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ENDPOINT BOUNDS FOR CONVOLUTION OPERATORS
WITH SINGULAR MEASURES

BY

E. FERREYRA, T. GODOY a~np M. URCIUOLO (CORDOBA)

Let S C R™*! be the graph of the function ¢ : [~1,1]" — R defined by
(X1, Xy) = 2?21 |z;]P, with 1 < 81 < ... < 3y, and let p the measure
on R™*! induced by the Euclidean area measure on S. In this paper we

characterize the set of pairs (p,q) such that the convolution operator with
w is LP-L? bounded.

1. Introduction. In this paper we study convolution operators with
singular measures p given by p(F) = SQ Xe(z,p(z)) de where Q = [—1,1]™
and ¢(z) = Z?Zl |z;% for @ = (z1,...,2,), B; > 1, 1< j < n. We set,
for y € R™, T, f(y) = (n* f)(y) and E, = {(1/p,1/q) : [[Tullp,q < o0,
1 < p,q < oo}, where the LP spaces are taken with respect to the Lebesgue
measure on R™"*1. The set E,, is known in several cases. If 3; =2,1 < j <mn,
and the graph of ¢ has nonzero Gaussian curvature at each point, then a
theorem of Littman implies that E,, is the closed triangle with vertices (0, 0),
(1,1) and ((n + 1)/(n+2),1/(n+2)) (see [O]). Now, if the curvature vanishes
at some point, F, can be strictly contained in the above triangle. Related
examples in a more general context can be found in [C], [O] and [R-S]. In
[F-G-U] we showed that F, is a polygonal region. We gave a complete
description of it, as a closed polygon, when 3; < n+2, 1 < j < n. In the
other cases certain endpoint cases were left unsolved.

In this paper we characterize E,, completely, using a different argument
that follows the ideas developed by M. Christ in [C].

Acknowledgments. We wish to express our gratitude to Professor
F. Ricci for his many useful suggestions.

2. Preliminaries. For 1 < k < n, we consider an even function @;, €
C>(R) such that supp @), C {t € R: 2V < |t| < 24Pk} 0 < &), < 1 and
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36 E. FERREYRA ET AL.

S ren Pu(27/8kt) = 1if t # 0. For r1,...,7, € N and a Borel set E, we set

iy, ()
= SXE(‘Tla <oy Ty (10(1.17 s 7'1.11)) H st(2rk/ﬁkxk) dxl . e dl’n
1<k<n
Then
(2 1) ,U S V= Z Vle sT'n
r1,..,mn €N

Following the approach in [C], for 1 < k < n, we introduce a C'*° par-
tition of unity {my ,}rez in R? minus the coordinate axes, with my_, ho-
mogeneous of degree zero (with respect to the Euclidean dilations on R?)
such that my ,(t1,t2) = mk,g(2_”/5kt1,2_”t2) and suppmy,, C {(t1,t2) :
27/Be =1ty | < 27T |ty] < 277/BRF2|ty |}, Also we set My . (1,. .., 6nt1) =
mpr(€k, Ent1). Let Qg be the operator with multiplier My, .., and let Cy be
a constant such that my, , = zli—r\SCo my, ; is identically one on supp my .
We define ka,r = Z\ifHSCO Qk,i and we denote by ]\7;67,« its multiplier.

Let h € CX(R?) be identically one in a neighborhood of the origin,
let Hy, (€1,...&ns1) = h(277/P8€,,277¢,11) and let Py, be the Fourier
multiplier operator with symbol Hy, .

Throughout this work, ¢ will denote a positive constant not necessarily
the same at each occurrence. For g : R" — C we set ¢¥(x) = g(—z). If
g € S(R™) we denote by g its Fourier transform.

The following lemmas provide a suitable version of arguments contained
in [C] adapted to our m-dimensional setting. Lemma 2.2 is the crux of
Christ’s argument.

