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ON SOME PROPERTIES OF THE CLASS OF STATIONARY SETS

BY

PASCAL LEFEVRE (LILLE)

Some new properties of the stationary sets (defined by G. Pisier in [12])
are studied. Some arithmetical conditions are given, leading to the non-
stationarity of the prime numbers. It is shown that any stationary set is a
set of continuity. Some examples of “large” stationary sets are given, which
are not sets of uniform convergence.

1. Introduction, notations and definitions. Let G be an infinite
metrizable compact abelian group, equipped with its normalized Haar mea-
sure dx, and Γ its dual (discrete and countable). G will be mostly the unit
circle of the complex plane and then Γ will be identified with Z by p→ ep,
where ep(x) = e2iπpx.

We shall denote by P(G) the set of trigonometric polynomials over G,
i.e. finite sums

∑
γ∈Γ aγγ, where aγ ∈ C; this is also the vector space of

functions over G spanned by Γ .

We shall denote by C(G) the space of complex continuous functions over
G, with the norm ‖f‖∞ = supx∈G |f(x)|. This is also the completion of
P(G) for ‖·‖∞.

M(G) will denote the space of complex regular Borel measures over G,
equipped with the total variation norm. If µ ∈M(G), its Fourier transform

at the point γ is defined by µ̂(γ) =
T
G
γ(−x) dµ(x).

Lp(G) denotes the Lebesgue space Lp(G, dx) with the norm

‖f‖p =

{
(
T
G
|f(x)|p dx)1/p, 1 ≤ p <∞,

ess sup |f(x)|, p = ∞.

The map f → fdx identifies L1(G) with a closed ideal of M(G) equipped
with the convolution.
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If B is a normed space of functions over G which is continuously injected
in M(G), and if Λ is a subset of Γ , we shall set

BΛ = {f ∈ B | f̂(γ) = 0 ∀γ 6∈ Λ}.
This is also the set of elements of B whose spectrum is contained in Λ.

(εγ)γ∈Γ will denote a Bernoulli sequence indexed by Γ , i.e. a sequence
of independent random variables defined on a probability space (Ω,A,P),
taking values +1 and −1 with probability 1/2. Also, (gγ)γ∈Γ will denote a
sequence of centred independent complex Gaussian random variables, nor-
malized by E|gγ |2 = 1.

|E| will denote the cardinality of a finite set E.
Let us now recall some classical definitions of lacunary subsets of Γ .

Definition 1.1. Let Λ be a subset of Γ . Then Λ is a Sidon set if it
satisfies one of the following equivalent conditions:

(i) There is C > 0 such that for all P ∈ PΛ(G),
∑
γ∈Λ |P̂ (γ)| ≤ C‖P‖∞.

(ii) There is C > 0 such that for all f ∈ CΛ(G),
∑
γ∈Λ |f̂(γ)| ≤ C‖f‖∞.

(iii) There is C > 0 such that for all (bλ)λ∈Λ ∈ ℓ∞(Λ) with ‖b‖∞ = 1
there exists µ ∈M(G) with ‖µ‖ ≤ C such that µ̂(λ) = bλ for all λ ∈ Λ.

(iv) There is C > 0 such that for all (bλ)λ∈Λ ∈ c0(Λ) with ‖b‖∞ = 1

there exists f ∈ L1(G) with ‖f‖1 ≤ C such that f̂(λ) = bλ for all λ ∈ Λ.

For a deep study of Sidon sets, see [4], [9] or [13].

Definition 1.2. A subset A of Γ is dissociated (resp. quasi-independent)
if for every (nγ)γ∈A ∈ {−2, . . . , 2}A (resp. for all (nγ)γ∈A ∈ {−1, 0, 1}A)
with almost all nγ equal to zero,

∏

γ∈A

γnγ = 1 ⇒ ∀γ ∈ A : γnγ = 1.

We recall that if A is dissociated, then A is a Sidon set.

Definition 1.3. Let (FN )N≥0 be an increasing sequence of finite subsets
of Γ such that

⋃∞
N=0 FN = Γ . Then a subset Λ of Γ is a set of uniform

convergence relative to (FN )N≥0 (for short UC set) if for every f ∈ CΛ(G),

(SNf)N≥0 converges to f in CΛ(G), where SNf =
∑
γ∈FN

f̂(γ)γ.
We define, in this case, the UC constant (denoted by U(Λ)) as

sup{‖SN (f)‖∞ | f ∈ CΛ(G), ‖f‖∞ = 1, N ≥ 0}.
We also recall that Λ (included in Z) is a CUC set if it is a UC set such

that supp∈Z U(p + Λ) is finite.

Remark. This notion, closely linked with the choice of (FN )N≥0, is
particularly studied in two cases: G = T and G being the Cantor group.
Here we shall be interested in the case G = T, where the natural choice of
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(FN )N≥0 is FN = {−N, . . . ,N}. For a (non-exhaustive) review on UC sets,
one may read [8].

Definition 1.4. Let Λ be included in Z. Then Λ is a set of continuity

if for each ε > 0 there is δ > 0 such that for all µ ∈M(T) with ‖µ‖ = 1,

lim
Z\Λ

|µ̂(n)| < δ ⇒ lim
Λ

|µ̂(n)| < ε.

