COLLOQUIUM MATHEMATICUM

A Note on the diophantine EQUATION $\binom{k}{2}-1=q^{n}+1$

MAOHUA LE (ZHANJIANG)

In this note we prove that the equation $\binom{k}{2}-1=q^{n}+1, q \geq 2, n \geq 3$, has only finitely many positive integer solutions (k, q, n). Moreover, all solutions (k, q, n) satisfy $k<10^{10^{182}}, q<10^{10^{165}}$ and $n<2 \cdot 10^{17}$.

Let $\mathbb{Z}, \mathbb{N}, \mathbb{Q}$ be the sets of integers, positive integers and rational numbers respectively. The solutions (k, q, n) of the equation

$$
\begin{equation*}
\binom{k}{2}-1=q^{n}+1, \quad k, q, n \in \mathbb{N}, q \geq 2, n \geq 3 \tag{1}
\end{equation*}
$$

are connected with some questions in coding theory. In this respect, Alter [1] proved that (1) has no solution (k, q, n) with $q=8$. Recently, Hering [3] found out that all solutions (k, q, n) of (1) satisfy $3 \mid n$ or q is a prime power with $q<47$. In this note, we prove a general result as follows.

Theorem. The equation (1) has only finitely many solutions (k, q, n). Moreover, all solutions (k, q, n) satisfy $k<10^{10^{182}}, q<10^{10^{165}}$ and $n<$ $2 \cdot 10^{17}$.

The proof of the Theorem depends on the following lemmas.
Let α be an algebraic number of degree r with conjugates $\sigma_{1} \alpha, \ldots, \sigma_{r} \alpha$ and minimal polynomial

$$
a_{0} x^{r}+a_{1} x^{r-1}+\ldots+a_{r}=a_{0} \prod_{i=1}^{r}\left(x-\sigma_{i} \alpha\right) \in \mathbb{Z}[x], \quad a_{0}>0 .
$$

Further, let $|\alpha|=\max \left(\left|\sigma_{1} \alpha\right|, \ldots,\left|\sigma_{r} \alpha\right|\right)$. Then

$$
h(\alpha)=\frac{1}{r}\left(\log a_{0}+\sum_{i=1}^{r} \log \max \left(1,\left|\sigma_{i} \alpha\right|\right)\right)
$$

is called Weil's height of α.

Supported by the National Natural Science Foundation of China and the Guangdong Provincial Natural Science Foundation.

Lemma 1 ([2]). Let $\alpha_{1}, \ldots, \alpha_{m}$ be algebraic numbers, and let $\Lambda=$ $b_{1} \log \alpha_{1}+\ldots+b_{m} \log \alpha_{m}$ for some $b_{1}, \ldots, b_{m} \in \mathbb{Z}$. If $\Lambda \neq 0$, then we have

$$
|\Lambda| \geq \exp \left(-18(m+1)!m^{m+1}(32 d)^{m+2}(\log 2 m d)\left(\prod_{i=1}^{m} A_{i}\right)(\log B)\right)
$$

where d is the degree of $\mathbb{Q}\left(\alpha_{1}, \ldots, \alpha_{m}\right)$,

$$
A_{i}=\max \left(h\left(\alpha_{i}\right), \frac{1}{d}\left|\log \alpha_{i}\right|, \frac{1}{d}\right), \quad i=1, \ldots, m
$$

and $B=\max \left(\left|b_{1}\right|, \ldots,\left|b_{m}\right|, e^{1 / d}\right)$.
Lemma 2 ([4, Notes of Chapter 5]). Let K be an algebraic number field of degree d, and h_{K}, R_{K}, O_{K} be the class number, the regulator and the algebraic integer ring of K, respectively. Let $\mu \in O_{K} \backslash\{0\}$, and let $F(X, Y)=a_{0} X^{n}+a_{1} X^{n-1} Y+\ldots+a_{n} Y^{n} \in O_{K}[X, Y]$ be a binary form of degree n. If $F(z, 1)$ has at least three distinct zeros, then all solutions (x, y) of the equation

$$
f(x, y)=\mu, \quad x, y \in O_{K}
$$

satisfy

$$
\max \left((x, y) \leq \exp \left(5(d+1)^{50(d+2)} n^{6}\left(h_{K} R_{K}\right)^{7} \log \max \left(e^{e}, H M\right)\right)\right.
$$

where $H=\max \left(\left|\sqrt{a_{0}}, \sqrt{a_{1}}, \ldots,\right| \overline{a_{n}}\right)$ and $M=\mid$.
Proof of Theorem. Let (k, q, n) be a solution of (1). By [3], we may assume that $q \geq 47$ and $n \geq 4$. From (1) we get

$$
\begin{equation*}
(2 k-1)^{2}-17=(2 k-1+\sqrt{17})(2 k-1-\sqrt{17})=8 q^{n} . \tag{2}
\end{equation*}
$$

