C OLLOQUIUM MATHEMATICUM

ON A THEOREM OF MIERCZYŃSKI

BY

GERD HERZOG (KARLSRUHE)

We prove that the initial value problem $x^{\prime}(t)=f(t, x(t)), x(0)=x_{1}$ is uniquely solvable in certain ordered Banach spaces if f is quasimonotone increasing with respect to x and f satisfies a one-sided Lipschitz condition with respect to a certain convex functional.

1. Introduction. Let $(E,\|\cdot\|)$ be a real Banach space and E^{*} its topological dual space. We consider a partial ordering \leq on E induced by a cone K. A cone K is a closed convex subset of E with $\lambda K \subseteq K$, $\lambda \geq 0$, and $K \cap(-K)=\{0\}$. In the sequel we will always assume that K is solid (i.e. Int $K \neq \emptyset$). We define $x \leq y \Leftrightarrow y-x \in K$, and we use the notations $x \ll y$ for $y-x \in \operatorname{Int} K$ and K^{*} for the dual cone, i.e., the set of all functionals $\varphi \in E^{*}$ with $\varphi(x) \geq 0, x \geq 0$. Thus E^{*} is ordered by $\varphi \leq \psi \Leftrightarrow \psi-\varphi \in K^{*}$. The cone K is normal if there is a $\gamma \geq 1$ such that $0 \leq x \leq y \Rightarrow\|x\| \leq \gamma\|y\|$. For $x, y \in E$ with $x \leq y$, we define the order interval $[x, y]=\{z \in E: x \leq z \leq y\}$. By $K(x, r)$ we will always denote the open ball $\{y \in E:\|y-x\|<r\}$.

Now fix $p \gg 0$. In the sequel we will assume that $\|\cdot\|$ is the Minkowski functional of $[-p, p]$. This is an equivalent renorming of E (see e.g. [7]). Then for $x, y \in E$ we have $0 \leq x \leq y \Rightarrow\|x\| \leq\|y\|$, and $\|x\| \leq c \Leftrightarrow-c p \leq$ $x \leq c p$.

Let $f:[0, T] \times E \rightarrow E$ be continuous and let $x_{1} \in E$. We consider the initial value problem

$$
\begin{equation*}
x^{\prime}(t)=f(t, x(t)), \quad x(0)=x_{1} . \tag{1}
\end{equation*}
$$

Let $D \subset E$. A function $f:[0, T] \times D \rightarrow E$ is called quasimonotone increasing (in the sense of Volkmann [12]) if

$$
\begin{aligned}
x, y \in D, t \in[0, T], x \leq y, \varphi \in K^{*}, \varphi(x) & =\varphi(y) \\
& \Rightarrow \varphi(f(t, x)) \leq \varphi(f(t, y))
\end{aligned}
$$

In [10] Mierczyński proved the following theorem (for a more general result see Mierczyński [11]):

[^0]Theorem 1. Let $E=\mathbb{R}^{n}, K=\left\{\left(x_{1}, \ldots, x_{n}\right): x_{k} \geq 0, k=1, \ldots, n\right\}$ and let $f:[0, T] \times E \rightarrow E$ be continuous and quasimonotone increasing with

$$
\sum_{k=1}^{n} f_{k}(t, x)=0, \quad(t, x) \in[0, T] \times E
$$

Then there exists precisely one solution of problem (1).
References [1], [3], [4], [5], [6], [7] and especially [13] give a survey on quasimonotonicity as applied to problem (1). For example, if f is continuous, bounded and quasimonotone increasing and if the cone K is regular then problem (1) is solvable on $[0, T]$; see [7]. A cone is called regular if every monotone increasing sequence in E which is order bounded, is convergent. If K is only supposed to be normal, even monotonicity of f does not imply existence of a solution; see [4]. So in this case additional assumptions on f are needed to obtain existence of a solution of problem (1).

In Theorem 1 we have $E=E^{*}, K=K^{*}$, and with $\psi(x)=(1, \ldots, 1) x$ condition (2) says: $\psi(f(t, x))=0,(t, x) \in[0, T] \times E$.

Conditions of this type are considered in several papers pertaining to limit sets of autonomous differential equations in \mathbb{R}^{n} with the natural cone (see e.g. [9], [10] and the references given there). We will study conditions of this type which imply both uniqueness and existence of a solution for problem (1). To this end we consider the set W of all continuous functions $\psi: E \rightarrow \mathbb{R}$ with the following properties:

1. $\psi(x) \geq 0, x \in K$.
2. $\psi(x+y) \leq \psi(x)+\psi(y), x, y \in E$.
3. $\psi(\lambda x)=\lambda \psi(x), x \in E, \lambda \geq 0$.
4. Every monotone decreasing sequence $\left(x_{n}\right)_{n=1}^{\infty}$ in K with $\lim _{n \rightarrow \infty} \psi\left(x_{n}\right)$ $=0$ tends to zero with respect to the norm.

