_{\psi-}[u(t), u'(t)], \quad t \in (0, T]$$

For this and further properties of the function m_{ψ^-} see [8]. Note that if ψ is linear, then $m_{\psi^-}[x,y] = \psi(y), x, y \in E$.

We will prove the following theorem:

THEOREM 2. Let E be a Banach space ordered by a normal, solid cone K. Let $x_0 \in E$, and let $f : [0,T] \times E \to E$ be a continuous function with the following properties:

- 1. f is quasimonotone increasing.
- 2. There exist $\psi \in W$ and $L \in \mathbb{R}$ such that

 $m_{\psi-}[y-x,f(t,y)-f(t,x)] \leq L\psi(y-x) \quad for \, (t,x), (t,y) \in [0,T] \times E, \; x \ll y.$

Then there exist r > 0 and $\tau \in (0, T]$ such that problem (1) is uniquely solvable on $[0, \tau]$ for every $x_1 \in K(x_0, r)$, and the solution depends continuously on $x_1 \in K(x_0, r)$.

Let f have in addition the following properties:

- 3. For every bounded set $M \subset E$ the set $f([0,T] \times M)$ is bounded.
- 4. There exists a function $q \in C^1([0,T], \operatorname{Int} K)$ and $A, B \geq 0$ such that

$$||f(t, sq(t))|| \le A|s| + B, \quad t \in [0, T], \ s \in \mathbb{R}.$$

Then problem (1) is uniquely solvable on [0, T].

REMARKS. 1. For the case $\psi = \| \cdot \|$ Theorem 2 is related to Martin's Theorem [8], p. 232.

2. Condition 2 holds if there exists $L \in \mathbb{R}$ such that

$$\psi(f(t,y) - f(t,x)) \le L\psi(y-x), \quad (t,x), (t,y) \in [0,T] \times E, \ x \le y.$$

3. Suppose $\psi \in E^*$ and $K = \{x \in E : \psi(x) \geq \alpha \|x\|\}$ with $0 < \alpha < \|\psi\|$. Then K is a regular cone with $\operatorname{Int} K \neq \emptyset$, and if $(x_n)_{n=1}^{\infty}$ is a sequence in K (not necessarily decreasing) such that $\lim_{n\to\infty} \psi(x_n) = 0$, then $\lim_{n\to\infty} x_n = 0$. Hence $\psi \in W$.

4. Consider the Banach space c of all convergent sequences $x = (x_k)_{k=1}^{\infty}$ with norm $||x|| = \sup_{k \in \mathbb{N}} |x_k|$, and let $K = \{x \in c : x_k \ge 0, k \in \mathbb{N}\}$. Then K is normal and Int $K \neq \emptyset$, for example $p = (1)_{k=1}^{\infty} \in \text{Int } K$. Now let $(\alpha_k)_{k=1}^{\infty} \in l^1$ with $\alpha_k > 0, k \in \mathbb{N}$, and define

$$\psi(x) = \sum_{k=1}^{\infty} \alpha_k x_k + \lim_{k \to \infty} x_k.$$

Then $\psi \in W \cap c^*$.

5. Consider the Banach space l^{∞} of all bounded sequences $x = (x_k)_{k=1}^{\infty}$ with norm $||x|| = \sup_{k \in \mathbb{N}} |x_k|$, and let $K = \{x \in l^{\infty} : x_k \ge 0, k \in \mathbb{N}\}$. Then K is normal and $\operatorname{Int} K \neq \emptyset$, for example $p = (1)_{k=1}^{\infty} \in \operatorname{Int} K$. Again let $(\alpha_k)_{k=1}^{\infty} \in l^1$ with $\alpha_k > 0, k \in \mathbb{N}$, and define

$$\psi(x) = \sum_{k=1}^{\infty} \alpha_k x_k + \limsup_{k \to \infty} x_k.$$

Then $\psi \in W$. Note that ψ is nonlinear.

6. A possible way to find linear functionals $\psi \in W$ is the following: Let $\psi \in K^*$ and consider a set

$$M \subset \{\varphi \in K^* : \|\varphi\| = 1, \exists c \ge 0 : \varphi \le c\psi\}.$$

If M is weak-* compact and if $\sup\{|\varphi(x)| : \varphi \in M\}$ is an equivalent norm on E, then $\psi \in W$. This is an easy consequence of Dini's Theorem.