The links between the sets of continuity and some other thin sets (in
particular UC; Λ(1); p-Sidon) were studied in [6].

Definition 1.5. Let 0 < p < ∞ and A be a subset of Γ . Then A is a
Λ(p) set if LpA(G) = LqA(G) for some 0 < q < p.

Let us mention that, in this case, we have LpA(G) = LrA(G) for all r ∈
]0, p[.

Definition 1.6. Let 1 ≤ p < 2 and Λ be a subset of Γ . Then Λ is a
p-Sidon set if

∃C > 0 ∀f ∈ PΛ(G) :
( ∑

λ∈Λ

|f̂(λ)|p
)1/p

≤ C‖f‖∞.

The best constant C is called the p-Sidonicity constant of Λ and is de-
noted by Sp(Λ) (see for example [1] or [3]). Obviously, Λ being a p-Sidon set
implies Λ is a q-Sidon set for q > p. If Λ is a p-Sidon set and not a q-Sidon
set for any q < p, then Λ is called a true p-Sidon set .

Let us also introduce a fairly exotic norm on P(G), the Ca.s. norm

(“almost surely continuous”), defined by

(1) [[f ]] =
\
Ω

∥∥∥
∑

γ∈Γ

εγ(ω)f̂(γ)γ
∥∥∥
∞
dP(ω).

Remark. Marcus and Pisier [10] showed that an equivalent norm is
defined by taking a Gaussian sequence (gγ)γ∈Γ instead of the Bernoulli
sequence (εγ)γ∈Γ in (1).

Ca.s.(G) is, by definition, the completion of P(G) for the norm [[·]]. This
is also the set of functions in L2(G) such that the integral in (1) is finite, or

the set of functions in L2(G) such that, almost surely, εγ(ω)f̂(γ) = f̂ω(γ)
with fω in C(G) (for the equivalence of the quantitative and the qualitative
definition, we refer to [7]); Ca.s.(G) is also called the space of almost surely
continuous random Fourier series.

Following the spectacular result of Drury (“the union of two Sidon sets
is a Sidon set”), a lot of improvements were achieved in the 70’s about such
sets Λ. Rider, in particular, showed that they may be characterized by the
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following “a priori” inequality:
∑

γ∈Γ

|f̂(γ)| ≤ C[[f ]], ∀f ∈ PΛ(G),

and Pisier [12] then observed that they may also be characterized by the
“a priori” inequality ‖f‖∞ ≤ C[[f ]], for all f ∈ PΛ(G), i.e. one has the
continuous inclusion Ca.s.

Λ (G) ⊂ CΛ(G). This led him to consider the class
S of subsets of Γ satisfying the reverse “a priori” inequality, [[f ]] ≤ C‖f‖∞,
for all f ∈ PΛ(G), which corresponds to the continuous inclusion CΛ(G) ⊂
Ca.s.
Λ (G). He called the elements of this class S stationary. We have the

following precise:

Definition 1.7. A subset Λ of Γ is stationary (for short, Λ ∈ S) if

∃C > 0 ∀f ∈ PΛ(G) : [[f ]] ≤ C‖f‖∞.
The best constant C is called the stationarity constant of Λ and is denoted
by KS(Λ).

Pisier showed that S contains Sidon sets and finite products of such
sets. Thus S is strictly larger than the class of Sidon sets, because of the
following: if Λ1, . . . , Λk are infinite Sidon subsets of the groups G1, . . . , Gk,
then Λ1 × . . . × Λk is a true 2k

k+1 -Sidon subset of the group G1 × . . . ×Gk.
Bourgain [2] also proved that if A1 and A2 are infinite then

A1 ×A2 ∈ S ⇔ A1, A2 ∈ S ∩ Λ(2).

In spite of these results, the class S does not seem to have been thoroughly
investigated yet. In this work we compare it to some other class of lacunary
sets of harmonic analysis, in particular UC sets and sets of continuity, which
were previously defined.

We shall need some remarkable inequalities, related to the [[·]] norm. The
inequality of Salem–Zygmund [14] will be used in the following form:

(2) ∃C > 0 ∀(an)n≥0, |an| = 1, ∀N ≥ 1 :
[[N−1∑

n=0

anen

]]
≥ C

√
N logN.

The inequality of Marcus–Pisier [10] is as follows: there exists a (numer-
ical) constant D > 0 such that, for every sequence (aγ)γ∈Γ , denoting by
(a∗k)k≥0 the decreasing rearrangement of (|aγ |)γ∈Γ , one has

(3)
[[ ∑

γ∈Γ

aγγ
]]
C(G)

≥ D
[[ ∑

k≥0

a∗kek

]]
C(T)

.

2. Preliminary results. In the sequel, we shall use the previous two
inequalities in the following way (c denotes a numerical constant which can
vary from line to line):
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Lemma 2.1. Take P ∈ P(G). Set Eδ = {γ ∈ Γ | |P̂ (γ)| ≥ δ} and

Nδ = |Eδ| (δ > 0). Then

[[P ]] ≥ cδ
√
Nδ logNδ.

P r o o f. By the contraction principle [7] we have

2[[P ]] ≥
[[ ∑

γ∈Eδ

|P̂ (γ)|γ
]]
≥ δ

[[ ∑

γ∈Eδ

γ
]]
.