For $\psi \in W$ we consider the one-sided derivative

$$
m_{\psi-}[x, y]=\lim _{h \rightarrow 0-}(\psi(x+h y)-\psi(x)) / h, \quad x, y \in E .
$$

For $x, y, z \in E$ we have

$$
m_{\psi-}[x, y] \leq \psi(y), \quad m_{\psi-}[x, y+z] \leq m_{\psi-}[x, y]+\psi(z)
$$

and if $u:[0, T] \rightarrow E$ is left-differentiable on $(0, T]$, then

$$
(\psi(u))_{-}^{\prime}(t)=m_{\psi-}\left[u(t), u^{\prime}(t)\right], \quad t \in(0, T]
$$

For this and further properties of the function $m_{\psi-}$ see [8]. Note that if ψ is linear, then $m_{\psi-}[x, y]=\psi(y), x, y \in E$.

We will prove the following theorem:
Theorem 2. Let E be a Banach space ordered by a normal, solid cone K. Let $x_{0} \in E$, and let $f:[0, T] \times E \rightarrow E$ be a continuous function with the
following properties:

1. f is quasimonotone increasing.
2. There exist $\psi \in W$ and $L \in \mathbb{R}$ such that
$m_{\psi-}[y-x, f(t, y)-f(t, x)] \leq L \psi(y-x) \quad$ for $(t, x),(t, y) \in[0, T] \times E, x \ll y$.
Then there exist $r>0$ and $\tau \in(0, T]$ such that problem (1) is uniquely solvable on $[0, \tau]$ for every $x_{1} \in K\left(x_{0}, r\right)$, and the solution depends continuously on $x_{1} \in K\left(x_{0}, r\right)$.

Let f have in addition the following properties:
3. For every bounded set $M \subset E$ the set $f([0, T] \times M)$ is bounded.
4. There exists a function $q \in C^{1}([0, T]$, Int $K)$ and $A, B \geq 0$ such that

$$
\|f(t, s q(t))\| \leq A|s|+B, \quad t \in[0, T], s \in \mathbb{R}
$$

Then problem (1) is uniquely solvable on $[0, T]$.
Remarks. 1. For the case $\psi=\|\cdot\|$ Theorem 2 is related to Martin's Theorem [8], p. 232.
2. Condition 2 holds if there exists $L \in \mathbb{R}$ such that

$$
\psi(f(t, y)-f(t, x)) \leq L \psi(y-x), \quad(t, x),(t, y) \in[0, T] \times E, x \leq y
$$

3. Suppose $\psi \in E^{*}$ and $K=\{x \in E: \psi(x) \geq \alpha\|x\|\}$ with $0<$ $\alpha<\|\psi\|$. Then K is a regular cone with Int $K \neq \emptyset$, and if $\left(x_{n}\right)_{n=1}^{\infty}$ is a sequence in K (not necessarily decreasing) such that $\lim _{n \rightarrow \infty} \psi\left(x_{n}\right)=0$, then $\lim _{n \rightarrow \infty} x_{n}=0$. Hence $\psi \in W$.
4. Consider the Banach space c of all convergent sequences $x=\left(x_{k}\right)_{k=1}^{\infty}$ with norm $\|x\|=\sup _{k \in \mathbb{N}}\left|x_{k}\right|$, and let $K=\left\{x \in c: x_{k} \geq 0, k \in \mathbb{N}\right\}$. Then K is normal and $\operatorname{Int} K \neq \emptyset$, for example $p=(1)_{k=1}^{\infty} \in \operatorname{Int} K$. Now let $\left(\alpha_{k}\right)_{k=1}^{\infty} \in l^{1}$ with $\alpha_{k}>0, k \in \mathbb{N}$, and define

$$
\psi(x)=\sum_{k=1}^{\infty} \alpha_{k} x_{k}+\lim _{k \rightarrow \infty} x_{k}
$$

Then $\psi \in W \cap c^{*}$.
5. Consider the Banach space l^{∞} of all bounded sequences $x=\left(x_{k}\right)_{k=1}^{\infty}$ with norm $\|x\|=\sup _{k \in \mathbb{N}}\left|x_{k}\right|$, and let $K=\left\{x \in l^{\infty}: x_{k} \geq 0, k \in \mathbb{N}\right\}$. Then K is normal and $\operatorname{Int} K \neq \emptyset$, for example $p=(1)_{k=1}^{\infty} \in \operatorname{Int} K$. Again let $\left(\alpha_{k}\right)_{k=1}^{\infty} \in l^{1}$ with $\alpha_{k}>0, k \in \mathbb{N}$, and define

$$
\psi(x)=\sum_{k=1}^{\infty} \alpha_{k} x_{k}+\limsup _{k \rightarrow \infty} x_{k}
$$

Then $\psi \in W$. Note that ψ is nonlinear.
6. A possible way to find linear functionals $\psi \in W$ is the following: Let $\psi \in K^{*}$ and consider a set

$$
M \subset\left\{\varphi \in K^{*}:\|\varphi\|=1, \exists c \geq 0: \varphi \leq c \psi\right\}
$$

If M is weak-* compact and if $\sup \{|\varphi(x)|: \varphi \in M\}$ is an equivalent norm on E, then $\psi \in W$. This is an easy consequence of Dini's Theorem.
7. Condition 4 in Theorem 2 holds if $\|f(t, x)\| \leq A\|x\|+B,(t, x) \in$ $[0, T] \times E$, for some constants $A, B \geq 0$.
8. Using Theorem 2 one can prove existence of a solution of problem (1) for right-hand sides which do not satisfy classical existence criteria such as one-sided Lipschitz conditions, conditions formulated with measures of noncompactness, or classical monotonicity conditions.

