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ENDPOINT BOUNDS FOR CONVOLUTION OPERATORS

WITH SINGULAR MEASURES

BY

E. FERREYRA, T. GODOY AND M. URC IUOLO (CÓRDOBA)

Let S ⊂ R
n+1 be the graph of the function ϕ : [−1, 1]n → R defined by

ϕ(x1, . . . , xn) =
∑n

j=1 |xj |
βj , with 1 < β1 ≤ . . . ≤ βn, and let µ the measure

on R
n+1 induced by the Euclidean area measure on S. In this paper we

characterize the set of pairs (p, q) such that the convolution operator with
µ is Lp-Lq bounded.

1. Introduction. In this paper we study convolution operators with
singular measures µ given by µ(E) =

T
Q

χE(x, ϕ(x)) dx where Q = [−1, 1]n

and ϕ(x) =
∑n

j=1 |xj |
βj for x = (x1, . . . , xn), βj > 1, 1≤ j ≤ n. We set,

for y ∈ R
n+1, Tµf(y) = (µ ∗ f)(y) and Eµ = {(1/p, 1/q) : ‖Tµ‖p,q < ∞,

1 ≤ p, q ≤ ∞}, where the Lp spaces are taken with respect to the Lebesgue
measure on R

n+1. The set Eµ is known in several cases. If βj = 2, 1 ≤ j ≤ n,
and the graph of ϕ has nonzero Gaussian curvature at each point, then a
theorem of Littman implies that Eµ is the closed triangle with vertices (0, 0),
(1, 1) and ((n + 1)/(n+2), 1/(n+2)) (see [O]). Now, if the curvature vanishes
at some point, Eµ can be strictly contained in the above triangle. Related
examples in a more general context can be found in [C], [O] and [R-S]. In
[F-G-U] we showed that Eµ is a polygonal region. We gave a complete
description of it, as a closed polygon, when βj ≤ n + 2, 1 ≤ j ≤ n. In the
other cases certain endpoint cases were left unsolved.

In this paper we characterize Eµ completely, using a different argument
that follows the ideas developed by M. Christ in [C].
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2. Preliminaries. For 1 ≤ k ≤ n, we consider an even function Φk ∈
C∞

c (R) such that suppΦk ⊂ {t ∈ R : 21/βk ≤ |t| ≤ 24/βk}, 0 ≤ Φk ≤ 1 and
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∑
r∈Z

Φk(2r/βk t) = 1 if t 6= 0. For r1, . . . , rn ∈ N and a Borel set E, we set

νr1,...,rn
(E)

=
\
χE(x1, . . . , xn, ϕ(x1, . . . , xn))

∏

1≤k≤n

Φk(2rk/βkxk) dx1 . . . dxn.

Then

(2.1) µ ≤ ν =
∑

r1,...,rn∈N

νr1,...,rn
.

Following the approach in [C], for 1 ≤ k ≤ n, we introduce a C∞ par-
tition of unity {mk,r}r∈Z in R

2 minus the coordinate axes, with mk,r ho-
mogeneous of degree zero (with respect to the Euclidean dilations on R

2)
such that mk,r(t1, t2) = mk,0(2

−r/βk t1, 2
−rt2) and suppmk,r ⊂ {(t1, t2) :

2−r/βk−1|t1| ≤ 2−r|t2| ≤ 2−r/βk+2|t1|}. Also we set Mk,r(ξ1, . . . , ξn+1) =
mk,r(ξk, ξn+1). Let Qk,r be the operator with multiplier Mk,r, and let C0 be
a constant such that m̃k,r =

∑
|i−r|≤C0

mk,i is identically one on suppmk,r.

We define Q̃k,r =
∑

|i−r|≤C0
Qk,i and we denote by M̃k,r its multiplier.

Let h ∈ C∞
c (R2) be identically one in a neighborhood of the origin,

let Hk,r(ξ1, . . . , ξn+1) = h(2−r/βkξk, 2−rξn+1) and let Pk,r be the Fourier
multiplier operator with symbol Hk,r.

Throughout this work, c will denote a positive constant not necessarily
the same at each occurrence. For g : R

n → C we set g∨(x) = g(−x). If
g ∈ S(Rn) we denote by ĝ its Fourier transform.

The following lemmas provide a suitable version of arguments contained
in [C] adapted to our n-dimensional setting. Lemma 2.2 is the crux of
Christ’s argument.

Lemma 2.2. Let {σr}r∈N be a sequence of positive measures on R
n+1,

and let Trf = σr ∗ f for f ∈ S(Rn+1). Suppose 1 ≤ k ≤ n, 1 < p ≤ 2 and

p ≤ q < ∞. If there exists A > 0 such that

sup
r∈N

‖Tr‖p,q ≤ A,
∥∥∥

∑

1≤r≤R

TrPk,r

∥∥∥
p,q

≤ A and

∥∥∥
∑

1≤r≤R

Tr(I − Pk,r)(I − Q̃k,r)
∥∥∥

p,q
≤ A for all R ∈ N,

then there exists c > 0, independent of A,R and {σr}r∈N, such that
∥∥∥

∑

1≤r≤R

Tr

∥∥∥
p,q

≤ cA.

