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ON A THEOREM OF MIERCZYŃSKI

BY

GERD HERZOG (KARLSRUHE)

We prove that the initial value problem x′(t) = f(t, x(t)), x(0) = x1 is
uniquely solvable in certain ordered Banach spaces if f is quasimonotone
increasing with respect to x and f satisfies a one-sided Lipschitz condition
with respect to a certain convex functional.

1. Introduction. Let (E, ‖ · ‖) be a real Banach space and E∗ its
topological dual space. We consider a partial ordering ≤ on E induced
by a cone K. A cone K is a closed convex subset of E with λK ⊆ K,
λ ≥ 0, and K ∩ (−K) = {0}. In the sequel we will always assume that K
is solid (i.e. IntK 6= ∅). We define x ≤ y ⇔ y − x ∈ K, and we use the
notations x � y for y − x ∈ IntK and K∗ for the dual cone, i.e., the set
of all functionals ϕ ∈ E∗ with ϕ(x) ≥ 0, x ≥ 0. Thus E∗ is ordered by
ϕ ≤ ψ ⇔ ψ − ϕ ∈ K∗. The cone K is normal if there is a γ ≥ 1 such that
0 ≤ x ≤ y ⇒ ‖x‖ ≤ γ‖y‖. For x, y ∈ E with x ≤ y, we define the order
interval [x, y] = {z ∈ E : x ≤ z ≤ y}. By K(x, r) we will always denote the
open ball {y ∈ E : ‖y − x‖ < r}.

Now fix p� 0. In the sequel we will assume that ‖ · ‖ is the Minkowski
functional of [−p, p]. This is an equivalent renorming of E (see e.g. [7]).
Then for x, y ∈ E we have 0 ≤ x ≤ y ⇒ ‖x‖ ≤ ‖y‖, and ‖x‖ ≤ c ⇔ −cp ≤
x ≤ cp.

Let f : [0, T ] × E → E be continuous and let x1 ∈ E. We consider the
initial value problem

(1) x′(t) = f(t, x(t)), x(0) = x1.
Let D ⊂ E. A function f : [0, T ] × D → E is called quasimonotone

increasing (in the sense of Volkmann [12]) if

x, y ∈ D, t ∈ [0, T ], x ≤ y, ϕ ∈ K∗, ϕ(x) = ϕ(y)
⇒ ϕ(f(t, x)) ≤ ϕ(f(t, y)).

In [10] Mierczyński proved the following theorem (for a more general
result see Mierczyński [11]):
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Theorem 1. Let E = Rn, K = {(x1, . . . , xn) : xk ≥ 0, k = 1, . . . , n} and
let f : [0, T ]× E → E be continuous and quasimonotone increasing with

n∑
k=1

fk(t, x) = 0, (t, x) ∈ [0, T ]× E.

Then there exists precisely one solution of problem (1).

References [1], [3], [4], [5], [6], [7] and especially [13] give a survey on
quasimonotonicity as applied to problem (1). For example, if f is continuous,
bounded and quasimonotone increasing and if the cone K is regular then
problem (1) is solvable on [0, T ]; see [7]. A cone is called regular if every
monotone increasing sequence in E which is order bounded, is convergent.
If K is only supposed to be normal, even monotonicity of f does not imply
existence of a solution; see [4]. So in this case additional assumptions on f
are needed to obtain existence of a solution of problem (1).

In Theorem 1 we have E = E∗, K = K∗, and with ψ(x) = (1, . . . , 1)x
condition (2) says: ψ(f(t, x)) = 0, (t, x) ∈ [0, T ]× E.

Conditions of this type are considered in several papers pertaining to
limit sets of autonomous differential equations in Rn with the natural cone
(see e.g. [9], [10] and the references given there). We will study conditions
of this type which imply both uniqueness and existence of a solution for
problem (1). To this end we consider the set W of all continuous functions
ψ : E → R with the following properties:

1. ψ(x) ≥ 0, x ∈ K.
2. ψ(x+ y) ≤ ψ(x) + ψ(y), x, y ∈ E.
3. ψ(λx) = λψ(x), x ∈ E, λ ≥ 0.
4. Every monotone decreasing sequence(xn)∞n=1 inK with limn→∞ ψ(xn)

= 0 tends to zero with respect to the norm.

For ψ ∈W we consider the one-sided derivative

mψ−[x, y] = lim
h→0−

(ψ(x+ hy)− ψ(x))/h, x, y ∈ E.