7. Condition 4 in Theorem 2 holds if $||f(t,x)|| \le A||x|| + B$, $(t,x) \in [0,T] \times E$, for some constants $A, B \ge 0$.

8. Using Theorem 2 one can prove existence of a solution of problem (1) for right-hand sides which do not satisfy classical existence criteria such as one-sided Lipschitz conditions, conditions formulated with measures of noncompactness, or classical monotonicity conditions.

From Theorem 2 we get the following corollary for the autonomous case:

COROLLARY 1. Let E and K be as in Theorem 2 and let $f : E \to E$ be a continuous function such that:

- 1. f is quasimonotone increasing.
- 2. For every bounded set $M \subset E$, the set f(M) is bounded.
- 3. There exists $\psi \in W \cap E^*$ such that $\psi(f(x)) = 0, x \in E$.
- 4. There exist $q \in \text{Int } K$ and $A, B \ge 0$ such that

$$||f(sq)|| \le A|s| + B, \quad s \in \mathbb{R}.$$

Then the initial value problem x'(t) = f(x(t)), $x(0) = x_0$ is uniquely solvable on $[0, \infty)$, and the solution is continuously dependent on the initial value (in the sense of compact convergence).

Moreover, if $x : [0, \infty) \to E$ is a solution of x'(t) = f(x(t)) and $t_1 \neq t_2$ then x is periodic for $t \ge \min\{t_1, t_2\}$ if $x(t_1)$ and $x(t_2)$ are comparable.

To prove the last part of Corollary 1 note that $\psi(x(t)) = \psi(x(0))$, $t \in [0, \infty)$. Hence if for example $x(t_1) \leq x(t_2)$, we have $\psi(x(t_2) - x(t_1)) = 0$, which implies $x(t_1) = x(t_2)$. Thus x(t), $t \geq \min\{t_1, t_2\}$, has $|t_1 - t_2|$ as a period. Note that under the conditions of Corollary 1 we do not have uniqueness to the left. Consider for example $f : \mathbb{R}^2 \to \mathbb{R}^2$, $f(x, y) = (-\sqrt[3]{x}, \sqrt[3]{x})$ (K the natural cone and $\psi(x, y) = x + y$).

We will use Theorem 2 to prove the following:

THEOREM 3. Let E, K be as in Theorem 2, let $f : [0,T] \times E \to E$ be continuous, let f satisfy conditions 1 and 2 in Theorem 2, and let $u, v \in C^1([0,T], E)$ be such that

$$u(0) \le v(0), \quad u'(t) - f(t, u(t)) \le v'(t) - f(t, v(t)), \quad t \in [0, T].$$

Then $u(t) \le v(t), t \in [0, T].$

This means, in particular, that the solution of problem (1) depends monotonically on the initial value. **2.** Approximate solutions. To prove our theorems we will use the following results. Theorem 4 is due to Volkmann [12] and for Theorem 5 see [2], Theorem 1.1.

THEOREM 4. Let $D \subset E$, let $f : [0,a] \times D \to E$ be quasimonotone increasing, and let $u, v : [0,a] \to D$ be differentiable functions with

 $u(0) \ll v(0), \quad u'(t) - f(t, u(t)) \ll v'(t) - f(t, v(t)), \quad t \in [0, a].$

Then $u(t) \ll v(t), t \in [0, a].$

THEOREM 5. Let $D = \overline{K(x_1, r)}$, and let $f : [0, a] \times D \to E$ be continuous with $||f(t, x)|| \leq M$ on $[0, a] \times D$. Let $\varepsilon > 0$ and $a_{\varepsilon} = \min\{a, r/(M + \varepsilon)\}$. Then there exists $x_{\varepsilon} \in C^1([0, a_{\varepsilon}], D)$ such that $x_{\varepsilon}(0) = x_1$ and

$$\|x_{\varepsilon}'(t) - f(t, x_{\varepsilon}(t))\| \le \varepsilon, \quad t \in [0, a_{\varepsilon}].$$

Next we show the existence of a certain kind of approximate solutions for problem (1) (compare [7] for the case of f bounded and quasimonotone increasing).