Using (3), we obtain

[[P ]] ≥ cδ
[[Nδ−1∑

k=0

ek

]]
C(T)

and then using (2), we have

[[P ]] ≥ cδ
√
Nδ logNδ.

Similarly to Sidon sets, there are several equivalent functional definitions
of stationary sets. Indeed, we have the following proposition:

Proposition 2.2. The following assertions are equivalent for a station-

ary subset Λ of Γ :

(i) CΛ(G) ⊂ Ca.s.
Λ (G).

(ii) There is K > 0 such that [[f ]] ≤ K‖f‖∞ for all f ∈ CΛ(G).

(iii) There is K > 0 such that for all (µα) ∈ L∞(Ω,A,P,M(G)) with

‖µα‖ ≤ 1 P-a.s., there exists µ ∈ M(G) with ‖µ‖ ≤ K such that µ̂(γ) =T
Ω
µ̂α(γ)εγ(α) dP(α) for all γ ∈ Λ.

P r o o f. (i)⇒(ii). Just use the closed graph theorem.

(ii)⇒(i). Trivial.

(ii)⇒(iii). Take (µα) in L∞(Ω,A,P,M(G)) with ‖µα‖ ≤ 1 P-a.s. The
map T : PΛ(G) → C defined by

∀f ∈ PΛ(G) : T (f) =
\
Ω

µα ∗ fα(0) dP(α)

is a linear form on PΛ(G), with norm bounded by K. Indeed, for all f ∈
PΛ(G) we have

|T (f)| ≤
\
Ω

‖µα‖ · ‖fα‖∞ dP(α) ≤
\
Ω

‖fα‖∞ dP(α) = [[f ]] ≤ K‖f‖∞.

By the Hahn–Banach theorem, T extends to T̃ belonging to C(G)∗ with

‖T̃‖ = ‖T‖ ≤ K. The Riesz representation theorem gives the existence of a
measure µ in M(G) with norm less than K such that

(4) ∀f ∈ C(G) : T̃ (f) = µ ∗ f(0).
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Testing (4) on γ belonging to Λ, we get

∀γ ∈ Λ : µ̂(γ) = T̃ (γ) =
\
Ω

µ̂α(γ)εγ(α) dP(α),

that is, we get (iii).

(iii)⇒(ii). Let f ∈ PΛ(G). By [7], Ca.s.(G) embeds in L1(Ω,A,P, C(G))
and (L1(Ω,A,P, C(G)))∗ = L∞(Ω,A,P,M(G)), so we get

[[f ]] = sup
{∣∣∣
\
Ω

µα ∗ fα(0) dP(α)
∣∣∣

∣∣∣ (µα) ∈ L∞(Ω,A,P,M(G))

with ‖µα‖ ≤ 1 a.s.
}

Therefore, for each (µα) in the unit ball of L∞
(
Ω,A,P,M(G)

)
, the condition

(iii) yields µ ∈ M(G) with ‖µ‖ ≤ K such that µ̂(γ) =
T
Ω
µ̂α(γ)εγ(α) dP(α)

for γ ∈ Λ; then we have\
Ω

µα ∗ fα(0) dP(α) =
∑

γ∈Λ

f̂(γ)
(\
Ω

µ̂α(γ)εγ(α) dP(α)
)
γ = f ∗ µ(0),

and so ∣∣∣
\
Ω

µα ∗ fα(0) dP(α)
∣∣∣ ≤ ‖µ‖ · ‖f‖∞ ≤ K‖f‖∞.

Taking the upper bound of the left hand side over the unit ball of L∞(Ω,A,
P,M(G)), we get [[f ]] ≤ K‖f‖∞, that is, we get (ii).

One may notice that the probabilistic point of view cannot be replaced
by a topological one. More precisely, one cannot replace “almost sure con-
vergence” by “quasi-sure convergence” in the foregoing. Indeed, for Λ being
a subset of Γ , we consider the Cantor group {−1, 1}Λ with its usual topology
and denote by rγ(α) the γth coordinate of α ∈ {−1, 1}Λ, for γ belonging to
Λ. Suppose that Λ has the following property:

(P) For each f ∈ CΛ(G) there is Ωf , a dense Gδ in {−1, 1}Λ, such that

for every α ∈ Ωf there exists fα ∈ CΛ(G) with f̂α(γ) = rγ(α)f̂(γ)
for all γ ∈ Λ.

Then Λ is necessarily a Sidon set.

This follows from the following more general lemma:

Lemma 2.3. Let X be a Banach space. Assume that the sequence (xn)n≥0

in X has the following property : there is Ω1, a dense Gδ in {−1, 1}N, such

that
∑
n≥0 rn(α)xn converges in X for all α ∈ Ω1. Then

∑
n≥0 xn converges

unconditionally in X.
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P r o o f. Fix p ≥ 1. For every q ≥ 1, set

Fq =
{
ω ∈ Ω1

∣∣∣ ∀m′,m ≥ q :
∥∥∥

m′∑

n=m

rn(ω)xn

∥∥∥ ≤ 1/p
}
.

The assumption gives
⋃
q∈N∗ Fq = Ω1.