For x, y, z ∈ E we have

mψ−[x, y] ≤ ψ(y), mψ−[x, y + z] ≤ mψ−[x, y] + ψ(z),

and if u : [0, T ] → E is left-differentiable on (0, T ], then

(ψ(u))′−(t) = mψ−[u(t), u′(t)], t ∈ (0, T ].

For this and further properties of the function mψ− see [8]. Note that if
ψ is linear, then mψ−[x, y] = ψ(y), x, y ∈ E.

We will prove the following theorem:

Theorem 2. Let E be a Banach space ordered by a normal , solid cone K.
Let x0 ∈ E, and let f : [0, T ] × E → E be a continuous function with the
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following properties:

1. f is quasimonotone increasing.
2. There exist ψ ∈W and L ∈ R such that

mψ−[y−x, f(t, y)−f(t, x)] ≤ Lψ(y−x) for (t, x), (t, y) ∈ [0, T ]×E, x� y.

Then there exist r > 0 and τ ∈ (0, T ] such that problem (1) is uniquely solv-
able on [0, τ ] for every x1 ∈ K(x0, r), and the solution depends continuously
on x1 ∈ K(x0, r).

Let f have in addition the following properties:

3. For every bounded set M ⊂ E the set f([0, T ]×M) is bounded.
4. There exists a function q ∈ C1([0, T ], IntK) and A,B ≥ 0 such that

‖f(t, sq(t))‖ ≤ A|s|+B, t ∈ [0, T ], s ∈ R.

Then problem (1) is uniquely solvable on [0, T ].

Remarks. 1. For the case ψ = ‖ · ‖ Theorem 2 is related to Martin’s
Theorem [8], p. 232.

2. Condition 2 holds if there exists L ∈ R such that

ψ(f(t, y)− f(t, x)) ≤ Lψ(y − x), (t, x), (t, y) ∈ [0, T ]× E, x ≤ y.

3. Suppose ψ ∈ E∗ and K = {x ∈ E : ψ(x) ≥ α‖x‖} with 0 <
α < ‖ψ‖. Then K is a regular cone with IntK 6= ∅, and if (xn)∞n=1 is a
sequence in K (not necessarily decreasing) such that limn→∞ ψ(xn) = 0,
then limn→∞ xn = 0. Hence ψ ∈W .

4. Consider the Banach space c of all convergent sequences x = (xk)∞k=1

with norm ‖x‖ = supk∈N |xk|, and let K = {x ∈ c : xk ≥ 0, k ∈ N}. Then
K is normal and IntK 6= ∅, for example p = (1)∞k=1 ∈ IntK. Now let
(αk)∞k=1 ∈ l1 with αk > 0, k ∈ N, and define

ψ(x) =
∞∑
k=1

αkxk + lim
k→∞

xk.

Then ψ ∈W ∩ c∗.
5. Consider the Banach space l∞ of all bounded sequences x = (xk)∞k=1

with norm ‖x‖ = supk∈N |xk|, and let K = {x ∈ l∞ : xk ≥ 0, k ∈ N}. Then
K is normal and IntK 6= ∅, for example p = (1)∞k=1 ∈ IntK. Again let
(αk)∞k=1 ∈ l1 with αk > 0, k ∈ N, and define

ψ(x) =
∞∑
k=1

αkxk + lim sup
k→∞

xk.

Then ψ ∈W . Note that ψ is nonlinear.
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6. A possible way to find linear functionals ψ ∈W is the following: Let
ψ ∈ K∗ and consider a set

M ⊂ {ϕ ∈ K∗ : ‖ϕ‖ = 1, ∃c ≥ 0 : ϕ ≤ cψ}.
If M is weak-∗ compact and if sup{|ϕ(x)| : ϕ ∈ M} is an equivalent norm
on E, then ψ ∈W . This is an easy consequence of Dini’s Theorem.

7. Condition 4 in Theorem 2 holds if ‖f(t, x)‖ ≤ A‖x‖ + B, (t, x) ∈
[0, T ]× E, for some constants A,B ≥ 0.

8. Using Theorem 2 one can prove existence of a solution of problem (1)
for right-hand sides which do not satisfy classical existence criteria such
as one-sided Lipschitz conditions, conditions formulated with measures of
noncompactness, or classical monotonicity conditions.