From Theorem 2 we get the following corollary for the autonomous case:
Corollary 1. Let E and K be as in Theorem 2 and let $f: E \rightarrow E$ be a continuous function such that:

1. f is quasimonotone increasing.
2. For every bounded set $M \subset E$, the set $f(M)$ is bounded.
3. There exists $\psi \in W \cap E^{*}$ such that $\psi(f(x))=0, x \in E$.
4. There exist $q \in \operatorname{Int} K$ and $A, B \geq 0$ such that

$$
\|f(s q)\| \leq A|s|+B, \quad s \in \mathbb{R}
$$

Then the initial value problem $x^{\prime}(t)=f(x(t)), x(0)=x_{0}$ is uniquely solvable on $[0, \infty)$, and the solution is continuously dependent on the initial value (in the sense of compact convergence).

Moreover, if $x:[0, \infty) \rightarrow E$ is a solution of $x^{\prime}(t)=f(x(t))$ and $t_{1} \neq t_{2}$ then x is periodic for $t \geq \min \left\{t_{1}, t_{2}\right\}$ if $x\left(t_{1}\right)$ and $x\left(t_{2}\right)$ are comparable.

To prove the last part of Corollary 1 note that $\psi(x(t))=\psi(x(0))$, $t \in[0, \infty)$. Hence if for example $x\left(t_{1}\right) \leq x\left(t_{2}\right)$, we have $\psi\left(x\left(t_{2}\right)-x\left(t_{1}\right)\right)=0$, which implies $x\left(t_{1}\right)=x\left(t_{2}\right)$. Thus $x(t), t \geq \min \left\{t_{1}, t_{2}\right\}$, has $\left|t_{1}-t_{2}\right|$ as a period. Note that under the conditions of Corollary 1 we do not have uniqueness to the left. Consider for example $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}, f(x, y)=(-\sqrt[3]{x}, \sqrt[3]{x})$ (K the natural cone and $\psi(x, y)=x+y$).

We will use Theorem 2 to prove the following:
Theorem 3. Let E, K be as in Theorem 2, let $f:[0, T] \times E \rightarrow E$ be continuous, let f satisfy conditions 1 and 2 in Theorem 2, and let $u, v \in$ $C^{1}([0, T], E)$ be such that

$$
u(0) \leq v(0), \quad u^{\prime}(t)-f(t, u(t)) \leq v^{\prime}(t)-f(t, v(t)), \quad t \in[0, T]
$$

Then $u(t) \leq v(t), t \in[0, T]$.
This means, in particular, that the solution of problem (1) depends monotonically on the initial value.
2. Approximate solutions. To prove our theorems we will use the following results. Theorem 4 is due to Volkmann [12] and for Theorem 5 see [2], Theorem 1.1.

Theorem 4. Let $D \subset E$, let $f:[0, a] \times D \rightarrow E$ be quasimonotone increasing, and let $u, v:[0, a] \rightarrow D$ be differentiable functions with

$$
u(0) \ll v(0), \quad u^{\prime}(t)-f(t, u(t)) \ll v^{\prime}(t)-f(t, v(t)), \quad t \in[0, a] .
$$

Then $u(t) \ll v(t), t \in[0, a]$.
Theorem 5. Let $D=\overline{K\left(x_{1}, r\right)}$, and let $f:[0, a] \times D \rightarrow E$ be continuous with $\|f(t, x)\| \leq M$ on $[0, a] \times D$. Let $\varepsilon>0$ and $a_{\varepsilon}=\min \{a, r /(M+\varepsilon)\}$. Then there exists $x_{\varepsilon} \in C^{1}\left(\left[0, a_{\varepsilon}\right], D\right)$ such that $x_{\varepsilon}(0)=x_{1}$ and

$$
\left\|x_{\varepsilon}^{\prime}(t)-f\left(t, x_{\varepsilon}(t)\right)\right\| \leq \varepsilon, \quad t \in\left[0, a_{\varepsilon}\right]
$$

Next we show the existence of a certain kind of approximate solutions for problem (1) (compare [7] for the case of f bounded and quasimonotone increasing).