LEMMA 2.2. Let {o,}ren be a sequence of positive measures on R 1,
and let T.f = o, % f for f € S(R"™). Suppose 1 <k <n,1<p<2 and
p < g < oo. If there exists A > 0 such that

sup [Ty [[p,q < 4, H Z 15 P,
reN

1<r<R

<A and
p.q

H Z T.(I = Py ) — @k,r)

1<r<R

<A foral R€eN,

p,q

then there exists ¢ > 0, independent of A, R and {0} }ren, such that

| X 7

1<r<R

< cA.
P.q

Proof. We note that, if e, = %1 then ) Erékﬂ« satisfies the hy-
pothesis of the Marcinkiewicz multiplier theorem (see [S], p. 109). Thus
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1> ren Er@kapm < ¢, with ¢ independent of {e,.}. As in [S], 5.3, p. 105, we
get the Littlewood—Paley inequality

> ’ék,rf’2>1/2Hp < || flly-

reN

Let Sr be the operator given by Sgr({g,}.) = {h+}, where h, = T,g,
for 1 <r < R, and h, = 0 otherwise. As usual, we denote by ||Sr||pq,s the
norm of Sg : LP(I°) — L%(I®). As in the proof of Theorem 1 of [C], there
exists ¢ > 0, independent of R, {0, },en and f € S(R™!), such that

H > T(I=Pey)Qunf| < llSrllpa2({frellzoqzy + I{PrrfrtrllLrae))

1<r<R
where f, = @ky,nf. Let x = (x1,...,7,41). We have, for f € S(R"1),

(B, f@)] = 127 O (27 0 1Y) % fr) (@p, i)
where T = (xla v 7xk717x1§\+17 oo 7‘Tn)7 If(y17y2) = f(xla sy Th—1,Y1,
Tt - Tn,y2) and (277 @ V) (y1,y2) = hY(27"+/Pryy, 27" yy). Thus, us-
ing a result in [St], p. 85, we see that there exists ¢ independent of k, r such
that

(2.3) | Pre.r fr| < cM(fr)

where M is the strong maximal function defined as in [St], p. 83. Let
M be the vector-valued maximal operator associated with M defined by
M({gr}ren) = {Mg,}ren. Then M is bounded on LP(I?) for p < 2, so for
such p,

| > =Pt

1<r<R

L

| <elSallnaal vy < elSallpaz |l

The lemma follows as in the proof of Theorem 1 of [C]. m

LEMMA 2.4. For 1 <p,q < oo and R €N,

P.q Z Tt

1<ry<R 1<ry<R

P.q
with ¢ independent of R.

Proof. Since vy, ., is a positive measure, the lemma follows from
(2.3) and the boundedness of the strong maximal function (see [St], p. 84). =

LEMMA 2.5. For 1 <p,q < oo and R €N,
Z Tl’rl,.,.,'r" (I - kark)(l - kaﬂnk) P

1<r, <R a 1<r, <R

with ¢ independent of R.
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Proof. We decompose

Z TVrl ,,,,, o ([ - Pkmk)(l - @k,rk)

= z : TV'r*l ,,,,, T - : : Tl’rl,.,.,'rnpkﬂnk_ z : Tl’rl ,,,,, ran/”k

1<ry<R 1<rw<R 1<r,<R
+ : Tl/'rl ,,,,, Th Pkyrk Qk,’f’k’
1<rk§R

In view Lemma 2.4, it is enough to study the last two terms. By (2.3), for
f e SEmt,

,,,,,

<c T, . M (sup |Qp
> T |, MG QD

<c| > T, . . 5P @i flllp

<el| 3 T | H@hrStrllzoy

S C Z Tl/'rl ,,,,, T qupr'

The estimation of the term >, ~r T,

Vey..oor, Qlry f 18 analogous. m

LEMMA 2.6. The kernel of the convolution operator

Z T”Tl ,,,,, T ([ - Pkﬂ“k)([ - ka,rk)

1§7’k§R

belongs to weak-LY*B3< " and its norm is less than ¢2~ Zi#t ”/*Bf, with ¢ in-
dependent of R and r;, j # k.

Proof. We set
Ik(tl,tz) = S@k(s)eiishii‘s‘ﬁkb ds for (tl,tz) S RQ.