From Theorem 2 we get the following corollary for the autonomous case:

Corollary 1. Let E and K be as in Theorem 2 and let f : E → E be a
continuous function such that :

1. f is quasimonotone increasing.
2. For every bounded set M ⊂ E, the set f(M) is bounded.
3. There exists ψ ∈W ∩ E∗ such that ψ(f(x)) = 0, x ∈ E.
4. There exist q ∈ IntK and A,B ≥ 0 such that

‖f(sq)‖ ≤ A|s|+B, s ∈ R.
Then the initial value problem x′(t) = f(x(t)), x(0) = x0 is uniquely

solvable on [0,∞), and the solution is continuously dependent on the initial
value (in the sense of compact convergence).

Moreover , if x : [0,∞) → E is a solution of x′(t) = f(x(t)) and t1 6= t2
then x is periodic for t ≥ min{t1, t2} if x(t1) and x(t2) are comparable.

To prove the last part of Corollary 1 note that ψ(x(t)) = ψ(x(0)),
t ∈ [0,∞). Hence if for example x(t1) ≤ x(t2), we have ψ(x(t2)−x(t1)) = 0,
which implies x(t1) = x(t2). Thus x(t), t ≥ min{t1, t2}, has |t1 − t2| as a
period. Note that under the conditions of Corollary 1 we do not have unique-
ness to the left. Consider for example f : R2 → R2, f(x, y) = (− 3

√
x, 3
√
x)

(K the natural cone and ψ(x, y) = x+ y).
We will use Theorem 2 to prove the following:

Theorem 3. Let E , K be as in Theorem 2, let f : [0, T ] × E → E be
continuous, let f satisfy conditions 1 and 2 in Theorem 2, and let u, v ∈
C1([0, T ], E) be such that

u(0) ≤ v(0), u′(t)− f(t, u(t)) ≤ v′(t)− f(t, v(t)), t ∈ [0, T ].

Then u(t) ≤ v(t), t ∈ [0, T ].

This means, in particular, that the solution of problem (1) depends
monotonically on the initial value.
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2. Approximate solutions. To prove our theorems we will use the
following results. Theorem 4 is due to Volkmann [12] and for Theorem 5 see
[2], Theorem 1.1.

Theorem 4. Let D ⊂ E, let f : [0, a] × D → E be quasimonotone
increasing , and let u, v : [0, a] → D be differentiable functions with

u(0) � v(0), u′(t)− f(t, u(t)) � v′(t)− f(t, v(t)), t ∈ [0, a].

Then u(t) � v(t), t ∈ [0, a].

Theorem 5. Let D = K(x1, r), and let f : [0, a]×D → E be continuous
with ‖f(t, x)‖ ≤ M on [0, a] ×D. Let ε > 0 and aε = min{a, r/(M + ε)}.
Then there exists xε ∈ C1([0, aε], D) such that xε(0) = x1 and

‖x′ε(t)− f(t, xε(t))‖ ≤ ε, t ∈ [0, aε].

Next we show the existence of a certain kind of approximate solutions
for problem (1) (compare [7] for the case of f bounded and quasimonotone
increasing).

Proposition 1. Let E , K , x0 be as in Theorem 2, and let f : [0, T ]×E →
E be continuous and quasimonotone increasing. Then there exist r > 0 and
τ ∈ (0, T ] such that for each x1 ∈ K(x0, r) and each σ with |σ| ≤ 1 there are
sequences (un)∞n=1, (vn)∞n=1 in C1([0, τ ], E) with the following properties:

1. um(t) � um+1(t) � vn+1(t) � vn(t), t ∈ [0, τ ], m,n ∈ N.
2. um(0) � x1 � vn(0), m, n ∈ N.
3. Every solution x : [0, τ ] → E of x′ = f(t, x) + σp, x(0) = x1, satisfies

um(t) � x(t) � vn(t), t ∈ [0, τ ], m,n ∈ N.
4. limn→∞ un(0) = limn→∞ vn(0) = x1.
5. For rn = u′n−f(·, un)−σp, n ∈ N, and sn = v′n−f(·, vn)−σp, n ∈ N,

we have limn→∞maxt∈[0,τ ] ‖rn(t)‖ = limn→∞maxt∈[0,τ ] ‖sn(t)‖ = 0.