Proposition 1. Let E, K, x_{0} be as in Theorem 2, and let $f:[0, T] \times E \rightarrow$ E be continuous and quasimonotone increasing. Then there exist $r>0$ and $\tau \in(0, T]$ such that for each $x_{1} \in K\left(x_{0}, r\right)$ and each σ with $|\sigma| \leq 1$ there are sequences $\left(u_{n}\right)_{n=1}^{\infty},\left(v_{n}\right)_{n=1}^{\infty}$ in $C^{1}([0, \tau], E)$ with the following properties:

1. $u_{m}(t) \ll u_{m+1}(t) \ll v_{n+1}(t) \ll v_{n}(t), t \in[0, \tau], m, n \in \mathbb{N}$.
2. $u_{m}(0) \ll x_{1} \ll v_{n}(0), m, n \in \mathbb{N}$.
3. Every solution $x:[0, \tau] \rightarrow E$ of $x^{\prime}=f(t, x)+\sigma p, x(0)=x_{1}$, satisfies $u_{m}(t) \ll x(t) \ll v_{n}(t), t \in[0, \tau], m, n \in \mathbb{N}$.
4. $\lim _{n \rightarrow \infty} u_{n}(0)=\lim _{n \rightarrow \infty} v_{n}(0)=x_{1}$.
5. For $r_{n}=u_{n}^{\prime}-f\left(\cdot, u_{n}\right)-\sigma p, n \in \mathbb{N}$, and $s_{n}=v_{n}^{\prime}-f\left(\cdot, v_{n}\right)-\sigma p, n \in \mathbb{N}$, we have $\lim _{n \rightarrow \infty} \max _{t \in[0, \tau]}\left\|r_{n}(t)\right\|=\lim _{n \rightarrow \infty} \max _{t \in[0, \tau]}\left\|s_{n}(t)\right\|=0$.

Proof. Since f is continuous there exists $\delta>0$ such that

$$
\|f(t, x)\| \leq 1+\left\|f\left(0, x_{0}\right)\right\|, \quad \max \left\{t,\left\|x-x_{0}\right\|\right\} \leq \delta
$$

We set $r=\delta / 3$ and we consider $x_{1} \in K\left(x_{0}, r\right)$. Let $\left(c_{n}\right)_{n=1}^{\infty}$ be a strictly decreasing sequence of real numbers with limit 0 and let $c_{1} \leq r$. For $n \in \mathbb{N}$ and $(t, x) \in[0, \delta] \times \overline{K\left(x_{1} \pm c_{n} p, r\right)}$ we have $\left\|x-x_{0}\right\| \leq \delta$, and therefore

$$
\left\|f(t, x)+\sigma p \pm \frac{c_{n}+c_{n+1}}{2} p\right\| \leq M:=2+\left\|f\left(0, x_{0}\right)\right\|+c_{1} .
$$

Now set $\tau:=\min \left\{\delta, r /\left(M+c_{1}\right)\right\}=r /\left(M+c_{1}\right)$. Then, according to Theorem 5 , for $n \in \mathbb{N}$ there exist functions u_{n} and v_{n} in $C^{1}([0, \tau], E)$ with
$u_{n}(0)=x_{1}-c_{n} p, v_{n}(0)=x_{1}+c_{n} p$ and

$$
\begin{aligned}
& \left\|u_{n}^{\prime}(t)-f\left(t, u_{n}(t)\right)-\sigma p+\frac{c_{n}+c_{n+1}}{2} p\right\| \leq \frac{c_{n}-c_{n+1}}{4}, \\
& \left\|v_{n}^{\prime}(t)-f\left(t, v_{n}(t)\right)-\sigma p-\frac{c_{n}+c_{n+1}}{2} p\right\| \leq \frac{c_{n}-c_{n+1}}{4} .
\end{aligned}
$$

By [7] this implies for $t \in[0, \tau]$ and $m, n \in \mathbb{N}$ that

$$
\begin{aligned}
-c_{m} p & \ll u_{m}^{\prime}(t)-f\left(t, u_{m}(t)\right)-\sigma p \ll-c_{m+1} p \\
& \ll c_{n+1} p \ll v_{n}^{\prime}(t)-f\left(t, v_{n}(t)\right)-\sigma p \ll c_{n} p
\end{aligned}
$$

Application of Theorem 4 leads to $u_{m}(t) \ll u_{m+1}(t) \ll v_{n+1}(t) \ll v_{n}(t)$, $t \in[0, \tau], m, n \in \mathbb{N}$, and $u_{m}(t) \ll x(t) \ll v_{n}(t), t \in[0, \tau], m, n \in \mathbb{N}$, for any solution $x:[0, \tau] \rightarrow E$ of $x^{\prime}=f(t, x)+\sigma p, x(0)=x_{1}$. The other properties of u_{n} and v_{n} follow immediately from the construction of these functions.

3. Proofs

Proof of Theorem 2. Let conditions 1 and 2 hold. We first prove existence and uniqueness of the solution of $x^{\prime}=f(t, x)+\sigma p, x(0)=x_{1}$. The parameter σ is needed to prove continuous dependence and is also needed in the proof of Theorem 3.

