VOL. 76

NO. 1

A NOTE ON THE DIOPHANTINE EQUATION $\binom{k}{2} - 1 = q^n + 1$

ВY

MAOHUA LE (ZHANJIANG)

In this note we prove that the equation $\binom{k}{2} - 1 = q^n + 1, q \ge 2, n \ge 3$, has only finitely many positive integer solutions (k, q, n). Moreover, all solutions (k, q, n) satisfy $k < 10^{10^{182}}$, $q < 10^{10^{165}}$ and $n < 2 \cdot 10^{17}$.

Let \mathbb{Z} , \mathbb{N} , \mathbb{Q} be the sets of integers, positive integers and rational numbers respectively. The solutions (k, q, n) of the equation

(1)
$$\binom{k}{2} - 1 = q^n + 1, \quad k, q, n \in \mathbb{N}, \ q \ge 2, \ n \ge 3,$$

are connected with some questions in coding theory. In this respect, Alter [1] proved that (1) has no solution (k, q, n) with q = 8. Recently, Hering [3] found out that all solutions (k, q, n) of (1) satisfy $3 \mid n$ or q is a prime power with q < 47. In this note, we prove a general result as follows.

THEOREM. The equation (1) has only finitely many solutions (k, q, n). Moreover, all solutions (k, q, n) satisfy $k < 10^{10^{182}}$, $q < 10^{10^{165}}$ and $n < 10^{10^{165}}$ $2 \cdot 10^{17}$.

The proof of the Theorem depends on the following lemmas.

Let α be an algebraic number of degree r with conjugates $\sigma_1 \alpha, \ldots, \sigma_r \alpha$ and minimal polynomial

$$a_0 x^r + a_1 x^{r-1} + \ldots + a_r = a_0 \prod_{i=1}^r (x - \sigma_i \alpha) \in \mathbb{Z}[x], \quad a_0 > 0.$$

Further, let $\overline{\alpha} = \max(|\sigma_1 \alpha|, \dots, |\sigma_r \alpha|)$. Then

$$h(\alpha) = \frac{1}{r} \Big(\log a_0 + \sum_{i=1}^r \log \max(1, |\sigma_i \alpha|) \Big)$$

is called *Weil's height* of α .

¹⁹⁹¹ Mathematics Subject Classification: 11D61, 11J86.

Supported by the National Natural Science Foundation of China and the Guangdong Provincial Natural Science Foundation.

^[31]

M. H. LE

LEMMA 1 ([2]). Let $\alpha_1, \ldots, \alpha_m$ be algebraic numbers, and let $\Lambda = b_1 \log \alpha_1 + \ldots + b_m \log \alpha_m$ for some $b_1, \ldots, b_m \in \mathbb{Z}$. If $\Lambda \neq 0$, then we have

$$|A| \ge \exp\Big(-18(m+1)!m^{m+1}(32d)^{m+2}(\log 2md)\Big(\prod_{i=1}^m A_i\Big)(\log B)\Big),$$

where d is the degree of $\mathbb{Q}(\alpha_1,\ldots,\alpha_m)$,

$$A_i = \max\left(h(\alpha_i), \frac{1}{d}|\log \alpha_i|, \frac{1}{d}\right), \quad i = 1, \dots, m$$

and $B = \max(|b_1|, \dots, |b_m|, e^{1/d}).$

LEMMA 2 ([4, Notes of Chapter 5]). Let K be an algebraic number field of degree d, and h_K , R_K , O_K be the class number, the regulator and the algebraic integer ring of K, respectively. Let $\mu \in O_K \setminus \{0\}$, and let $F(X,Y) = a_0 X^n + a_1 X^{n-1} Y + \ldots + a_n Y^n \in O_K[X,Y]$ be a binary form of degree n. If F(z, 1) has at least three distinct zeros, then all solutions (x, y)of the equation

$$f(x,y) = \mu, \quad x, y \in O_K,$$

satisfy

$$\max(\overline{[x]}, \overline{[y]}) \leq \exp(5(d+1)^{50(d+2)} n^6(h_K R_K)^7 \log \max(e^e, HM)),$$

where $H = \max(\overline{[a_0]}, \overline{[a_1]}, \dots, \overline{[a_n]})$ and $M = \overline{[\mu]}.$