P r o o f. Since f is continuous there exists δ > 0 such that

‖f(t, x)‖ ≤ 1 + ‖f(0, x0)‖, max{t, ‖x− x0‖} ≤ δ.

We set r = δ/3 and we consider x1 ∈ K(x0, r). Let (cn)∞n=1 be a strictly
decreasing sequence of real numbers with limit 0 and let c1 ≤ r. For n ∈ N
and (t, x) ∈ [0, δ]×K(x1 ± cnp, r) we have ‖x− x0‖ ≤ δ, and therefore∥∥∥∥f(t, x) + σp± cn + cn+1

2
p

∥∥∥∥ ≤M := 2 + ‖f(0, x0)‖+ c1.

Now set τ := min{δ, r/(M + c1)} = r/(M + c1). Then, according to The-
orem 5, for n ∈ N there exist functions un and vn in C1([0, τ ], E) with
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un(0) = x1 − cnp, vn(0) = x1 + cnp and∥∥∥∥u′n(t)− f(t, un(t))− σp+
cn + cn+1

2
p

∥∥∥∥ ≤ cn − cn+1

4
,∥∥∥∥v′n(t)− f(t, vn(t))− σp− cn + cn+1

2
p

∥∥∥∥ ≤ cn − cn+1

4
.

By [7] this implies for t ∈ [0, τ ] and m,n ∈ N that

−cmp� u′m(t)− f(t, um(t))− σp� −cm+1p

� cn+1p� v′n(t)− f(t, vn(t))− σp� cnp.

Application of Theorem 4 leads to um(t) � um+1(t) � vn+1(t) � vn(t),
t ∈ [0, τ ], m,n ∈ N, and um(t) � x(t) � vn(t), t ∈ [0, τ ], m,n ∈ N, for any
solution x : [0, τ ] → E of x′ = f(t, x) + σp, x(0) = x1. The other properties
of un and vn follow immediately from the construction of these functions.

3. Proofs

Proof of Theorem 2. Let conditions 1 and 2 hold. We first prove existence
and uniqueness of the solution of x′ = f(t, x)+σp, x(0) = x1. The parameter
σ is needed to prove continuous dependence and is also needed in the proof
of Theorem 3.

Let r > 0 and τ ∈ (0, T ] as in Proposition 1. We fix x1 ∈ K(x0, r) and
σ with |σ| ≤ 1. Let (un)∞n=1, (vn)∞n=1 be the approximate solutions as in
Proposition 1 and let rn, sn, n ∈ N, be the corresponding defects. Since
un(t) � vn(t), n ∈ N, t ∈ [0, τ ], we see that for t ∈ (0, τ ] and for a constant
λ > 0,

(ψ(vn − un))′−(t) = mψ−[vn(t)− un(t), v′n(t)− u′n(t)]
≤ mψ−[vn(t)− un(t), f(t, vn(t))− f(t, un(t))]

+ ψ(sn(t)− rn(t))
≤ Lψ(vn(t)− un(t)) + λ(‖sn(t)‖+ ‖rn(t)‖).

Because limn→∞ ψ(vn(0) − un(0)) = 0, application of Gronwall’s Lemma
leads to limn→∞ ψ(vn(t) − un(t)) = 0, t ∈ [0, τ ], and since vn(t) − un(t) is
decreasing we have

lim
n→∞

‖vn(t)− un(t)‖ = 0, t ∈ [0, τ ].

AsK is normal, Dini’s Theorem implies limn→∞ |||vn−un||| = 0 in C([0, τ ], E)
(endowed with the maximum norm |||·|||). Now from um(t) � vn(t), t ∈ [0, τ ],
m,n ∈ N, we find for t ∈ [0, τ ] and m ≥ n that

‖vn(t)− vm(t)‖ ≤ ‖vn(t)− un(t)‖ ≤ |||vn − un|||,
and therefore (vn)∞n=1 is a Cauchy sequence in C([0, τ ], E). Analogously,
(un)∞n=1 is a Cauchy sequence in C([0, τ ], E). The limits of both sequences
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are equal, and this limit is a solution of x′ = f(t, x) + σp, x(0) = x1. It
is unique, since un(t) � x(t) � vn(t), t ∈ [0, τ ], n ∈ N, for every solution
x : [0, τ ] → E of x′ = f(t, x) + σp, x(0) = x1 (see Proposition 1).

We prove that the solution of problem (1) is continuously dependent on
the initial value x1 ∈ K(x0, r).