PROPOSITION 1. Let E, K, x_0 be as in Theorem 2, and let $f : [0, T] \times E \rightarrow E$ be continuous and quasimonotone increasing. Then there exist r > 0 and $\tau \in (0, T]$ such that for each $x_1 \in K(x_0, r)$ and each σ with $|\sigma| \leq 1$ there are sequences $(u_n)_{n=1}^{\infty}, (v_n)_{n=1}^{\infty}$ in $C^1([0, \tau], E)$ with the following properties:

1. $u_m(t) \ll u_{m+1}(t) \ll v_{n+1}(t) \ll v_n(t), t \in [0, \tau], m, n \in \mathbb{N}.$

2. $u_m(0) \ll x_1 \ll v_n(0), m, n \in \mathbb{N}$.

3. Every solution $x : [0, \tau] \to E$ of $x' = f(t, x) + \sigma p$, $x(0) = x_1$, satisfies $u_m(t) \ll x(t) \ll v_n(t), t \in [0, \tau], m, n \in \mathbb{N}$.

4. $\lim_{n \to \infty} u_n(0) = \lim_{n \to \infty} v_n(0) = x_1.$

5. For $r_n = u'_n - f(\cdot, u_n) - \sigma p$, $n \in \mathbb{N}$, and $s_n = v'_n - f(\cdot, v_n) - \sigma p$, $n \in \mathbb{N}$, we have $\lim_{n \to \infty} \max_{t \in [0, \tau]} ||r_n(t)|| = \lim_{n \to \infty} \max_{t \in [0, \tau]} ||s_n(t)|| = 0$.

Proof. Since f is continuous there exists $\delta > 0$ such that

$$||f(t,x)|| \le 1 + ||f(0,x_0)||, \quad \max\{t, ||x-x_0||\} \le \delta.$$

We set $r = \delta/3$ and we consider $x_1 \in K(x_0, r)$. Let $(c_n)_{n=1}^{\infty}$ be a strictly decreasing sequence of real numbers with limit 0 and let $c_1 \leq r$. For $n \in \mathbb{N}$ and $(t, x) \in [0, \delta] \times \overline{K(x_1 \pm c_n p, r)}$ we have $||x - x_0|| \leq \delta$, and therefore

$$\left\| f(t,x) + \sigma p \pm \frac{c_n + c_{n+1}}{2} p \right\| \le M := 2 + \| f(0,x_0) \| + c_1.$$

Now set $\tau := \min\{\delta, r/(M+c_1)\} = r/(M+c_1)$. Then, according to Theorem 5, for $n \in \mathbb{N}$ there exist functions u_n and v_n in $C^1([0,\tau], E)$ with $u_n(0) = x_1 - c_n p, v_n(0) = x_1 + c_n p$ and

$$\left\| u_n'(t) - f(t, u_n(t)) - \sigma p + \frac{c_n + c_{n+1}}{2} p \right\| \le \frac{c_n - c_{n+1}}{4},$$
$$\left\| v_n'(t) - f(t, v_n(t)) - \sigma p - \frac{c_n + c_{n+1}}{2} p \right\| \le \frac{c_n - c_{n+1}}{4}.$$

By [7] this implies for $t \in [0, \tau]$ and $m, n \in \mathbb{N}$ that

$$c_m p \ll u'_m(t) - f(t, u_m(t)) - \sigma p \ll -c_{m+1}p \ll c_{n+1}p \ll v'_n(t) - f(t, v_n(t)) - \sigma p \ll c_n p.$$

Application of Theorem 4 leads to $u_m(t) \ll u_{m+1}(t) \ll v_{n+1}(t) \ll v_n(t)$, $t \in [0, \tau], m, n \in \mathbb{N}$, and $u_m(t) \ll x(t) \ll v_n(t), t \in [0, \tau], m, n \in \mathbb{N}$, for any solution $x : [0, \tau] \to E$ of $x' = f(t, x) + \sigma p$, $x(0) = x_1$. The other properties of u_n and v_n follow immediately from the construction of these functions.

3. Proofs

Proof of Theorem 2. Let conditions 1 and 2 hold. We first prove existence and uniqueness of the solution of $x' = f(t, x) + \sigma p$, $x(0) = x_1$. The parameter σ is needed to prove continuous dependence and is also needed in the proof of Theorem 3.