Proof of Theorem. Let (k, q, n) be a solution of (1). By [3], we may assume that $q \ge 47$ and $n \ge 4$. From (1) we get

(2)
$$(2k-1)^2 - 17 = (2k-1+\sqrt{17})(2k-1-\sqrt{17}) = 8q^n.$$

Let $K = \mathbb{Q}(\sqrt{17})$, and let h_K , R_K , O_K , U_K be the class number, the regulator, the algebraic integer ring and the unit group of K, respectively. It is a well-known fact that $h_K = 1$, $R_K = \log(4+\sqrt{17})$, $O_K = \{(a+b\sqrt{17})/2 \mid a, b \in \mathbb{Z}, a \equiv b \pmod{2}\}$ and $U_K = \{\pm(4+\sqrt{17})^s \mid s \in \mathbb{Z}\}$. Since $5^2 - 17 = 8$ and $(4+\sqrt{17})^2 = 33 + 8\sqrt{17}$, we see from (2) that

(3)
$$\frac{2k-1+\sqrt{17}}{2} = \left(\frac{5+\delta_1\sqrt{17}}{2}\right) \left(\frac{X_1+\delta_2Y_1\sqrt{17}}{2}\right)^n (33+8\sqrt{17})^s,$$
$$\delta_1, \delta_2 \in \{-1,1\}, \ s \in \mathbb{Z},$$

where $X_1, Y_1 \in \mathbb{N}$ satisfy

(4) $X_1^2 - 17Y_1^2 = 4q$, $X_1 \equiv Y_1 \pmod{2}$, $\gcd(X_1, Y_1) = \begin{cases} 1 & \text{if } 2 \nmid X_1, \\ 2 & \text{if } 2 \mid X_1. \end{cases}$ For any $u, v \in \mathbb{Z}$ with $u^2 - 17v^2 = 1$, if $X + Y\sqrt{17} = (X_1 \pm Y_1\sqrt{17})$

For any $u, v \in \mathbb{Z}$ with $u^2 - 17v^2 = 1$, if $X + Y\sqrt{17} = (X_1 \pm Y_1\sqrt{(u+v\sqrt{17})})$, then $X, Y \in \mathbb{Z}$ satisfy

$$X^2 - 17Y^2 = 4q, \quad X \equiv Y \pmod{2}, \quad \gcd(X, Y) = \begin{cases} 1 & \text{if } 2 \nmid X_1, \\ 2 & \text{if } 2 \mid X_1, \end{cases}$$

by (4). Therefore, we may assume that X_1 and Y_1 satisfy

(5)
$$1 < \frac{X_1 + Y_1\sqrt{17}}{X_1 - Y_1\sqrt{17}} < (33 + 8\sqrt{17})^2$$

Notice that $q \ge 47$, $n \ge 4$, $2k - 1 \ge 6249$,

$$1 < \frac{2k - 1 + \sqrt{17}}{2k - 1 - \sqrt{17}} < 1.02$$
 and $10.40 < \frac{5 + \sqrt{17}}{5 - \sqrt{17}} < 10.41.$

Since

(6)
$$\frac{2k-1-\sqrt{17}}{2} = \left(\frac{5-\delta_1\sqrt{17}}{2}\right) \left(\frac{X_1-\delta_2Y_1\sqrt{17}}{2}\right)^n (33-8\sqrt{17})^s,$$

by (3), we find from (3), (5) and (6) that

$$(7) |s| \le 2n.$$

Let $\eta = (5 + \sqrt{17})/2$, $\overline{\eta} = (5 - \sqrt{17})/2$, $\varepsilon = (X_1 + Y_1\sqrt{17})/2$, $\overline{\varepsilon} = (X_1 - Y_1\sqrt{17})/2$, $\varrho = 33 + 8\sqrt{17}$ and $\overline{\varrho} = 33 - 8\sqrt{17}$. Further, let r = |s|, $\alpha_1 = \eta/\overline{\eta}$, $\alpha_2 = \varrho$ and $\alpha_3 = \varepsilon/\overline{\varepsilon}$. Then we have

(8) $h(\alpha_1) = \log(5 + \sqrt{17}), \quad h(\alpha_2) = \log(4 + \sqrt{17}).$