Let (x1n)∞n=1 be a sequence in K(x0, r) with limit x1 ∈ K(x0, r), let
xn : [0, τ ] → E be the solution of x′n(t) = f(t, xn(t)), xn(0) = x1n, n ∈ N,
and let x : [0, τ ] → E be the solution of problem (1). Now assume that
there exists ε > 0 with |||xn − x||| ≥ ε, n ∈ N.

There exist strictly decreasing sequences (λn)∞n=1 and (µn)∞n=1 of positive
numbers, both with limit 0 and with

x1 (and x1n) � u1n := x1n − µnp, n ∈ N,
x1 (and x1n) � v1n := x1n + λnp, n ∈ N.

There exists n0 ∈ N such that the initial value problems u′n(t) = f(t, un(t))−
µnp, un(0) = u1n, and v′n(t) = f(t, vn(t))+λnp, vn(0) = v1n, have solutions
un, vn : [0, τ ] → E for each n ≥ n0. There is a subsequence (nk)∞k=1 of
(n)∞n=n0

with

u1nk+1 � u1nk
, v1nk+1 � v1nk

, k ∈ N.
Since λn and µn are strictly decreasing, Theorem 4 shows for t ∈ [0, τ ] and
k ∈ N that

unk
(t) � unk+1(t) � x(t) (and xnk+1(t)) � vnk+1(t) � vnk

(t).

Therefore for t ∈ [0, τ ] and k ∈ N we have

unk
(t)− x(t) � xnk

(t)− x(t) � vnk
(t)− x(t).

Hence

‖xnk
(t)− x(t)‖ ≤ max{‖x(t)− unk

(t)‖, ‖vnk
(t)− x(t)‖},

which implies

|||xnk
− x||| ≤ max{|||x− unk

|||, |||vnk
− x|||}.

Moreover, for t ∈ [0, τ ] and k ∈ N we have

0 � x(t)−unk+1(t) � x(t)−unk
(t), 0 � vnk+1(t)−x(t) � vnk

(t)−x(t).
Now for t ∈ (0, τ ],

(ψ(x− unk
))′−(t) ≤ Lψ(x(t)− unk

(t)) + µnk
ψ(p),

and limk→∞ ψ(x(0) − unk
(0)) = 0. Thus limk→∞ ψ(x(t) − unk

(t)) = 0,
t ∈ [0, τ ], which implies limk→∞ ‖x(t)−unk

(t)‖ = 0, t ∈ [0, τ ], since ψ ∈W .
Again by Dini’s Theorem we have limk→∞ |||x − unk

||| = 0. Analogously we
get limk→∞ |||vnk

− x||| = 0. Therefore limk→∞ |||xnk
− x||| = 0, which is a

contradiction.
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We now add Conditions 3 and 4 and prove existence of the solution on
[0, T ].

We have

‖f(t, sq(t))‖ ≤ A|s|+B, t ∈ [0, T ], s ∈ R,

Therefore

−(A|s|+B)p ≤ f(t, sq(t)) ≤ (A|s|+B)p, t ∈ [0, T ], s ∈ R.

Let c > 0. For λ, µ > 0 we consider the functions

u0(t) = −λ exp(µt)q(t), t ∈ [0, T ],
v0(t) = λ exp(µt)q(t), t ∈ [0, T ].

Now

u′0(t)− f(t, u0(t)) ≤ −λ exp(µt)(µq(t) + q′(t)−Ap) +Bp,

and
v′0(t)− f(t, v0(t)) ≥ λ exp(µt)(µq(t) + q′(t)−Ap)−Bp.

Since q([0, T ]) is a compact subset of IntK,

µq([0, T ]) + q′([0, T ])−Ap

is a compact subset of IntK if µ is sufficiently large. Then for λ sufficiently
large

u′0(t)− f(t, u0(t)) � −cp� cp� v′0(t)− f(t, v0(t)), t ∈ [0, T ],

and

u0(0) � x0 � v0(0).

Let x : [0, ω) → E be a solution of problem (1). Theorem 4 gives

u0(t) � x(t) � v0(t), t ∈ [0, ω).

Hence ‖x(t)‖ ≤ max{‖u0(t)‖, ‖v0(t)‖}. Now x(t) is bounded on [0, ω), and
therefore x′(t) is bounded on [0, ω). Thus limt→ω− x(t) exists, and prob-
lem (1) is uniquely solvable on [0, T ].