Let $r>0$ and $\tau \in(0, T]$ as in Proposition 1. We fix $x_{1} \in K\left(x_{0}, r\right)$ and σ with $|\sigma| \leq 1$. Let $\left(u_{n}\right)_{n=1}^{\infty},\left(v_{n}\right)_{n=1}^{\infty}$ be the approximate solutions as in Proposition 1 and let $r_{n}, s_{n}, n \in \mathbb{N}$, be the corresponding defects. Since $u_{n}(t) \ll v_{n}(t), n \in \mathbb{N}, t \in[0, \tau]$, we see that for $t \in(0, \tau]$ and for a constant $\lambda>0$,

$$
\begin{aligned}
\left(\psi\left(v_{n}-u_{n}\right)\right)_{-}^{\prime}(t)= & m_{\psi-}\left[v_{n}(t)-u_{n}(t), v_{n}^{\prime}(t)-u_{n}^{\prime}(t)\right] \\
\leq & m_{\psi-}\left[v_{n}(t)-u_{n}(t), f\left(t, v_{n}(t)\right)-f\left(t, u_{n}(t)\right)\right] \\
& +\psi\left(s_{n}(t)-r_{n}(t)\right) \\
\leq & L \psi\left(v_{n}(t)-u_{n}(t)\right)+\lambda\left(\left\|s_{n}(t)\right\|+\left\|r_{n}(t)\right\|\right)
\end{aligned}
$$

Because $\lim _{n \rightarrow \infty} \psi\left(v_{n}(0)-u_{n}(0)\right)=0$, application of Gronwall's Lemma leads to $\lim _{n \rightarrow \infty} \psi\left(v_{n}(t)-u_{n}(t)\right)=0, t \in[0, \tau]$, and since $v_{n}(t)-u_{n}(t)$ is decreasing we have

$$
\lim _{n \rightarrow \infty}\left\|v_{n}(t)-u_{n}(t)\right\|=0, \quad t \in[0, \tau] .
$$

As K is normal, Dini's Theorem implies $\lim _{n \rightarrow \infty}\left\|v_{n}-u_{n}\right\|=0$ in $C([0, \tau], E)$ (endowed with the maximum norm $\|\cdot\|)$. Now from $u_{m}(t) \ll v_{n}(t), t \in[0, \tau]$, $m, n \in \mathbb{N}$, we find for $t \in[0, \tau]$ and $m \geq n$ that

$$
\left\|v_{n}(t)-v_{m}(t)\right\| \leq\left\|v_{n}(t)-u_{n}(t)\right\| \leq\left\|v_{n}-u_{n}\right\|
$$

and therefore $\left(v_{n}\right)_{n=1}^{\infty}$ is a Cauchy sequence in $C([0, \tau], E)$. Analogously, $\left(u_{n}\right)_{n=1}^{\infty}$ is a Cauchy sequence in $C([0, \tau], E)$. The limits of both sequences
are equal, and this limit is a solution of $x^{\prime}=f(t, x)+\sigma p, x(0)=x_{1}$. It is unique, since $u_{n}(t) \ll x(t) \ll v_{n}(t), t \in[0, \tau], n \in \mathbb{N}$, for every solution $x:[0, \tau] \rightarrow E$ of $x^{\prime}=f(t, x)+\sigma p, x(0)=x_{1}$ (see Proposition 1).

We prove that the solution of problem (1) is continuously dependent on the initial value $x_{1} \in K\left(x_{0}, r\right)$.

Let $\left(x_{1 n}\right)_{n=1}^{\infty}$ be a sequence in $K\left(x_{0}, r\right)$ with limit $x_{1} \in K\left(x_{0}, r\right)$, let $x_{n}:[0, \tau] \rightarrow E$ be the solution of $x_{n}^{\prime}(t)=f\left(t, x_{n}(t)\right), x_{n}(0)=x_{1 n}, n \in \mathbb{N}$, and let $x:[0, \tau] \rightarrow E$ be the solution of problem (1). Now assume that there exists $\varepsilon>0$ with $\left\|x_{n}-x\right\| \geq \varepsilon, n \in \mathbb{N}$.

There exist strictly decreasing sequences $\left(\lambda_{n}\right)_{n=1}^{\infty}$ and $\left(\mu_{n}\right)_{n=1}^{\infty}$ of positive numbers, both with limit 0 and with

$$
\begin{array}{ll}
x_{1}\left(\text { and } x_{1 n}\right) \gg u_{1 n}:=x_{1 n}-\mu_{n} p, & n \in \mathbb{N}, \\
x_{1}\left(\text { and } x_{1 n}\right) \ll v_{1 n}:=x_{1 n}+\lambda_{n} p, & n \in \mathbb{N} .
\end{array}
$$