Let r > 0 and $\tau \in (0,T]$ as in Proposition 1. We fix $x_1 \in K(x_0,r)$ and σ with $|\sigma| \leq 1$. Let $(u_n)_{n=1}^{\infty}$, $(v_n)_{n=1}^{\infty}$ be the approximate solutions as in Proposition 1 and let r_n , s_n , $n \in \mathbb{N}$, be the corresponding defects. Since $u_n(t) \ll v_n(t)$, $n \in \mathbb{N}$, $t \in [0, \tau]$, we see that for $t \in (0, \tau]$ and for a constant $\lambda > 0$,

$$\begin{aligned} (\psi(v_n - u_n))'_{-}(t) &= m_{\psi^{-}}[v_n(t) - u_n(t), v'_n(t) - u'_n(t)] \\ &\leq m_{\psi^{-}}[v_n(t) - u_n(t), f(t, v_n(t)) - f(t, u_n(t))] \\ &+ \psi(s_n(t) - r_n(t)) \\ &\leq L\psi(v_n(t) - u_n(t)) + \lambda(\|s_n(t)\| + \|r_n(t)\|). \end{aligned}$$

Because $\lim_{n\to\infty} \psi(v_n(0) - u_n(0)) = 0$, application of Gronwall's Lemma leads to $\lim_{n\to\infty} \psi(v_n(t) - u_n(t)) = 0$, $t \in [0, \tau]$, and since $v_n(t) - u_n(t)$ is decreasing we have

$$\lim_{t \to \infty} \|v_n(t) - u_n(t)\| = 0, \quad t \in [0, \tau].$$

As K is normal, Dini's Theorem implies $\lim_{n\to\infty} ||\!| v_n - u_n ||\!| = 0$ in $C([0, \tau], E)$ (endowed with the maximum norm $|\!|\!| \cdot |\!|\!|$). Now from $u_m(t) \ll v_n(t), t \in [0, \tau]$, $m, n \in \mathbb{N}$, we find for $t \in [0, \tau]$ and $m \ge n$ that

$$|v_n(t) - v_m(t)|| \le ||v_n(t) - u_n(t)|| \le ||v_n - u_n||,$$

and therefore $(v_n)_{n=1}^{\infty}$ is a Cauchy sequence in $C([0,\tau], E)$. Analogously, $(u_n)_{n=1}^{\infty}$ is a Cauchy sequence in $C([0,\tau], E)$. The limits of both sequences

are equal, and this limit is a solution of $x' = f(t, x) + \sigma p$, $x(0) = x_1$. It is unique, since $u_n(t) \ll x(t) \ll v_n(t)$, $t \in [0, \tau]$, $n \in \mathbb{N}$, for every solution $x : [0, \tau] \to E$ of $x' = f(t, x) + \sigma p$, $x(0) = x_1$ (see Proposition 1).

We prove that the solution of problem (1) is continuously dependent on the initial value $x_1 \in K(x_0, r)$.

Let $(x_{1n})_{n=1}^{\infty}$ be a sequence in $K(x_0, r)$ with limit $x_1 \in K(x_0, r)$, let $x_n : [0, \tau] \to E$ be the solution of $x'_n(t) = f(t, x_n(t)), x_n(0) = x_{1n}, n \in \mathbb{N}$, and let $x : [0, \tau] \to E$ be the solution of problem (1). Now assume that there exists $\varepsilon > 0$ with $|||x_n - x||| \ge \varepsilon, n \in \mathbb{N}$.

There exist strictly decreasing sequences $(\lambda_n)_{n=1}^{\infty}$ and $(\mu_n)_{n=1}^{\infty}$ of positive numbers, both with limit 0 and with

$$x_1 \text{ (and } x_{1n}) \gg u_{1n} := x_{1n} - \mu_n p, \quad n \in \mathbb{N},$$

 $x_1 \text{ (and } x_{1n}) \ll v_{1n} := x_{1n} + \lambda_n p, \quad n \in \mathbb{N}.$