Proof of Theorem 3. We set w = v−u, and we define g : [0, T ]×E → E
by

g(t, x) := f(t, u(t) + x)− f(t, u(t))
+ v′(t)− f(t, v(t))− (u′(t)− f(t, u(t))).

Then w′(t) = g(t, w(t)), t ∈ [0, T ], and g(t, 0) ≥ 0, t ∈ [0, T ]; compare
[2], p. 71. Assume that w(t) ≥ 0 does not hold for t ∈ [0, T ] and consider
t0 := inf{t ∈ [0, T ] : w(t) 6∈ K}. Note that w(t0) ≥ 0. The function f and
hence g satisfies Conditions 1 and 2 in Theorem 2. Therefore there exists
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ε > 0 such that the initial value problems

w′n(t) = g(t, wn(t)) +
p

n
, wn(t0) = w(t0) +

p

n
, n ∈ N,

have solutions wn : [t0, t0 + ε] → E. We have 0 � wn(t0) and w(t0) �
wn(t0). For t ∈ [t0, t0 + ε]

−g(t, 0) ≤ 0 � w′n(t)− g(t, wn(t)),
w′(t)− g(t, w(t)) � w′n(t)− g(t, wn(t)).

Theorem 4 gives 0 � wn(t) and w(t) � wn(t), t ∈ [t0, t0 + ε]. Once again
using condition 2 of Theorem 2, we find that (wn)∞n=1 tends uniformly to w
on [t0, t0 + ε]. Thus w(t) ≥ 0 on [t0, t0 + ε], which contradicts the definition
of t0.

4. Examples. We illustrate our results by examples. Let the spaces c
and l∞ be normed and ordered as in Section 1.

1. Let E = c. We consider the linear functional ψ ∈W defined by

ψ(x) =
∞∑
k=1

xk
k2

+ lim
k→∞

xk.

Now consider the function

f(x) =
(

3
√
x2, 3

√
x3− 4 3

√
x2, 3

√
x4−

9
4

3
√
x3, . . . , 3

√
xk+1−

k2

(k − 1)2
3
√
xk, . . .

)
.

The function f : c → c is continuous, quasimonotone increasing, ψ(f(x))
= 0, x ∈ c, and ‖f(x)‖ ≤ 5‖x‖ + 5, x ∈ c. By Corollary 1 the initial value
problem x′(t) = f(x(t)), x(0) = x0, is uniquely solvable on [0,∞).

2. Let E = c and let

ψ(x) =
∞∑
k=1

xk
2k

+ lim
k→∞

xk.

Again ψ ∈W . Now consider

f(t, x) = (2 lim
k→∞

x3
k + x3

2 − 3(1 + t2)x3
1, x

3
3 − 2x3

2 + (1 + t2)x3
1,

x3
4 − 2x3

3 + (1 + t2)x3
1, . . . , x

3
k+1 − 2x3

k + (1 + t2)x3
1, . . .).

For every T > 0, the function f : [0, T ] × c → c is continuous, quasi-
monotone increasing, ψ(f(t, x)) = 0, (t, x) ∈ [0, T ] × c, and for q(t) =
((1 + t2)−1/3, 1, 1, . . .) ∈ IntK, t ∈ [0, T ], we have f(t, sq(t)) = 0, t ∈ [0, T ],
s ∈ R. By Theorem 2 problem (1) is uniquely solvable on [0, T ].

3. Next let E = l∞, and consider the function ψ ∈W defined by

ψ(x) =
∞∑
k=1

kxk
2k

+ lim sup
k→∞

xk.
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Consider

f(t, x)

= x+ t

(
3
√
x2,

3
√
x3 − 2 3

√
x2

2
,

3
√
x4 − 2 3

√
x3

3
, . . . ,

3
√
xk+1 − 2 3

√
xk

k
, . . .

)
.

For every T > 0, the function f : [0, T ] × l∞ → l∞ is continuous, quasi-
monotone increasing, ψ(f(t, y) − f(t, x)) ≤ ψ(y − x), t ∈ [0, T ], x ≤ y, and
‖f(t, x)‖ ≤

(
3
2T + 1

)
‖x‖ + 3

2T , (t, x) ∈ [0, T ] × l∞. Hence, by Theorem 2
problem (1) is uniquely solvable on [0, T ].
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