There exists $n_{0} \in \mathbb{N}$ such that the initial value problems $u_{n}^{\prime}(t)=f\left(t, u_{n}(t)\right)-$ $\mu_{n} p, u_{n}(0)=u_{1 n}$, and $v_{n}^{\prime}(t)=f\left(t, v_{n}(t)\right)+\lambda_{n} p, v_{n}(0)=v_{1 n}$, have solutions $u_{n}, v_{n}:[0, \tau] \rightarrow E$ for each $n \geq n_{0}$. There is a subsequence $\left(n_{k}\right)_{k=1}^{\infty}$ of $(n)_{n=n_{0}}^{\infty}$ with

$$
u_{1 n_{k+1}} \gg u_{1 n_{k}}, \quad v_{1 n_{k+1}} \ll v_{1 n_{k}}, \quad k \in \mathbb{N} .
$$

Since λ_{n} and μ_{n} are strictly decreasing, Theorem 4 shows for $t \in[0, \tau]$ and $k \in \mathbb{N}$ that

$$
u_{n_{k}}(t) \ll u_{n_{k+1}}(t) \ll x(t)\left(\text { and } x_{n_{k+1}}(t)\right) \ll v_{n_{k+1}}(t) \ll v_{n_{k}}(t)
$$

Therefore for $t \in[0, \tau]$ and $k \in \mathbb{N}$ we have

$$
u_{n_{k}}(t)-x(t) \ll x_{n_{k}}(t)-x(t) \ll v_{n_{k}}(t)-x(t)
$$

Hence

$$
\left\|x_{n_{k}}(t)-x(t)\right\| \leq \max \left\{\left\|x(t)-u_{n_{k}}(t)\right\|,\left\|v_{n_{k}}(t)-x(t)\right\|\right\}
$$

which implies

$$
\left\|x_{n_{k}}-x\right\| \leq \max \left\{\left\|x-u_{n_{k}}\right\|,\left\|v_{n_{k}}-x\right\| \|\right\}
$$

Moreover, for $t \in[0, \tau]$ and $k \in \mathbb{N}$ we have
$0 \ll x(t)-u_{n_{k+1}}(t) \ll x(t)-u_{n_{k}}(t), \quad 0 \ll v_{n_{k+1}}(t)-x(t) \ll v_{n_{k}}(t)-x(t)$.
Now for $t \in(0, \tau]$,

$$
\left(\psi\left(x-u_{n_{k}}\right)\right)_{-}^{\prime}(t) \leq L \psi\left(x(t)-u_{n_{k}}(t)\right)+\mu_{n_{k}} \psi(p)
$$

and $\lim _{k \rightarrow \infty} \psi\left(x(0)-u_{n_{k}}(0)\right)=0$. Thus $\lim _{k \rightarrow \infty} \psi\left(x(t)-u_{n_{k}}(t)\right)=0$, $t \in[0, \tau]$, which implies $\lim _{k \rightarrow \infty}\left\|x(t)-u_{n_{k}}(t)\right\|=0, t \in[0, \tau]$, since $\psi \in W$. Again by Dini's Theorem we have $\lim _{k \rightarrow \infty}\left\|x-u_{n_{k}}\right\|=0$. Analogously we get $\lim _{k \rightarrow \infty}\left\|v_{n_{k}}-x\right\|=0$. Therefore $\lim _{k \rightarrow \infty}\left\|x_{n_{k}}-x\right\|=0$, which is a contradiction.

We now add Conditions 3 and 4 and prove existence of the solution on $[0, T]$.

We have

$$
\|f(t, s q(t))\| \leq A|s|+B, \quad t \in[0, T], s \in \mathbb{R}
$$

Therefore

$$
-(A|s|+B) p \leq f(t, s q(t)) \leq(A|s|+B) p, \quad t \in[0, T], s \in \mathbb{R}
$$

Let $c>0$. For $\lambda, \mu>0$ we consider the functions

$$
\begin{array}{rlr}
u_{0}(t) & =-\lambda \exp (\mu t) q(t), & t \in[0, T], \\
v_{0}(t) & =\lambda \exp (\mu t) q(t), & t \in[0, T] .
\end{array}
$$

Now

$$
u_{0}^{\prime}(t)-f\left(t, u_{0}(t)\right) \leq-\lambda \exp (\mu t)\left(\mu q(t)+q^{\prime}(t)-A p\right)+B p
$$

and

$$
v_{0}^{\prime}(t)-f\left(t, v_{0}(t)\right) \geq \lambda \exp (\mu t)\left(\mu q(t)+q^{\prime}(t)-A p\right)-B p
$$

Since $q([0, T])$ is a compact subset of $\operatorname{Int} K$,

$$
\mu q([0, T])+q^{\prime}([0, T])-A p
$$

is a compact subset of $\operatorname{Int} K$ if μ is sufficiently large. Then for λ sufficiently large

$$
u_{0}^{\prime}(t)-f\left(t, u_{0}(t)\right) \ll-c p \ll c p \ll v_{0}^{\prime}(t)-f\left(t, v_{0}(t)\right), \quad t \in[0, T],
$$

and

$$
u_{0}(0) \ll x_{0} \ll v_{0}(0)
$$

Let $x:[0, \omega) \rightarrow E$ be a solution of problem (1). Theorem 4 gives

$$
u_{0}(t) \ll x(t) \ll v_{0}(t), \quad t \in[0, \omega) .
$$

Hence $\|x(t)\| \leq \max \left\{\left\|u_{0}(t)\right\|,\left\|v_{0}(t)\right\|\right\}$. Now $x(t)$ is bounded on $[0, \omega)$, and therefore $x^{\prime}(t)$ is bounded on $[0, \omega)$. Thus $\lim _{t \rightarrow \omega-} x(t)$ exists, and problem (1) is uniquely solvable on $[0, T]$.