A computation shows that the kernel K, of the convolution oper-

,,,,,

. (=PI — kaﬂ"k) is the function given by

v ln

KY n(ﬂﬁlw--,l’nﬂ)

=2"Gy, (2T’“/5’“$k, 2" <$n+1 +)° ’wj’m)) | K2R
J#k i#k
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where

G = (I(1 — h)(1 — fgo))".
Taking account of Proposition 1 of [St], p. 331, we note that if we choose,
in the definition of my o, Cy large enough, we find that Gy € S(R?).

For1<k<nandry,...,r6—1,7k+1,.--,7n € N, we set
k
T1y-sTk—15Tk+15--3Tn

={(z1,...,2,) €Q: 2~ (ri—1)/B; < ;] < 2*(7"1'*4)/51', j# k)
Since G}, € S(R?), we obtain
Xve (@1, wn)
S AR Peplusts S e
1<7~Zk:<R , n ) yn |xk|’8k+|2];&k|x1|ﬁj +:L'n+1|

with ¢ independent of R and 7}, j # k. Thus
‘{JZ'GRYL+1Z Z |KTV1 ,,,,, ” (l‘l,...,$n+1)|>A}‘

1<ry<R

1
AL+1/ Bk

< 27 Zj;ék 5/ Bj

and the lemma follows. m

LEMMA 2.7. The kernel of the convolution operator

belongs to weak-L %" with norm less than 2~ Zi#k Tf/ﬁf, with ¢ indepen-
dent of R and rj, j # k.

Proof. Asin Lemma 2.6 we can see that the kernel of T,,

given by
, v
(TL 25226 (2%, 27 (i + 3 |17 ) ) )
itk 7k
where now Gy, = (Ixh)". Since G}, € S(R?), as before, the lemma follows. m

3. The main result. Let Q, ¢, 1 and E,, be defined as in the introduc-
tion. Without loss of generality we suppose 1 < 81 < ... < 3,. It is easy to
check that E,, contains the principal diagonal, and the Riesz-Thorin theo-
rem implies that F,, is a convex subset of [0,1] x [0, 1]. It is well known that
if (1/p,1/q) € E,, then p < g (see [S-W], p. 33).

For 1< k < n, we set S, = Z?:k ﬁ;l, also we set S,,+1 = 0. We denote
by Lg, 0 < k < n, the lines given by

1_/<3+1—|—Sk+1 1 k+ Sk

¢  1+Spk1 p 148k
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Also we denote by Ay, 0 < k < n, the intersection of L; with the nonprinci-
pal diagonal {(z,1 —z):0 < x <1} and by Bg, 1 < k < n, the intersection
of Lj_1 with L. A computation shows that for 0 < k < n,

A _<1+k+25k+1 1 >
P\ k242501 k4242541 )

and for 1< k < n,

Bk:<1+5k+1+<k—1>ﬁkl 1-5;" >
L+ kBt + Skpr  14+kB "+ Skr /)

Let X(#1:-+6n) be the closed convex polygonal region contained in [0,1] x
[0,1], given by the intersection of the lower half space determined by the
principal diagonal with all the upper half spaces determined by the lines
Li, 0 < k <mn, and all the upper half spaces determined by their symmetric
images with respect to the nonprincipal diagonal. Lemma 2.1 and Remark
2.4 of [F-G-U] say that E, C XP1Fn) TLet ky be defined by ko = 0 if
B1 >2and kg = max{k : 1 < k <mn, [ <2}if 8 < 2. Remark 2.6 of
[F-G-U] says that, for kg < n, X(F1:8n) = 5228k 41,-0n) is the closed
convex polygonal region with vertices Ay, (0,0), (1,1), By, Bn—1, ..., Bry+1
and their symmetric images By, B, 1, ... B}, ., with respect to the nonprin-

cipal diagonal, and for ky = n, XB1:--Fn) is the closed triangular region with
vertices (0,0), (1,1) and A,. Our aim is to prove that E, = X(#1:Fn) for
ko < m. The remaining case is done in [F-G-U]J.