There exists $n_0 \in \mathbb{N}$ such that the initial value problems $u'_n(t) = f(t, u_n(t)) - \mu_n p, u_n(0) = u_{1n}$, and $v'_n(t) = f(t, v_n(t)) + \lambda_n p, v_n(0) = v_{1n}$, have solutions $u_n, v_n : [0, \tau] \to E$ for each $n \ge n_0$. There is a subsequence $(n_k)_{k=1}^{\infty}$ of $(n)_{n=n_0}^{\infty}$ with

$$u_{1n_{k+1}} \gg u_{1n_k}, \quad v_{1n_{k+1}} \ll v_{1n_k}, \quad k \in \mathbb{N}.$$

Since λ_n and μ_n are strictly decreasing, Theorem 4 shows for $t \in [0, \tau]$ and $k \in \mathbb{N}$ that

$$u_{n_k}(t) \ll u_{n_{k+1}}(t) \ll x(t) \text{ (and } x_{n_{k+1}}(t)) \ll v_{n_{k+1}}(t) \ll v_{n_k}(t)$$

Therefore for $t \in [0, \tau]$ and $k \in \mathbb{N}$ we have

$$u_{n_k}(t) - x(t) \ll x_{n_k}(t) - x(t) \ll v_{n_k}(t) - x(t)$$

Hence

$$||x_{n_k}(t) - x(t)|| \le \max\{||x(t) - u_{n_k}(t)||, ||v_{n_k}(t) - x(t)||\},\$$

which implies

$$|||x_{n_k} - x||| \le \max\{|||x - u_{n_k}|||, |||v_{n_k} - x|||\}$$

Moreover, for $t \in [0, \tau]$ and $k \in \mathbb{N}$ we have

 $0 \ll x(t) - u_{n_{k+1}}(t) \ll x(t) - u_{n_k}(t), \quad 0 \ll v_{n_{k+1}}(t) - x(t) \ll v_{n_k}(t) - x(t).$ Now for $t \in (0, \tau]$,

$$\psi(x - u_{n_k}))'_{-}(t) \le L\psi(x(t) - u_{n_k}(t)) + \mu_{n_k}\psi(p),$$

and $\lim_{k\to\infty} \psi(x(0) - u_{n_k}(0)) = 0$. Thus $\lim_{k\to\infty} \psi(x(t) - u_{n_k}(t)) = 0$, $t \in [0, \tau]$, which implies $\lim_{k\to\infty} ||x(t) - u_{n_k}(t)|| = 0$, $t \in [0, \tau]$, since $\psi \in W$. Again by Dini's Theorem we have $\lim_{k\to\infty} ||x - u_{n_k}|| = 0$. Analogously we get $\lim_{k\to\infty} ||v_{n_k} - x|| = 0$. Therefore $\lim_{k\to\infty} ||x_{n_k} - x|| = 0$, which is a contradiction.

We now add Conditions 3 and 4 and prove existence of the solution on [0, T].

We have

$$\|f(t, sq(t))\| \le A|s| + B, \quad t \in [0, T], \ s \in \mathbb{R}$$

Therefore

$$-(A|s|+B)p \le f(t, sq(t)) \le (A|s|+B)p, \quad t \in [0, T], \ s \in \mathbb{R}.$$

Let c > 0. For $\lambda, \mu > 0$ we consider the functions

$$u_0(t) = -\lambda \exp(\mu t)q(t), \quad t \in [0, T],$$

$$v_0(t) = \lambda \exp(\mu t)q(t), \quad t \in [0, T].$$

Now

$$u'_0(t) - f(t, u_0(t)) \le -\lambda \exp(\mu t)(\mu q(t) + q'(t) - Ap) + Bp$$

and

$$v'_0(t) - f(t, v_0(t)) \ge \lambda \exp(\mu t)(\mu q(t) + q'(t) - Ap) - Bp$$

Since q([0,T]) is a compact subset of Int K,

$$\mu q([0,T]) + q'([0,T]) - Ap$$

is a compact subset of $\mathrm{Int}\,K$ if μ is sufficiently large. Then for λ sufficiently large

$$u'_0(t) - f(t, u_0(t)) \ll -cp \ll cp \ll v'_0(t) - f(t, v_0(t)), \quad t \in [0, T],$$

and

$$_0(0) \ll x_0 \ll v_0(0)$$

Let $x: [0, \omega) \to E$ be a solution of problem (1). Theorem 4 gives

u

$$u_0(t) \ll x(t) \ll v_0(t), \quad t \in [0, \omega).$$

Hence $||x(t)|| \leq \max\{||u_0(t)||, ||v_0(t)||\}$. Now x(t) is bounded on $[0, \omega)$, and therefore x'(t) is bounded on $[0, \omega)$. Thus $\lim_{t\to\omega^-} x(t)$ exists, and problem (1) is uniquely solvable on [0, T].