Proof of Theorem 3. We set $w=v-u$, and we define $g:[0, T] \times E \rightarrow E$ by

$$
\begin{aligned}
g(t, x):= & f(t, u(t)+x)-f(t, u(t)) \\
& +v^{\prime}(t)-f(t, v(t))-\left(u^{\prime}(t)-f(t, u(t))\right) .
\end{aligned}
$$

Then $w^{\prime}(t)=g(t, w(t)), t \in[0, T]$, and $g(t, 0) \geq 0, t \in[0, T]$; compare [2], p. 71. Assume that $w(t) \geq 0$ does not hold for $t \in[0, T]$ and consider $t_{0}:=\inf \{t \in[0, T]: w(t) \notin K\}$. Note that $w\left(t_{0}\right) \geq 0$. The function f and hence g satisfies Conditions 1 and 2 in Theorem 2. Therefore there exists
$\varepsilon>0$ such that the initial value problems

$$
w_{n}^{\prime}(t)=g\left(t, w_{n}(t)\right)+\frac{p}{n}, \quad w_{n}\left(t_{0}\right)=w\left(t_{0}\right)+\frac{p}{n}, \quad n \in \mathbb{N}
$$

have solutions $w_{n}:\left[t_{0}, t_{0}+\varepsilon\right] \rightarrow E$. We have $0 \ll w_{n}\left(t_{0}\right)$ and $w\left(t_{0}\right) \ll$ $w_{n}\left(t_{0}\right)$. For $t \in\left[t_{0}, t_{0}+\varepsilon\right]$

$$
\begin{aligned}
-g(t, 0) \leq 0 & \ll w_{n}^{\prime}(t)-g\left(t, w_{n}(t)\right), \\
w^{\prime}(t)-g(t, w(t)) & \ll w_{n}^{\prime}(t)-g\left(t, w_{n}(t)\right) .
\end{aligned}
$$

Theorem 4 gives $0 \ll w_{n}(t)$ and $w(t) \ll w_{n}(t), t \in\left[t_{0}, t_{0}+\varepsilon\right]$. Once again using condition 2 of Theorem 2, we find that $\left(w_{n}\right)_{n=1}^{\infty}$ tends uniformly to w on $\left[t_{0}, t_{0}+\varepsilon\right]$. Thus $w(t) \geq 0$ on $\left[t_{0}, t_{0}+\varepsilon\right]$, which contradicts the definition of t_{0}.
4. Examples. We illustrate our results by examples. Let the spaces c and l^{∞} be normed and ordered as in Section 1.

1. Let $E=c$. We consider the linear functional $\psi \in W$ defined by

$$
\psi(x)=\sum_{k=1}^{\infty} \frac{x_{k}}{k^{2}}+\lim _{k \rightarrow \infty} x_{k}
$$

Now consider the function
$f(x)=\left(\sqrt[3]{x_{2}}, \sqrt[3]{x_{3}}-4 \sqrt[3]{x_{2}}, \sqrt[3]{x_{4}}-\frac{9}{4} \sqrt[3]{x_{3}}, \ldots, \sqrt[3]{x_{k+1}}-\frac{k^{2}}{(k-1)^{2}} \sqrt[3]{x_{k}}, \ldots\right)$.
The function $f: c \rightarrow c$ is continuous, quasimonotone increasing, $\psi(f(x))$ $=0, x \in c$, and $\|f(x)\| \leq 5\|x\|+5, x \in c$. By Corollary 1 the initial value problem $x^{\prime}(t)=f(x(t)), x(0)=x_{0}$, is uniquely solvable on $[0, \infty)$.
2. Let $E=c$ and let

$$
\psi(x)=\sum_{k=1}^{\infty} \frac{x_{k}}{2^{k}}+\lim _{k \rightarrow \infty} x_{k}
$$

Again $\psi \in W$. Now consider

$$
\begin{aligned}
f(t, x)=\left(2 \lim _{k \rightarrow \infty} x_{k}^{3}+x_{2}^{3}-3\left(1+t^{2}\right) x_{1}^{3}, x_{3}^{3}-2 x_{2}^{3}+\left(1+t^{2}\right) x_{1}^{3}\right. & , \\
& \left.x_{4}^{3}-2 x_{3}^{3}+\left(1+t^{2}\right) x_{1}^{3}, \ldots, x_{k+1}^{3}-2 x_{k}^{3}+\left(1+t^{2}\right) x_{1}^{3}, \ldots\right) .
\end{aligned}
$$