For B = (1/p,1/q) € (0,1)x(0,1) and T': L? — L9 we write, to simplify
the notation, ||T||p instead of ||T||,q-

LEMMA 3.2. There exists ¢ > 0, independent of ry,...,rx_1, such that
for Re N and kg +1 <k <mn,

k—1 o 5;‘(5{1 — 6 >
— 5 1+ Spp1 + kB!
where expy(z) = 2%.
Proof. We fix k and consider the operator
> To (I =Pey )T = Qi)
1<ry<R

Lemma 2.6 and the weak Young inequality imply that it is of weak type
(1,1 + B, ') with weak constant less than cexp,(— >4k Ti/Bj), with ¢ in-

dependent of R and r;, j # k. We set D = (1,1/(1+ 8, 1)).
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We now study the behavior of this operator on the nonprincipal diagonal.
We note that v, ., <y, ., where p, . isthe measure p restricted
to

H {teR:270= /B < |t < 27 ai=0/B}
1<j<n
Let J, =0®...® 6 ® I,, where I, is the analytic extension to C of the
fractional integration kernel
27z/2
I'(z/2)
We consider the analytic family of operators given by

T.f= Y frw,*loxf,  z€C, fe€SER™.

1<ry<R

jt=~

A computation shows that |7, |10 < ¢ if Re(z) = 1. Reasoning as in the

proof of Theorem 3.2 of [F-G-U], using Lemma 2.2 of [R-S] and the van der
Corput Lemma (see [St], p. 332), we obtain

Z larlwn,?"n (yb s ayn+1)‘

1<ri<R
< cexpy (Z

J#k

) |~ (P-D/2- 1060

Thus the complex interpolation theorem, applied on the strip —(n —1)/2 —

1/06r < Re(z) <1, gives us
—2
< cex —
an-a = OO (Z n—|—1+2ﬁk >

: : Turl ,,,,, Tn
J#k

1<rp,<R
Ant < n+ 28" 1 >
L+n+268;" 1+n+28")

Since vy, . . < fory,...r,, Lemma 2.5 implies that

where

63 || Y T - Pa)T = Qe
1<r,<R
< cexp <Z —2>
2 LB n+ 1425

We set, for t € (0,1], B = tA™" ! + (1 —t)D. The Marcinkiewicz interpo-
lation theorem (see [B-S], p. 227, Remark 4.15(d)) gives us
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B4 | > Ty = Pep)U = Gr)

‘Bgl
) N e
SCGXP2< Z@((l t) n+1+2ﬁklt>>

J#k
for some positive constant ¢ independent of ¢, R and r;, j # k.
If kK = n, we check that there exists ¢t € (0,1) such that Bj* = B,,. Using
this ¢ in the above expression, we get the lemma in this case.
Ifkog+1 <k <n-—1, we will construct inductively an open polygonal
region that contains B and such that at each of its points,

| X 7m0 PG|

1<rg,...rn<R
<cexp<kz:1 .ﬁ]ﬁl ﬁkl))
- Bj 14 Spir+ kB

We define ¢, € (0,1) as the value of ¢ that annihilates the coefficient of
Tn/Bn in (3.4). Now we set B™(¢) = Bf* __. So a computation shows that

G5 | X Y T (T P = Qur)

1<r,<R 1<ry;<R

n—1 —1 —1
_ 7"] ﬁ](ﬁ] _ﬁn )
= eXp2< A Z B; (nﬂn — Bt 28,8 41

Jj=1,j#k

+5<1+—ﬁf‘21>>>.
n+1+203,
We set, for k—1<m<n-—1,
A <1+m+2ﬂ,;1+25m+2 1 )
24+ m+26, "+ 2810 24+ m 428" + 2812/

We note that A*~! = A;_;. Reasoning as in the proof of (3.3), but now
using the complex interpolation theorem on the strip —m/2—1/0; —Sp4+2 <
Re(z) < 1, we obtain

o) | X Y T T P)d = Qi)

ra<R 1<r,<R

m+1 6_2
J
SCGXP?( Z m+2426 1 +28 >

For 1<j<m-—1,k<m<nande >0 small enough, we define d(m, j, )
and B™(e) recursively on m. These definitions will be done in such a way

‘B"(e)

Am

,,,,,
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that, for £k + 1 < m,

(3.7) H Z Y Ty = Piy )T = Qr.r,)

‘Bm(s)

m—1 —1 —1
< € - L X +5 v J
=° exp2< jzl e [(m 00+ 26, o 4 Sy 1)

for some positive constant c.