Let ω ∈ F q ∩ Ω1. Then for all m′ ≥ m ≥ q there is α ∈ Fq such that
rn(ω) = rn(α) for n ≤ m′. We then have

∥∥∥
m′∑

n=m

rn(ω)xn

∥∥∥ =
∥∥∥

m′∑

n=m

rn(α)xn

∥∥∥ ≤ 1

p
for α ∈ Fq.

So ω ∈ Fq and Fq is closed in Ω1.

Ω1 is a Baire space (as an intersection of dense open subsets of the
compact {−1, 1}N). So we have

∃q ≥ 1 : F̊ (Ω1)
q 6= ∅,

that is, there are c ∈ Ω1 and N ≥ 1 with the property that for all ω′ ∈ Ω1

such that rn(ω′) = rn(c) for each n ≤ N , one has, for every m′ ≥ m ≥ q,

‖∑m′

n=m rn(ω
′)xn‖ ≤ 1/p (roughly speaking, B(c,N) ⊂ Fq). We set q̃ =

max(N + 1, q).

Take m′ ≥ m ≥ q̃, ω ∈ {−1, 1}N and define ω1 by

rn(ω1) =

{
rn(c) if n ≤ N ,
rn(ω) if n ≥ N + 1.

Then the density of Ω1 yields ω′ ∈ Ω1 such that rn(ω
′) = rn(ω1) for every

n ≤ m′. We then obtain, for m′ ≥ m ≥ q̃ ≥ N + 1,

∥∥∥
m′∑

n=m

rn(ω)xn

∥∥∥ =
∥∥∥

m′∑

n=m

rn(ω1)xn

∥∥∥ =
∥∥∥

m′∑

n=m

rn(ω
′)xn

∥∥∥

≤ 1

p
for ω′ ∈ Ω1 and ω′ ∈ B(c,N) ⊂ Fq .

We conclude that
∑
n≥1 rn(ω)xn converges in X for each ω ∈ {−1, 1}N.

Corollary 2.4. If a subset Λ of Γ has the property (P), then Λ is a

Sidon set.

P r o o f. Let f ∈ CΛ(G) and denote Λ by (λn)n≥0. We define xn =

f̂(λn)λn. The sequence (xn)n≥0 satisfies the assumption of Lemma 2.3.
Hence

∑
n≥0 xn converges unconditionally in CΛ(G). In particular,∑

n≥0 f̂(λn)λn is unconditionally convergent for each f in CΛ(G). So, {λn}
is an unconditional basis of CΛ(G) and Λ is a Sidon set.
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In [12], G. Pisier showed, using the Rudin–Shapiro polynomials, that
Z is not a stationary set and more generally that a stationary set cannot
contain arbitrarily long arithmetic progressions. It is easy to see that no
infinite discrete abelian group may be a stationary set. We shall show even
more in the next proposition.

We recall that a parallelepiped of size s ≥ 1 is a set of the form

(5) P =
{
β

s∏

j=1

λ
εj
j

∣∣∣ εj ∈ {0, 1} for 1 ≤ j ≤ s
}

with β, λ1, . . . , λs in Γ and where the λj are distinct.

Proposition 2.5. Let Λ ⊂ Γ be a stationary set. Then Λ cannot contain

parallelepipeds of arbitrarily large size.

P r o o f. Assume that Λ contains some parallelepiped of size s, arbitrarily
large; we may also assume that {λj} is quasi-independent. Indeed, let PN be
a parallelepiped of size N included in Λ. With N fixed, PN has the form (5).
One can choose λj1 6= 1 and we assume some elements λj1 , . . . , λjp with p ≥ 1
are such that Dp = {λjq}1≤q≤p is quasi-independent. We consider the set

Ap =
{ p∏

q=1

λ
εq
jq

∣∣∣ εq ∈ {−1, 0, 1} for each 1 ≤ q ≤ p
}
,

which is of cardinality less than or equal to 3p. So the set {z ∈ {λj}1≤j≤N |
z 6∈ Ap} has a cardinality greater than N−3|Ap|, hence greater than N−3p.
We can continue this construction as long as N ≥ 3p + 1, so we can extract
ψ(N) elements, forming a quasi-independent subset of Γ , with ψ(N) grow-
ing as logN , therefore diverging to ∞.

So, in the sequel, we suppose that the parallelepipeds of arbitrarily large
size N have the form (5) with {λ1, . . . , λN} quasi-independent.

Let us fix N and make the following construction, which generalizes
that of Rudin and Shapiro: R0 = S0 = β; then we define by induction, for
0 ≤ q ≤ N − 1,

Rq+1 = Rq + λq+1Sq, Sq+1 = Rq − λq+1Sq.

From the parallelogram law, we get |Rq+1|2 + |Sq+1|2 = 2(|Rq |2 + |Sq|2). So
|Rq|2 + |Sq|2 = 2q+1 and ‖Rq‖∞ ≤ 2(q+1)/2.

Now, the quasi-independence gives the following properties for the poly-
nomial RN :

RN ∈ PΛ,(6.1)

|{γ ∈ Γ | R̂N (γ) 6= 0}| = 2N+1,(6.2)

‖RN‖∞ ≤ 2(N+1)/2,(6.3)

∀γ ∈ Λ R̂N (γ) ∈ {−1, 0, 1}.(6.4)



STATIONARY SETS 9

Applying Lemma 2.1 to the polynomials RN with δ = 1, we get, using
(6.2) and (6.4),

(7) ∃c > 0 : [[RN ]] ≥ c2(N+1)/2
√
N + 1,

and the stationarity of Λ gives, by (6.1),

(8) [[RN ]] ≤ KS(Λ)‖RN‖∞, and by (6.3), [[RN ]] ≤ KS(Λ)2(N+1)/2.