Further, by (5), we get

(9)
$$h(\alpha_3) = \log(X_1 + Y_1\sqrt{17}) < \log 2\varrho\sqrt{q}.$$

From (3) and (6), we have

(10)
$$\log \frac{2k - 1 + \sqrt{17}}{2k - 1 - \sqrt{17}} = \lambda_1 \log \alpha_1 + 2\lambda_2 r \log \alpha_2 + \lambda_3 n \log \alpha_3, \\\lambda_1, \lambda_2, \lambda_3 \in \{-1, 1\}.$$

Let $\Lambda = \lambda_1 \log \alpha_1 + 2\lambda_2 r \log \alpha_2 + \lambda_3 n \log \alpha_3$. Since $\mathbb{Q}(\alpha_1, \alpha_2, \alpha_3) = \mathbb{Q}(\sqrt{17})$, by Lemma 1, we get from (7), (8) and (9) that if $\Lambda \neq 0$, then

(11)
$$|\Lambda| \ge \exp(-18(4!)3^4 64^5 (\log 12) (\log(5 + \sqrt{17})) \\ \times (\log(4 + \sqrt{17})) (\log 2(33 + 8\sqrt{17})\sqrt{q}) (\log 4n)) \\ > \exp(-5 \cdot 10^{14} (5 + \log\sqrt{q}) (\log 4n)).$$

On the other hand, from (1) we get

(12)
$$\log \frac{2k-1+\sqrt{17}}{2k-1-\sqrt{17}} = \frac{2\sqrt{17}}{2k-1} \sum_{i=0}^{\infty} \frac{1}{2i+1} \left(\frac{\sqrt{17}}{2k-1}\right)^{2i} < \frac{3\sqrt{17}}{2k-1} < \frac{4.4}{q^{n/2}}$$

Combination of (9), (11) and (12) yields

 $\log 4.4 + 5 \cdot 10^{14} (5 + \log \sqrt{q}) (\log 4n) > n \log \sqrt{q},$

whence we obtain

$$n < 2 \cdot 10^{17}$$

Let

$$F(X,Y) = \left(\frac{5+\delta_1\sqrt{17}}{2}\right)\varrho^s X^n - \left(\frac{5-\delta_1\sqrt{17}}{2}\right)\overline{\varrho}^s Y^n \in O_K[X,Y].$$

Since $n \ge 3$ and $(5 + \sqrt{17})/2$ is a prime in O_K , F(z, 1) has at least three distinct zeros. We see from (3) and (6) that $(x, y) = ((X_1 + \delta_2 Y_1 \sqrt{17})/2, (X_1 - \delta_2 Y_1 \sqrt{17})/2)$ is a solution of the equation

(14)
$$F(x,y) = \sqrt{17}, \quad x,y \in O_K$$

Therefore, by Lemma 2, from (4), (7) and (14) we get

(15)
$$\sqrt{q} < \frac{X_1 + Y_1\sqrt{17}}{2} = \max\left(\left|\frac{X_1 + \delta_2 Y_1\sqrt{17}}{2}\right|, \left|\frac{X_1 - \delta_2 Y_1\sqrt{17}}{2}\right|\right)$$

 $\leq \exp\left(5 \cdot 3^{200} n^6 (\log(4 + \sqrt{17}))^7 \log\left(\sqrt{17}\left(\frac{5 + \sqrt{17}}{2}\right)(33 + 8\sqrt{17})^n\right)\right).$

Substituting (13) into (15), we obtain $q < 10^{10^{165}}$. Finally, from (2) we get $k < 10^{10^{182}}$. The Theorem is proved.

REFERENCES

- [1] R. Alter, On the non-existence of perfect double Hamming-error-correcting codes on q = 8 and q = 9 symbols, Inform. and Control 13 (1968), 619–627.
- [2] A. Baker and G. Wüstholz, Logarithmic forms and group varieties, J. Reine Angew. Math. 442 (1993), 19-62.
- [3] C. Hering, A remark on two diophantine equations of Peter Cameron, in: Groups, Combinatorics and Geometry (Durham, 1990), London Math. Soc. Lecture Note Ser. 165, Cambridge Univ. Press, Cambridge, 1992, 448–458.
- [4] T. N. Shorey and R. Tijdeman, *Exponential Diophantine Equation*, Cambridge Tracts in Math. 87, Cambridge Univ. Press, Cambridge, 1986.

Department of Mathematics Zhanjiang Teachers College 524048 Zhanjiang, Guangdong P.R. China

Received 6 February 1997