(3.5) is (3.7) with m = n,

ﬁn_Z
wme R en( G )

. B; —2 >
o(n,j.e) =e| 1+ ———F7 ).
(n.j.€) E< n+1+26"

Suppose that we have defined B™*1(g) and §(m + 1,j,¢) for 1 < j < m
so that (3.7) holds for m + 1 instead of m. We set, for ¢ € [0, 1], B{"(¢) =
tA™=14+(1—t)B™*1(g). The Marcinkiewicz interpolation theorem and (3.6)
applied to m — 1 instead of m give us

s | X S T (=P )T = Q)

1<rm41,..,7n<R 1<r <R
m
< e exp2< Z [ (1—1)
j=1,j#k ﬁ]

(o Bt
mB 28 Bk + Smaya + 1

and

‘BZ”(@

+d(m+1,7, E))

! ])
m—|—1—|—2ﬁk1—|—25m+1 '
We define t,, by

(g’ — B » B — 2

= 0.
mB Ly 28, Bk + Smaz+1 T mA 1428 + 2841

(1 —tm)

Taking account of 1 < 3; < ... < f3,, we easily check that ¢, € [0,1). We
set

Bu(e) = tm A" 4 (1 — t,,) B™ L (¢).

A computation shows that t,, satisfies, for 1 < j < m,
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BB, = Bk » 8;—2
mB ke + 28 Bt + Sma2 + 1 T m+ 1+ 28, + 28,41
BB = Bah
(m—1)Bn" +26, " 6n' + Spmir +1
Then from (3.8) we obtain (3.7) if m > k + 1, with
d(m,j,e) = (1 —tm)d(m+1,4,¢)

(1 —tm)

and some positive constant c.. Thus

B9 || X T - Pu)d = Qun)

1<rg,....,rn <R
m—1 —1 —1
<c €XPo (‘ _]< = .
: Tk+1;,:rm1 jgg:';ék Bj (m — 1)5m1 + 26, 1ﬂml +Smy1+1
+om.4e)) )

k—1 —1 -1
= ceoxp| =2 ((m TG 4 25 B+ Sy 1)

]:
k—1 -1 —1

= 8057 — 67) | >>
25 ((k; 0B 120,08, S 1 e

B™(¢)

J

k—1 -1 —1

r; o BB =By )

S CE exp2 <_ _‘] . J J k 1>
: J 1+Sk+1+k7ﬁk

—_

j
where 6(k,j,e) = (1 —t)d(k + 1,7, ¢).
Also, (3.8) with m = k and t = ¢}, gives us

1) || Y n, L U=Pu)I Q)

B¥(e)

k—1 I
_ T_J ﬁj(ﬁj _ﬁk ) S(k. i >:|>
]Z:l j|:<(k_1)ﬁlc_1+2ﬂlg_lﬂlg_l+5k+l+l+ (k. J.€)

(
( = BB =B >

5 1+Sk+1+k‘ﬁ,;1

(Rl _ -1
BT B
1+ Spi1 +EB;;



CONVOLUTION OPERATORS 45

so the same bound holds for the norm of

Z TV'rl,.,.,'rn (I - Pk:ka)(I - kaﬂnk)
1<rg,....,rn<R
at the points D and (1/2,1/2).
We set B™ = lim._,o B™(¢). Taking account of the definition of ¢,, one
can check inductively on m that