Proof of Theorem 3. We set w = v - u, and we define $g : [0, T] \times E \to E$ by

$$g(t,x) := f(t,u(t)+x) - f(t,u(t)) + v'(t) - f(t,v(t)) - (u'(t) - f(t,u(t))).$$

Then $w'(t) = g(t, w(t)), t \in [0, T]$, and $g(t, 0) \ge 0, t \in [0, T]$; compare [2], p. 71. Assume that $w(t) \ge 0$ does not hold for $t \in [0, T]$ and consider $t_0 := \inf\{t \in [0, T] : w(t) \notin K\}$. Note that $w(t_0) \ge 0$. The function f and hence g satisfies Conditions 1 and 2 in Theorem 2. Therefore there exists

 $\varepsilon > 0$ such that the initial value problems

$$w'_n(t) = g(t, w_n(t)) + \frac{p}{n}, \quad w_n(t_0) = w(t_0) + \frac{p}{n}, \quad n \in \mathbb{N},$$

have solutions $w_n : [t_0, t_0 + \varepsilon] \to E$. We have $0 \ll w_n(t_0)$ and $w(t_0) \ll w_n(t_0)$. For $t \in [t_0, t_0 + \varepsilon]$

$$-g(t,0) \le 0 \ll w'_n(t) - g(t,w_n(t)),$$

$$w'(t) - g(t,w(t)) \ll w'_n(t) - g(t,w_n(t)).$$

Theorem 4 gives $0 \ll w_n(t)$ and $w(t) \ll w_n(t)$, $t \in [t_0, t_0 + \varepsilon]$. Once again using condition 2 of Theorem 2, we find that $(w_n)_{n=1}^{\infty}$ tends uniformly to won $[t_0, t_0 + \varepsilon]$. Thus $w(t) \ge 0$ on $[t_0, t_0 + \varepsilon]$, which contradicts the definition of t_0 .

4. Examples. We illustrate our results by examples. Let the spaces c and l^{∞} be normed and ordered as in Section 1.

1. Let E = c. We consider the linear functional $\psi \in W$ defined by

$$\psi(x) = \sum_{k=1}^{\infty} \frac{x_k}{k^2} + \lim_{k \to \infty} x_k.$$

Now consider the function

$$f(x) = \left(\sqrt[3]{x_2}, \sqrt[3]{x_3} - 4\sqrt[3]{x_2}, \sqrt[3]{x_4} - \frac{9}{4}\sqrt[3]{x_3}, \dots, \sqrt[3]{x_{k+1}} - \frac{k^2}{(k-1)^2}\sqrt[3]{x_k}, \dots\right).$$

The function $f : c \to c$ is continuous, quasimonotone increasing, $\psi(f(x)) = 0, x \in c$, and $||f(x)|| \le 5||x|| + 5, x \in c$. By Corollary 1 the initial value problem $x'(t) = f(x(t)), x(0) = x_0$, is uniquely solvable on $[0, \infty)$.

2. Let E = c and let

$$\psi(x) = \sum_{k=1}^{\infty} \frac{x_k}{2^k} + \lim_{k \to \infty} x_k$$

Again $\psi \in W$. Now consider

$$f(t,x) = (2\lim_{k \to \infty} x_k^3 + x_2^3 - 3(1+t^2)x_1^3, \ x_3^3 - 2x_2^3 + (1+t^2)x_1^3, x_4^3 - 2x_3^3 + (1+t^2)x_1^3, \dots, x_{k+1}^3 - 2x_k^3 + (1+t^2)x_1^3, \dots).$$

For every T > 0, the function $f : [0,T] \times c \to c$ is continuous, quasimonotone increasing, $\psi(f(t,x)) = 0$, $(t,x) \in [0,T] \times c$, and for $q(t) = ((1+t^2)^{-1/3}, 1, 1, \ldots) \in \text{Int } K, t \in [0,T]$, we have $f(t, sq(t)) = 0, t \in [0,T]$, $s \in \mathbb{R}$. By Theorem 2 problem (1) is uniquely solvable on [0,T].