For every $T>0$, the function $f:[0, T] \times c \rightarrow c$ is continuous, quasimonotone increasing, $\psi(f(t, x))=0,(t, x) \in[0, T] \times c$, and for $q(t)=$ $\left(\left(1+t^{2}\right)^{-1 / 3}, 1,1, \ldots\right) \in \operatorname{Int} K, t \in[0, T]$, we have $f(t, s q(t))=0, t \in[0, T]$, $s \in \mathbb{R}$. By Theorem 2 problem (1) is uniquely solvable on $[0, T]$.
3. Next let $E=l^{\infty}$, and consider the function $\psi \in W$ defined by

$$
\psi(x)=\sum_{k=1}^{\infty} \frac{k x_{k}}{2^{k}}+\limsup _{k \rightarrow \infty} x_{k} .
$$

Consider

$$
\begin{aligned}
& f(t, x) \\
& =x+t\left(\sqrt[3]{x_{2}}, \frac{\sqrt[3]{x_{3}}-2 \sqrt[3]{x_{2}}}{2}, \frac{\sqrt[3]{x_{4}}-2 \sqrt[3]{x_{3}}}{3}, \ldots, \frac{\sqrt[3]{x_{k+1}}-2 \sqrt[3]{x_{k}}}{k}, \ldots\right)
\end{aligned}
$$

For every $T>0$, the function $f:[0, T] \times l^{\infty} \rightarrow l^{\infty}$ is continuous, quasimonotone increasing, $\psi(f(t, y)-f(t, x)) \leq \psi(y-x), t \in[0, T], x \leq y$, and $\|f(t, x)\| \leq\left(\frac{3}{2} T+1\right)\|x\|+\frac{3}{2} T,(t, x) \in[0, T] \times l^{\infty}$. Hence, by Theorem 2 problem (1) is uniquely solvable on $[0, T]$.

Acknowledgements. The author wishes to express his sincere gratitude to Prof. Roland Lemmert for discussions and helpful remarks improving the paper.

REFERENCES

[1] A. Chaljub-Simon, R. Lemmert, S. Schmidt and P. Volkmann, Gewöhnliche Differentialgleichungen mit quasimonoton wachsenden rechten Seiten in geordneten Banachräumen, in: General Inequalities 6 (Oberwolfach, 1990), Internat. Ser. Numer. Math. 103, Birkhäuser, Basel, 1992, 307-320.
[2] K. Deimling, Ordinary Differential Equations in Banach Spaces, Lecture Notes in Math. 296, Springer, Berlin, 1977.
[3] G. Herzog, An existence and uniqueness theorem for ordinary differential equations in ordered Banach spaces, Demonstratio Math., to appear.
[4] -, On ordinary differential equations with quasimonotone increasing right hand side, Arch. Math. (Basel), to appear.
[5] R. Lemmert, Existenzsätze für gewöhnliche Differentialgleichungen in geordneten Banachräumen, Funkcial. Ekvac. 32 (1989), 243-249.
[6] R. Lemmert, R. M. Redheffer and P. Volkmann, Ein Existenzsatz für gewöhnliche Differentialgleichungen in geordneten Banachräumen, in: General Inequalities 5 (Oberwolfach, 1986), Internat. Ser. Numer. Math. 80, Birkhäuser, Basel, 1987, 381-390.
[7] R. Lemmert, S. Schmidt and P. Volkmann, Ein Existenzsatz für gewöhnliche Differentialgleichungen mit quasimonoton wachsender rechter Seite, Math. Nachr. 153 (1991), 349-352.
[8] R. H. Martin, Nonlinear Operators and Differential Equations in Banach Spaces, Krieger, 1987.
[9] J. Mierczyński, Strictly cooperative systems with a first integral, SIAM J. Math. Anal. 18 (1987), 642-646.
[10] -, Uniqueness for a class of cooperative systems of ordinary differential equations, Colloq. Math. 67 (1994), 21-23.
[11] -, Uniqueness for quasimonotone systems with strongly monotone first integral, in: Proc. Second World Congress of Nonlinear Analysts (WCNA-96), Athens, 1996, to appear.
[12] P. Volkmann, Gewöhnliche Differentialungleichungen mit quasimonoton wachsenden Funktionen in topologischen Vektorräumen, Math. Z. 127 (1972), 157-164.
[13] P. Volkmann, Cinq cours sur les équations différentielles dans les espaces de Banach, in: Topological Methods in Differential Equations and Inclusions (Montréal, 1994), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci. 472, Kluwer, Dordrecht, 1995, 501-520.

Mathematisches Institut I
Universität Karlsruhe
D-76128 Karlsruhe, Germany
E-mail: Gerd.Herzog@math.uni-karlsruhe.de

Received 20 May 1997;
revised 1 August 1997

[^0]: 1991 Mathematics Subject Classification: Primary 34G20.