P r o o f. We note that, if εr = ±1 then
∑

r∈N
εrQ̃k,r satisfies the hy-

pothesis of the Marcinkiewicz multiplier theorem (see [S], p. 109). Thus
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‖
∑

r∈N
εrQ̃k,r‖p,p ≤ c, with c independent of {εr}. As in [S], 5.3, p. 105, we

get the Littlewood–Paley inequality
∥∥∥
(∑

r∈N

|Q̃k,rf |
2
)1/2∥∥∥

p
≤ c‖f‖p.

Let SR be the operator given by SR({gr}r) = {hr}r where hr = Trgr

for 1 ≤ r ≤ R, and hr = 0 otherwise. As usual, we denote by ‖SR‖p,q,s the
norm of SR : Lp(ls) → Lq(ls). As in the proof of Theorem 1 of [C], there
exists c > 0, independent of R, {σr}r∈N and f ∈ S(Rn+1), such that
∥∥∥

∑

1≤r≤R

Tr(I −Pk,r)Q̃k,rf
∥∥∥

q
≤ c‖SR‖p,q,2(‖{fr}r‖Lp(l2) +‖{Pk,rfr}r‖Lp(l2))

where fr = Q̃k,rf. Let x = (x1, . . . , xn+1). We have, for f ∈ S(Rn+1),

|Ĥ∨
k,rk

∗ f(x)| = |2−rk(1+β−1
k )((2−rk • ĥ∨) ∗ fx)(xk, xn+1)|

where x = (x1, . . . , xk−1, xk+1, . . . , xn), fx(y1, y2) = f(x1, . . . , xk−1, y1,

xk+1, . . . , xn, y2) and (2−rk • ĥ∨)(y1, y2) = ĥ∨(2−rk/βky1, 2
−rky2). Thus, us-

ing a result in [St], p. 85, we see that there exists c independent of k, r such
that

(2.3) |Pk,rfr| ≤ cM(fr)

where M is the strong maximal function defined as in [St], p. 83. Let
M be the vector-valued maximal operator associated with M defined by
M({gr}r∈N) = {Mgr}r∈N. Then M is bounded on Lp(l2) for p ≤ 2, so for
such p,
∥∥∥

∑

1≤r≤R

Tr(I − Pk,r)Q̃k,rf
∥∥∥

q
≤ c‖SR‖p,q,2‖{fr}r‖Lp(l2) ≤ c‖SR‖p,q,2‖f‖p.

The lemma follows as in the proof of Theorem 1 of [C].

Lemma 2.4. For 1 < p, q < ∞ and R ∈ N,
∥∥∥

∑

1≤rk≤R

Tνr1,...,rn
Pk,rk

∥∥∥
p,q

≤ c
∥∥∥

∑

1≤rk≤R

Tνr1,...,rn

∥∥∥
p,q

with c independent of R.

P r o o f. Since νr1,...,rn
is a positive measure, the lemma follows from

(2.3) and the boundedness of the strong maximal function (see [St], p. 84).

Lemma 2.5. For 1 < p, q < ∞ and R ∈ N,
∥∥∥

∑

1≤rk≤R

Tνr1,...,rn
(I − Pk,rk

)(I − Q̃k,rk
)
∥∥∥

p,q
≤ c

∥∥∥
∑

1≤rk≤R

Tνr1,...,rn

∥∥∥
p,q

with c independent of R.
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P r o o f. We decompose
∑

1≤rk≤R

Tνr1,...,rn
(I − Pk,rk

)(I − Q̃k,rk
)

=
∑

1≤rk≤R

Tνr1,...,rn
−

∑

1≤rk≤R

Tνr1,...,rn
Pk,rk

−
∑

1≤rk≤R

Tνr1,...,rn
Q̃k,rk

+
∑

1≤rk≤R

Tνr1,...,rn
Pk,rk

Q̃k,rk
.

In view Lemma 2.4, it is enough to study the last two terms. By (2.3), for
f ∈ S(Rn+1),

∥∥∥
∑

1≤rk≤R

Tνr1,...,rn
Pk,rk

Q̃k,rk
f
∥∥∥

q

≤ c
∥∥∥

∑

1≤rk≤R

Tνr1,...,rn

∥∥∥
p,q

‖M(sup
r∈N

|Q̃k,rf |)‖p

≤ c
∥∥∥

∑

1≤rk≤R

Tνr1,...,rn

∥∥∥
p,q

‖ sup
r

|Q̃k,rf |‖p

≤ c
∥∥∥

∑

1≤rk≤R

Tνr1,...,rn

∥∥∥
p,q

‖{Q̃k,rf}r‖Lp(l2)

≤ c
∥∥∥

∑

1≤rk≤R

Tνr1,...,rn

∥∥∥
p,q

‖f‖p.