Finally, the relations (7) and (8) lead to N ≤ (KS(Λ)/c)2, which gives an
upper bound for the size of the parallelepipeds that can be contained in Λ.
This contradiction completes the proof.

Corollary 2.6. Γ is not a stationary set.

In the case Γ = Z, we shall deduce more precise results from [11]. Let
us recall that Miheev showed the following. If a set Λ = {nj}j≥0 of integers
does not contain any parallelepiped of size S ≥ s (for some s ≥ 2), then:

(9)

{
(i) there are m > 1 and c > 0 such that nj ≥ cjm, j = 1, 2, . . . ,
(ii)

∑
j≥1 1/nj converges.

Corollary 2.7. Let Λ = {nj}j≥0 be a stationary set of integers. Then

Λ enjoys property (9).

From this, we easily deduce the following proposition:

Proposition 2.8. The set of prime numbers (pj)j≥1 is not a stationary

set.

P r o o f.
∑
j≥1 1/pj = ∞.

Corollary 2.9. Let Λ be a stationary set in Z. Then its upper density

is zero, that is,

∆+(Λ) = lim
N

sup
a∈Z

|Λ ∩ {a, . . . , a+N}|
N + 1

= 0.

3. Stationary sets and sets of continuity. In [6], the authors proved
that if Λ is a UC set included in N, then Z

−∪Λ is a set of continuity. We shall
prove a weaker result for stationary sets. The proof relies on the following
proposition.

Proposition 3.1. Let Λ be a stationary set in Γ and δ > 0. Then

(10) ∀µ ∈MΛ(G) : |{γ ∈ Λ | |µ̂(γ)| ≥ δ}| ≤ exp(c‖µ‖2/δ2)

where c is an absolute constant depending only on Λ. That is, for each µ
belonging to MΛ,

(11) {µ̂(γ)}γ∈Λ ∈ ℓψ,∞

where ψ(t) = et
2 − 1 and ℓψ,∞ denotes the space {(an) | supn≥1 ψ

−1(n)a∗n
<∞}, (a∗n) being the decreasing rearrangement of {|an|}n≥1.
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The proof of Proposition 3.1 uses the following lemma:

Lemma 3.2. Let Λ be a stationary set in Γ . Then

(12) ∃c > 0 ∀µ ∈MΛ(G) ∀h ∈ L2(G) : [[µ ∗ h]] ≤ c‖µ‖M‖h‖2.

P r o o f. Fix µ in MΛ(G). First observe that the operator Tµ : C(G) →
Ca.s.(G) defined by Tµ(h) = µ ∗ h is bounded. Indeed, µ ∗ f ∈ CΛ(G) for
f ∈ C(G), hence

[[Tµ(f)]] = [[f ∗ µ]] ≤ KS(Λ)‖f ∗ µ‖∞ ≤ KS(Λ)‖µ‖ · ‖f‖∞.
Recall ([12]) that Ca.s.(G)∗ can be identified with M2,ψ, the space of multi-
pliers from L2(G) to Lψ(G), hence for each m in M2,ψ and for each ω in Ω,
one has mω ∈ M2,ψ and ‖mω‖M2,ψ

= ‖m‖M2,ψ
(M2,ψ is a space admitting

the characters as unconditional basis) where mω(n) := εn(ω)mn.
So, by duality for each ω ∈ Ω, m → T ∗

µ (mω) is bounded from M2,ψ to
M(G) and ‖T ∗

µ (mω)‖M(G) ≤ ‖Tµ‖ · ‖m‖M2,ψ
.

Therefore T ∗
µ (mω) = (µ∗m)ω ∈M(G) for all ω ∈ Ω and so ([7]) µ∗m ∈

L2(G). Consequently, we have the diagram

M2,ψ M(G)

L2(G)

T ∗

µ //

U

HHHHHHH
##

injectionvvvvvvv ::

and by duality again, we have the following factorization:

C(G) Ca.s.(G)

L2(G)

Tµ //

injection

HHHHHHH
##

U∗tttttttt 99

that is,

∃c > 0 ∀h ∈ C(G) : [[Tµ(h)]] = [[U∗(h)]] ≤ c‖µ‖ · ‖h‖2

and the density of C(G) in L2(G) leads to

∃c > 0 ∀h ∈ L2(G) : [[Tµ(h)]] ≤ C‖µ‖ · ‖h‖2.

Remark. It may be noticed that it is easy to prove the same result using
the Kahane–Katznelson–de Leeuw theorem:

∃c > 0 ∀h ∈ L2(G) ∃f ∈ C(G) : ‖f‖∞ ≤ c‖h‖2

and

∀γ ∈ Γ : |f̂(γ)| ≥ |ĥ(γ)|.
Another proof, similar to the one given here, can be made through the

Pietsch factorization theorem, noticing that Tµ is 2-summing.
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Proof of Proposition 3.1. Let µ belong to MΛ(G) and δ > 0. Let Λδ =
{γ ∈ Λ | |µ̂(γ)| ≥ δ}; denote by Λ′

δ any finite subset of Λδ. Then

f :=
1

|Λ′
δ|1/2

∑

γ∈Λ′

δ

γ ∈ L2(G) and ‖f‖2 = 1.