B (1 + Spg1 + (m —2)81 + 28181
1+ Sy + (m— 1)t + 282 8,1
(1+6,)7 ' =6" 486" >
L+ St + (m— 18" +26:' 8,1 )

Now, it is easy to see that By belongs to the open segment that joins B*
and D, so for € small enough, it belongs to the open convex polygonal re-
gion with vertices D, B"(¢), ..., B¥(¢) and (1/2,1/2). Therefore the lemma
follows from (3.9), (3.10) and the Marcinkiewicz interpolation theorem. m

LEMMA 3.11. There exists ¢ > 0, independent of r1,...,r,_1, such that
for each R €N and for ko +1 < k <n,

H Z e Z Tl/'rl ,,,,, rn Pk,rk

1<rg<R 1<r, <R

By

k—1 -1 -1
e s y
SCGXpQ( S B T Sen t k)

Proof. In view of Lemmas 2.4 and 2.7, the proof follows as in Lemma
3.2. m

THEOREM 3.12. E,, is the closed convex polygonal region with vertices
(1,1), By ooy Brgt1, Akgs By iqs---5 By, and (0,0).

Proof. Since Ay, € E, (see [F-G-U], Lemma 3.1). Taking account of
E,CE,C 325528041501 5"), we first prove that B,,, ..., Bi,+1 € E,. Let
R € N. We prove inductively on k that, if kg + 1 < k < n, then

1) | > T,

kol Bt — ﬁz?l
N~ 5
gcexp2< ;ﬁj 6f1(1+5k+1+k5k_1)>

J
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with ¢ independent of r1,...,7rx_1 and R. Indeed, if £k = n we decompose
Z Tl’rl ,,,,, Tn = ZTl’rl,.,.,'r" Pn/rn + ZTl’rl,.,.,'r" (I - PnyTn)(I - Qn,rn)
Tn Tn Tn
+ ZTVrl ,,,,, T (I - Pn 'r'n)Q’I”L,'f'n
r’fb

Reasoning as in the proof of (3.3), we obtain

T, < '
|| T1seees Tn ||An — CeXp2 (Z n —|— 2 >

Using the Riesz—Thorin interpolation theorem between A,, and (1,1) we get

T < —
Sllnp” Vryo rn”Bn cexp2< Zn+ﬁn 63)

So, Lemmas 2.2, 3.2 and 3.11 imply

n—1 r ﬁ ﬁ
J n — Mj
R N O S

1<rn<R

with ¢ independent of 7q,...,7,_1 and R. Suppose (3.13) holds for k. Let
us prove it for £k — 1. We decompose

: TVrl ,,,,, Tn

1<rgp_1,..sTn<R

xxxxx

1<rg—1,....,rn<R

+ Z Tl’rl ,,,,, rn (I - Pk_lﬂ’k—l)@k—lﬂ’k—b

1<rg—1,...,rn<R

Again, reasoning as in the proof of (3.3), we obtain

k—1

5]_2
w0 | % m ], e (S A
1<rg,...,rn<R B Ak Z J k+1+25k

and so (3.13), (3.14) and the Riesz—Thorin theorem imply

sup Z Twl,.,.,rn

"R <, rn <R

Br_1

k

2 B8 = B ) )

< T,
= Cepr( B, T+ S+ (h— DA,

||M
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This inequality and Lemmas 2.2, 3.2 and 3.11 give us (3.13) with & replaced
by k — 1. So (3.13) holds.
Now, it is easy to see that By € E, for kg + 1 < k < n. Indeed, if

Br—1 # Br, we can sum over r1,...,7,—1 € N in (3.13). In the other case,
let s = min{j > ko +1: 3; = Br}. Then By, = B, and we can sum over
r1,...,7s—1 € Nin (3.13). Since ¢ is independent of R we conclude that, in

both cases, B, € E,,.
A simple computation shows that (7),)* = T),» where

p(E) =u(—FE) = S XE(T1, ... xn, —p(z1, ..., 2p))dey . . . dxy.
Q
Reasoning as before, we deduce, by duality that B}, .. .,B,’CO 41 belong to
E, =
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