Let $K=\mathbb{Q}(\sqrt{17})$, and let $h_{K}, R_{K}, O_{K}, U_{K}$ be the class number, the regulator, the algebraic integer ring and the unit group of K, respectively. It is a well-known fact that $h_{K}=1, R_{K}=\log (4+\sqrt{17}), O_{K}=\{(a+b \sqrt{17}) / 2 \mid$ $a, b \in \mathbb{Z}, a \equiv b(\bmod 2)\}$ and $U_{K}=\left\{ \pm(4+\sqrt{17})^{s} \mid s \in \mathbb{Z}\right\}$. Since $5^{2}-17=8$ and $(4+\sqrt{17})^{2}=33+8 \sqrt{17}$, we see from (2) that
(3) $\frac{2 k-1+\sqrt{17}}{2}=\left(\frac{5+\delta_{1} \sqrt{17}}{2}\right)\left(\frac{X_{1}+\delta_{2} Y_{1} \sqrt{17}}{2}\right)^{n}(33+8 \sqrt{17})^{s}$,

$$
\delta_{1}, \delta_{2} \in\{-1,1\}, s \in \mathbb{Z}
$$

where $X_{1}, Y_{1} \in \mathbb{N}$ satisfy
(4) $X_{1}^{2}-17 Y_{1}^{2}=4 q, \quad X_{1} \equiv Y_{1}(\bmod 2), \quad \operatorname{gcd}\left(X_{1}, Y_{1}\right)= \begin{cases}1 & \text { if } 2 \nmid X_{1}, \\ 2 & \text { if } 2 \mid X_{1} .\end{cases}$

For any $u, v \in \mathbb{Z}$ with $u^{2}-17 v^{2}=1$, if $X+Y \sqrt{17}=\left(X_{1} \pm Y_{1} \sqrt{17}\right)$ $\times(u+v \sqrt{17})$, then $X, Y \in \mathbb{Z}$ satisfy

$$
X^{2}-17 Y^{2}=4 q, \quad X \equiv Y(\bmod 2), \quad \operatorname{gcd}(X, Y)= \begin{cases}1 & \text { if } 2 \nmid X_{1} \\ 2 & \text { if } 2 \mid X_{1}\end{cases}
$$

by (4). Therefore, we may assume that X_{1} and Y_{1} satisfy

$$
\begin{equation*}
1<\frac{X_{1}+Y_{1} \sqrt{17}}{X_{1}-Y_{1} \sqrt{17}}<(33+8 \sqrt{17})^{2} \tag{5}
\end{equation*}
$$

Notice that $q \geq 47, n \geq 4,2 k-1 \geq 6249$,

$$
1<\frac{2 k-1+\sqrt{17}}{2 k-1-\sqrt{17}}<1.02 \quad \text { and } \quad 10.40<\frac{5+\sqrt{17}}{5-\sqrt{17}}<10.41
$$

Since
(6)

$$
\frac{2 k-1-\sqrt{17}}{2}=\left(\frac{5-\delta_{1} \sqrt{17}}{2}\right)\left(\frac{X_{1}-\delta_{2} Y_{1} \sqrt{17}}{2}\right)^{n}(33-8 \sqrt{17})^{s}
$$

by (3), we find from (3), (5) and (6) that

$$
\begin{equation*}
|s| \leq 2 n \tag{7}
\end{equation*}
$$

Let $\eta=(5+\sqrt{17}) / 2, \bar{\eta}=(5-\sqrt{17}) / 2, \varepsilon=\left(X_{1}+Y_{1} \sqrt{17}\right) / 2, \bar{\varepsilon}=$ $\left(X_{1}-Y_{1} \sqrt{17}\right) / 2, \varrho=33+8 \sqrt{17}$ and $\bar{\varrho}=33-8 \sqrt{17}$. Further, let $r=|s|$, $\alpha_{1}=\eta / \bar{\eta}, \alpha_{2}=\varrho$ and $\alpha_{3}=\varepsilon / \bar{\varepsilon}$. Then we have

$$
\begin{equation*}
h\left(\alpha_{1}\right)=\log (5+\sqrt{17}), \quad h\left(\alpha_{2}\right)=\log (4+\sqrt{17}) . \tag{8}
\end{equation*}
$$

Further, by (5), we get

$$
\begin{equation*}
h\left(\alpha_{3}\right)=\log \left(X_{1}+Y_{1} \sqrt{17}\right)<\log 2 \varrho \sqrt{q} . \tag{9}
\end{equation*}
$$