Upon using Lemma 3.2, (12) leads to

(13) ∃c > 0 : [[f ∗ µ]] ≤ c‖µ‖.
By observing that

∀γ ∈ Λ′
δ : f̂ ∗ µ(γ) =

1

|Λ′
δ |1/2

µ̂(γ),

Lemma 2.1 leads to the inequality

∃c′ > 0 : [[f ∗ µ]] ≥ c′
δ

|Λ′
δ |1/2

(|Λ′
δ | log |Λ′

δ|)1/2 = c′δ(log |Λ′
δ|)1/2.

Consequently, via (13) we obtain

∃c1 > 0 : c1‖µ‖ ≥ δ(log |Λ′
δ|)1/2.

Taking the upper bound over all finite subsets Λ′
δ of Λδ, we see that Λδ itself

is finite and that c1‖µ‖ ≥ δ(log |Λδ |)1/2 for some c1 > 0; equivalently,

∃c1 > 0 ∀δ > 0 : |Λδ| ≤ exp(c21‖µ‖2/δ2)

where c1 does not depend on µ; this proves (11).
This can also be written

∃D > 0 ∀δ > 0 ∀µ ∈MΛ : |Λδ| ≤ ψ(D‖µ‖/δ).
Let (bj)j≥1 be the decreasing rearrangement of {|µ̂(γ)|}γ∈Λ. Given n ∈ N

∗

and ℓ ∈ N
∗ such that bℓ ≥ D‖µ‖/ψ−1(n), we apply the previous result with

δ = (ψ−1(n))−1D‖µ‖ to get

n ≥ |{γ ∈ Λ | |µ̂(γ)| ≥ δ}| = |{p ∈ N
∗ | bp ≥ δ}| ≥ ℓ

so, in particular, bn ≤ δ and supn bnψ
−1(n) ≤ D‖µ‖; this proves (11).

An immediate corollary is:

Corollary 3.3. Each stationary set Λ of Γ is a Rajchman set. That

is,

∀µ ∈MΛ(G) : lim
γ→∞

µ̂(γ) = 0.

We may also deduce the following stronger result.

Theorem 3.4. Every stationary subset of Z is a set of continuity.

P r o o f. Let Λ be a stationary subset of Z. Arguing by contradiction,
assume that there is ε > 0 such that for each δ > 0 there exists µ ∈ M(T)



12 P. LEFEVRE

with ‖µ‖ = 1 satisfying

lim
n 6∈Λ

|µ̂(n)| ≤ δ and lim
n∈Λ

|µ̂(n)| > ε;

we then have

∃m = m(δ) ∀n 6∈ Λ with |n| ≥ m(δ) : |µ̂(n)| ≤ δ.

Let us choose a sequence (hj)j≥0 in Λ such that

(14)





|µ̂(hj)| > ε for all j ≥ 0,

|hp| ≥
p−1∑

j=0

|hj | +m for p ≥ 1 and |h0| ≥ m,

{hj}j≥0 is a dissociated set.

Let N ≥ 1 and ν = µ∗RN−∑
n 6∈Λ

̂µ ∗RN (n)en, RN being the Riesz product∏N
j=1[1 + Re(ehj)]. Since ν belongs to MΛ, applying Proposition 3.1 to ν,

we find that there exists C > 0 such that for all ε1 > 0,

(15) ε21 log |Λε1 | ≤ C‖ν‖2 ≤ C
[
‖µ ∗RN‖ +

∥∥∥
∑

n 6∈Λ

̂µ ∗RN (n)en

∥∥∥
]2

(where Λε1 denotes the set {n ∈ Z | |ν̂(n)| ≥ ε1}). But

(16) ‖µ ∗RN‖ ≤ ‖µ‖ · ‖RN‖1 ≤ 1

and

(17)
∥∥∥

∑

n 6∈Λ

̂µ ∗RN (n)en

∥∥∥ ≤
∥∥∥

∑

n 6∈Λ

̂µ ∗RN (n)en

∥∥∥
2
.

One notices that

(18) ‖RN‖2
2 =

∑

s=
∑N
k=1

εkhk
εk=−1,0,1

|R̂N (s)|2 =

N∑

t=0

CtN
1

4t
=

(
5

4

)N
.

In fact, if s =
∑N
k=1 εkhk with εk = −1, 0, 1 and

∑N
k=1 |εk| = t, then

R̂N (s) = 1/2t. On the other hand, R̂N (s) 6= 0 only for s =
∑N
k=1 εkhk with

εk ∈ {−1, 0, 1} (and in that case, |s| ≥ m). So, in this case, for s 6∈ Λ,

(19) |µ̂(s)| ≤ δ.

Therefore, (17)–(19) lead to

(20)
∥∥∥

∑

n 6∈Λ

̂µ ∗RN (n)en

∥∥∥
M

≤ δ(5/4)N/2.
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For 1 ≤ p ≤ N we have |µ̂(hp)| · |R̂N (hp)| ≥ ε/2 hence hp ∈ Λε/2, so
{h1, . . . , hN} ⊂ Λε/2 and |Λε/2| ≥ N ; we have therefore we get from (15),
(16) and (20) the inequality

(21) (ε/2)2 logN ≤ C[1 + δ(5/4)N/2]2.