3. Next let $E = l^{\infty}$, and consider the function $\psi \in W$ defined by

$$\psi(x) = \sum_{k=1}^{\infty} \frac{kx_k}{2^k} + \limsup_{k \to \infty} x_k$$

Consider

$$f(t,x) = x + t \left(\sqrt[3]{x_2}, \frac{\sqrt[3]{x_3} - 2\sqrt[3]{x_2}}{2}, \frac{\sqrt[3]{x_4} - 2\sqrt[3]{x_3}}{3}, \dots, \frac{\sqrt[3]{x_{k+1}} - 2\sqrt[3]{x_k}}{k}, \dots\right).$$

For every T > 0, the function $f : [0,T] \times l^{\infty} \to l^{\infty}$ is continuous, quasimonotone increasing, $\psi(f(t,y) - f(t,x)) \leq \psi(y-x), t \in [0,T], x \leq y$, and $||f(t,x)|| \leq (\frac{3}{2}T+1)||x|| + \frac{3}{2}T, (t,x) \in [0,T] \times l^{\infty}$. Hence, by Theorem 2 problem (1) is uniquely solvable on [0,T].

Acknowledgements. The author wishes to express his sincere gratitude to Prof. Roland Lemmert for discussions and helpful remarks improving the paper.

REFERENCES

- A. Chaljub-Simon, R. Lemmert, S. Schmidt and P. Volkmann, Gewöhnliche Differentialgleichungen mit quasimonoton wachsenden rechten Seiten in geordneten Banachräumen, in: General Inequalities 6 (Oberwolfach, 1990), Internat. Ser. Numer. Math. 103, Birkhäuser, Basel, 1992, 307–320.
- [2] K. Deimling, Ordinary Differential Equations in Banach Spaces, Lecture Notes in Math. 296, Springer, Berlin, 1977.
- [3] G. Herzog, An existence and uniqueness theorem for ordinary differential equations in ordered Banach spaces, Demonstratio Math., to appear.
- [4] —, On ordinary differential equations with quasimonotone increasing right hand side, Arch. Math. (Basel), to appear.
- R. Lemmert, Existenzsätze für gewöhnliche Differentialgleichungen in geordneten Banachräumen, Funkcial. Ekvac. 32 (1989), 243-249.
- [6] R. Lemmert, R. M. Redheffer and P. Volkmann, Ein Existenzsatz für gewöhnliche Differentialgleichungen in geordneten Banachräumen, in: General Inequalities 5 (Oberwolfach, 1986), Internat. Ser. Numer. Math. 80, Birkhäuser, Basel, 1987, 381–390.
- [7] R. Lemmert, S. Schmidt and P. Volkmann, Ein Existenzsatz f
 ür gew
 öhnliche Differentialgleichungen mit quasimonoton wachsender rechter Seite, Math. Nachr. 153 (1991), 349–352.
- [8] R. H. Martin, Nonlinear Operators and Differential Equations in Banach Spaces, Krieger, 1987.
- [9] J. Mierczyński, Strictly cooperative systems with a first integral, SIAM J. Math. Anal. 18 (1987), 642–646.
- [10] —, Uniqueness for a class of cooperative systems of ordinary differential equations, Colloq. Math. 67 (1994), 21–23.
- [11] —, Uniqueness for quasimonotone systems with strongly monotone first integral, in: Proc. Second World Congress of Nonlinear Analysts (WCNA-96), Athens, 1996, to appear.
- [12] P. Volkmann, Gewöhnliche Differentialungleichungen mit quasimonoton wachsenden Funktionen in topologischen Vektorräumen, Math. Z. 127 (1972), 157–164.

28

[13] P. Volkmann, Cinq cours sur les équations différentielles dans les espaces de Banach, in: Topological Methods in Differential Equations and Inclusions (Montréal, 1994), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci. 472, Kluwer, Dordrecht, 1995, 501–520.

Mathematisches Institut I Universität Karlsruhe D-76128 Karlsruhe, Germany E-mail: Gerd.Herzog@math.uni-karlsruhe.de

> Received 20 May 1997; revised 1 August 1997