From (3) and (6), we have
(10) $\log \frac{2 k-1+\sqrt{17}}{2 k-1-\sqrt{17}}=\lambda_{1} \log \alpha_{1}+2 \lambda_{2} r \log \alpha_{2}+\lambda_{3} n \log \alpha_{3}$,

$$
\lambda_{1}, \lambda_{2}, \lambda_{3} \in\{-1,1\}
$$

Let $\Lambda=\lambda_{1} \log \alpha_{1}+2 \lambda_{2} r \log \alpha_{2}+\lambda_{3} n \log \alpha_{3}$. Since $\mathbb{Q}\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)=\mathbb{Q}(\sqrt{17})$, by Lemma 1 , we get from (7), (8) and (9) that if $\Lambda \neq 0$, then

$$
\begin{align*}
|\Lambda| \geq & \exp \left(-18(4!) 3^{4} 64^{5}(\log 12)(\log (5+\sqrt{17}))\right. \tag{11}\\
& \times(\log (4+\sqrt{17}))(\log 2(33+8 \sqrt{17}) \sqrt{q})(\log 4 n)) \\
> & \exp \left(-5 \cdot 10^{14}(5+\log \sqrt{q})(\log 4 n)\right)
\end{align*}
$$

On the other hand, from (1) we get
(12) $\log \frac{2 k-1+\sqrt{17}}{2 k-1-\sqrt{17}}=\frac{2 \sqrt{17}}{2 k-1} \sum_{i=0}^{\infty} \frac{1}{2 i+1}\left(\frac{\sqrt{17}}{2 k-1}\right)^{2 i}<\frac{3 \sqrt{17}}{2 k-1}<\frac{4.4}{q^{n / 2}}$.

Combination of (9), (11) and (12) yields

$$
\log 4.4+5 \cdot 10^{14}(5+\log \sqrt{q})(\log 4 n)>n \log \sqrt{q}
$$

whence we obtain

$$
\begin{equation*}
n<2 \cdot 10^{17} \tag{13}
\end{equation*}
$$

Let

$$
F(X, Y)=\left(\frac{5+\delta_{1} \sqrt{17}}{2}\right) \varrho^{s} X^{n}-\left(\frac{5-\delta_{1} \sqrt{17}}{2}\right) \bar{\varrho}^{s} Y^{n} \in O_{K}[X, Y]
$$

Since $n \geq 3$ and $(5+\sqrt{17}) / 2$ is a prime in $O_{K}, F(z, 1)$ has at least three distinct zeros. We see from (3) and (6) that $(x, y)=\left(\left(X_{1}+\delta_{2} Y_{1} \sqrt{17}\right) / 2\right.$, $\left.\left(X_{1}-\delta_{2} Y_{1} \sqrt{17}\right) / 2\right)$ is a solution of the equation

$$
\begin{equation*}
F(x, y)=\sqrt{17}, \quad x, y \in O_{K} \tag{14}
\end{equation*}
$$

Therefore, by Lemma 2, from (4), (7) and (14) we get

$$
\begin{align*}
& \text { 5) } \sqrt{q}<\frac{X_{1}+Y_{1} \sqrt{17}}{2}=\max \left(\sqrt{\frac{X_{1}+\delta_{2} Y_{1} \sqrt{17}}{2}}\left|, \sqrt{\frac{X_{1}-\delta_{2} Y_{1} \sqrt{17}}{2}}\right|\right) \tag{15}\\
& \leq \exp \left(5 \cdot 3^{200} n^{6}(\log (4+\sqrt{17}))^{7} \log \left(\sqrt{17}\left(\frac{5+\sqrt{17}}{2}\right)(33+8 \sqrt{17})^{n}\right)\right) .
\end{align*}
$$

Substituting (13) into (15), we obtain $q<10^{10^{165}}$. Finally, from (2) we get $k<10^{10^{182}}$. The Theorem is proved.

REFERENCES

[1] R. Alter, On the non-existence of perfect double Hamming-error-correcting codes on $q=8$ and $q=9$ symbols, Inform. and Control 13 (1968), 619-627.
[2] A. Baker and G. Wüstholz, Logarithmic forms and group varieties, J. Reine Angew. Math. 442 (1993), 19-62.
[3] C. Hering, A remark on two diophantine equations of Peter Cameron, in: Groups, Combinatorics and Geometry (Durham, 1990), London Math. Soc. Lecture Note Ser. 165, Cambridge Univ. Press, Cambridge, 1992, 448-458.
[4] T. N. Shorey and R. Tijdeman, Exponential Diophantine Equation, Cambridge Tracts in Math. 87, Cambridge Univ. Press, Cambridge, 1986.

Department of Mathematics
Zhanjiang Teachers College
524048 Zhanjiang, Guangdong
P.R. China