Now, take N such that (ε/2)2 logN > 4C and δ such that δ < (5/4)−N/2.
Then (21) leads to a contradiction

4. Stationary sets and UC sets. Let us recall that G. Pisier proved
the existence of some stationary sets that are not Sidon (conversely, any
Sidon set is trivially stationary). We shall generalize this result by exhibiting
a class of stationary sets that are not UC sets. Thus, it is possible to
construct stationary subsets of Z rather large in the following sense: for
each k ≥ 1 there is a stationary Λk and δk > 0 such that

∀N ≥ 1 : |Λk ∩ [−N,N ]| ≥ δk(logN)k.

Theorem 4.1. Let E be a dissociated set in Γ , E = {λj}j≥1. Let k > 1
be an integer. Then

Λk :=
{ k∏

p=1

λ
εp
jp

∣∣∣ εp ∈ {−1, 1}, (jp)1≤p≤k distinct
}

is a stationary subset of Γ .

P r o o f. We first follow the method of Blei [1]. In fact, we have

Λk =
{ k∏

p=1

λjp

∣∣∣ jp distinct
}
∪
k−1⋃

l=0

{ l∏

p=1

λjp

k∏

p=l+1

λjp

∣∣∣ jp distinct
}

so that every f in PΛk(G) can be written as (in the following
∑′

(jp)
will

mean j1 < . . . < jl and jl+1 < . . . < jk for 0 ≤ l ≤ k − 1, and j1 < . . . < jk
for l = k)

f =

k−1∑

l=0

(∑

(jp)

′
f̂(λj1 . . . λjlλjl+1 . . . λjk)λj1 . . . λjlλjl+1

. . . λjk

)

+
∑

(jp)

′
f̂
( k∏

p=1

λjp

) k∏

p=1

λjp .
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Define F in P (G× . . .×G)︸ ︷︷ ︸
k times

by F =
∑k
l=0 Fl where

(22)





Fk =
∑

(jp)
distinct

f̂
( k∏

p=1

λjp

)
λj1 ⊗ . . .⊗ λjk (Fk ∈ PE×...×E(Gk)),

Fl =
∑

(jp)
distinct

∑

εi=±1
ε1+...+εk=2l−k

f̂(λj1 . . . λjlλjl+1
. . . λjk)

× λε1j1 ⊗ . . . ⊗ λεkjk (0 ≤ l ≤ k − 1).

In the sequel, the cases l = 0 and l = k are treated in the same way.
Fixing 0 ≤ l ≤ k − 1, Fl is symmetrized by writing

Fl =
k∑

m=1

(−1)m+k
∑

F̂l(λj1 , . . . , λjl , λjl+1
, . . . , λjk)(23)

× ψS(λj1) . . . ψS(λjl)ψS(λjl+1
) . . . ψS(λjk)

where the second sum runs over the subsets S of {1, . . . , k} with cardinality
m and over the distinct indices (jp) (1 ≤ p ≤ k) and where ψS(γ)(g1, . . . , gk)
is equal to

∑
r∈S γ(gr) with (g1, . . . , gk) ∈ Gk.

Fixing (again) m in {1, . . . , k} and S included in {1, . . . , k} with |S| = m,

we write F̃ for
∑

(jp)
distinct

F̂l(λj1 , . . . , λjl , λjl+1
, . . . , λjk)ψS(λj1) . . . ψS(λjl)ψS(λjl+1

) . . . ψS(λjk)

(noticing that ψS(γ) = ψS(γ)). One has F̃ ∈ PE×...×E×E×...×E . Fix
g1, . . . , gk in G and set

(24) V := F̃ (g1, . . . , gk).

Introducing the measure ν defined by the Riesz product
∏

γ∈E

[1 + Re(eiγ)],

we have

ν̂(λj1 . . . λjlλjl+1
. . . λjk) =

eile−i(k−l)

2k
=: al.

There is a polynomial Pl (depending only on k and l) such that

Pl(al) = 1 and Pl(at) = 0 whenever t 6= l.

We now set µl = Pl(ν) (where the product on M(G) is convolution) and
observe that
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(25) µ̂l(λj1 . . . λjtλjt+1
. . . λjk) = δt,l (Kronecker’s symbol) for any (j1, . . .

. . . , jk) distinct, and ‖µl‖ ≤ Ck with Ck depending only on k.

Finally, we consider the Riesz product

R =
∏

j≥0

[1 + Re(ηjλj)] where ηj =
ψS(λj)

2m
(g1, . . . , gk)

(notice that |ηj | ≤ 1). One easily checks that (remember (24)) V = 2mk2kµl∗
R ∗ f(0) and concludes, using (25), that

|V | ≤ 2mk2k‖µl‖M‖R‖M‖f‖∞ ≤ 2mk2kCk‖f‖∞,
and then, taking the upper bound over Gk, we obtain

‖F̃‖∞ ≤ 2mk2kCk‖f‖∞.
Now, considering (23) and the previous majorization, we have

‖F‖∞ ≤
k∑

l=0

‖Fl‖∞ ≤
k∑

l=0

k∑

m=1

∑

|S|=m

2mk2kCk‖f‖∞

and

(26) ‖F‖∞ ≤ Ak‖f‖∞ (with Ak = k2k(2k + 1)kCk).

E being a dissociated set is a Sidon set; so is E ∪ E, hence by the Pisier
theorem ([12]), E1 × . . .× E1︸ ︷︷ ︸

k times

is a stationary set in Γ k, E1 denoting E ∪E.

So, there is Bk > 0 such that for all F ∈ PE1×...×E1
(Gk),

(27)
\
Ω

∥∥∥
∑

β∈Ek1

Eβ(ω)F̂ (β)β
∥∥∥
∞
dP(ω) ≤ Bk‖F‖∞.

On the other hand, fixing f in PΛk(G), one observes that\
Ω

∥∥∥
k∑

l=0

∑

(jp)

′
El,j1,...,jk(ω)f̂(λj1 . . . λjlλjl+1

. . . λjk)

× λj1 . . . λjlλjl+1
. . . λjk

∥∥∥
C(G)

dP(ω)

≤
\
Ω

∥∥∥
k∑

l=0

∑

(jp)
distinct

El,j1,...,jk(ω)f̂(λj1 . . . λjlλjl+1
. . . λjk)

× λj1 ⊗ . . . ⊗ λjl ⊗ λjl+1
⊗ . . .⊗ λjk

∥∥∥
C(Gk)

dP(ω).

By the contraction principle, this gives

(28) [[f ]] ≤ [[F ]] where F has the form given by (22).
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Combining (26)–(28), we obtain [[f ]] ≤ AkBk‖f‖∞ and Λk is a stationary
subset of Γ .

Corollary 4.2. There are some stationary subsets of Z that are not

UC sets.

P r o o f. For example, if H is a Hadamard sequence, then H −H +H is
not a UC set ([5] or [8]) but it is stationary by Theorem 4.1. More generally,
recall that if E, F are infinite sets included in N, then E − F is not a CUC
set.

Let us recall some known facts from [6].

Definition 4.3. A pair (Q,R) of subsets of Z is an alternating pair of
size N if |Q| = |R| = N and, writing Q = (qn)1≤n≤N and R = (rn)1≤n≤N ,
one has q2 − q1 ≤ r2 − r1 < q3 − q1 ≤ r3 − r1 < . . .

In [6], the authors show that UC sets included in N cannot contain such
differences of alternating pairs for too large sizes (the bound on the size
depending on the UC constant).

On the other hand, let us construct a particular dissociated set E. We
consider the sets

Λ1 =
⋃

n odd

(4n! + En) and Λ2 =
⋃

n even

(4n! − En)

where

En =

{ {4n!−k}k odd, 1≤k<n for n odd,

{4(n−1)!−k}k even, 2≤k<n for n even.

The set E is Λ1 ∪ Λ2.

Corollary 4.4. There is a stationary set included in N containing trans-

lates of the difference Q− R arising from an alternating pair (Q,R) of ar-

bitrarily large size.

P r o o f. With the previous notations, it suffices to consider the set Λ =
E +E. By Theorem 4.1, Λ is stationary. On the other hand, Λ is not a UC
set.

Indeed, assume otherwise. For odd n, Λ contains translates of the differ-
ence En−En+1. As Λ is included in N, it would be a CUC set too (e.g. [8])
and then Λ − 4n! would be a UC set with bounded UC-constant. On the
other hand, Λ−4n! contains the differences arising from the alternating pair
(En, En+1). This is a contradiction for n large enough ([6]).

Corollary 4.5. For all k ≥ 1, there are some stationary sets Λk sati-

fying

∃δk > 0 ∀N ≥ 1 : |Λk ∩ [−N,N ]| ≥ δk(logN)k.



STATIONARY SETS 17

P r o o f. It suffices to consider the set Λk= {3m1+. . .+3mk | mj distinct}.
One easily checks that for all N ≥ 2k,

|Λk ∩ {0, . . . , k3N}| ≥ (N + 2) . . . (N + 2 − k) ≥
(
N + 2

2

)k
.

Remark. Theorem 4.1 is optimal in the sense that there is a Sidon set
E such that N ⊂ E + E and then E + E is not stationary in Z. Indeed, it
suffices to consider E = {10n + n}n∈N ∪ {−10n}n∈N.

General remark. Essentially we used the fact that [[·]] is an uncondi-
tional norm for characters satisfying: there exists ψ : R

+ → R
+ such that

limx→∞ ψ(x) = ∞ and for each finite A ⊂ Γ ,
[[ ∑

γ∈A

γ
]]
≥ ψ(|A|)

∥∥∥
∑

γ∈A

γ
∥∥∥

2
.

So, it may be noticed that the previous results hold for some other lacunary
sets of harmonic analysis, for example p-Sidon sets. Using the same methods,
it is easy to rewrite all of them essentially replacing stationary by p-Sidon.

More precisely, Proposition 3.1, for example, can be strengthened when
Λ is a p-Sidon set (1 ≤ p < 2): we recover, by other methods, an inequality
due to Edwards (see e.g. [6]). Denoting 2p/(2 − p) by r, there exists a
constant C > 0 such that

∀µ ∈MΛ(G) : ‖µ̂‖
r
≤ C‖µ‖.
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