The estimation of the term
∑

1≤rk≤R Tνr1,...,rn
Q̃k,rk

f is analogous.

Lemma 2.6. The kernel of the convolution operator
∑

1≤rk≤R

Tνr1,...,rn
(I − Pk,rk

)(I − Q̃k,rk
)

belongs to weak-L1+β−1
k and its norm is less than c2−

∑
j 6=k rj/βj , with c in-

dependent of R and rj , j 6= k.

P r o o f. We set

Ik(t1, t2) =
\
Φk(s)e−ist1−i|s|βk t2 ds for (t1, t2) ∈ R

2.

A computation shows that the kernel K
r1,...,rn

of the convolution oper-

ator Tνr1,...,rn
(I − Pk,rk

)(I − Q̃k,rk
) is the function given by

K∨
r1,...,rn

(x1, . . . , xn+1)

= 2rkGk

(
2rk/βkxk, 2rk

(
xn+1 +

∑

j 6=k

|xj |
βj

)) ∏

j 6=k

Φj(2
rj/βj xj)
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where

Gk = (Ik(1 − h)(1 − m̃k,0))
∧.

Taking account of Proposition 1 of [St], p. 331, we note that if we choose,
in the definition of m̃k,0, C0 large enough, we find that Gk ∈ S(R2).

For 1 ≤ k ≤ n and r1, . . . , rk−1, rk+1, . . . , rn ∈ N, we set

V k
r1,...,rk−1,rk+1,...,rn

= {(x1, . . . , xn) ∈ Q : 2−(rj−1)/βj ≤ |xj | ≤ 2−(rj−4)/βj , j 6= k}.

Since Gk ∈ S(R2), we obtain

∑

1≤rk≤R

|K∨
r1,...,rn

(x1, . . . , xn+1)| ≤ c
χV k

r1,...,rk−1,rk+1,...,rn
(x1, . . . , xn)

|xk|βk + |
∑

j 6=k |xj |βj + xn+1|

with c independent of R and rj , j 6= k. Thus
∣∣∣
{
x ∈ R

n+1 :
∑

1≤rk≤R

|K∨
r1,...,rn

(x1, . . . , xn+1)| > λ
}∣∣∣

≤ c2−
∑

j 6=k
rj/βj

1

λ1+1/βk

and the lemma follows.

Lemma 2.7. The kernel of the convolution operator
∑

1≤rk≤R

Tνr1,...,rn
Pk,rk

belongs to weak-L1+β−1
k with norm less than c2−

∑
j 6=k rj/βj , with c indepen-

dent of R and rj , j 6= k.

P r o o f. As in Lemma 2.6 we can see that the kernel of Tνr1,...,rn
Pk,rk

is
given by

( ∏

j 6=k

Φj(2
rj/βj xj

j)Gk

(
2rk/βkxk, 2rk

(
xn+1 +

∑

j 6=k

|xj |
βj

)))∨

where now Gk = (Ikh)∧. Since Gk ∈ S(R2), as before, the lemma follows.

3. The main result. Let Q, ϕ, µ and Eµ be defined as in the introduc-
tion. Without loss of generality we suppose 1 < β1 ≤ . . . ≤ βn. It is easy to
check that Eµ contains the principal diagonal, and the Riesz–Thorin theo-
rem implies that Eµ is a convex subset of [0, 1]× [0, 1]. It is well known that
if (1/p, 1/q) ∈ Eµ then p ≤ q (see [S-W], p. 33).

For 1≤ k ≤ n, we set Sk =
∑n

j=k β−1
j , also we set Sn+1 = 0. We denote

by Lk, 0 ≤ k ≤ n, the lines given by

1

q
=

k + 1 + Sk+1

1 + Sk+1
·
1

p
−

k + Sk+1

1 + Sk+1



40 E. FERREYRA ET AL.

Also we denote by Ak , 0 ≤ k ≤ n, the intersection of Lk with the nonprinci-
pal diagonal {(x, 1− x) : 0 ≤ x ≤ 1} and by Bk, 1 ≤ k ≤ n, the intersection
of Lk−1 with Lk . A computation shows that for 0 ≤ k ≤ n,

Ak =

(
1 + k + 2Sk+1

k + 2 + 2Sk+1
,

1

k + 2 + 2Sk+1

)
,

and for 1≤ k ≤ n,

Bk =

(
1 + Sk+1 + (k − 1)β−1

k

1 + kβ−1
k + Sk+1

,
1 − β−1

k

1 + kβ−1
k + Sk+1

)
.

Let Σ(β1,...,βn) be the closed convex polygonal region contained in [0, 1] ×
[0, 1], given by the intersection of the lower half space determined by the
principal diagonal with all the upper half spaces determined by the lines
Lk, 0 ≤ k ≤ n, and all the upper half spaces determined by their symmetric
images with respect to the nonprincipal diagonal. Lemma 2.1 and Remark
2.4 of [F-G-U] say that Eµ ⊂ Σ(β1,...,βn). Let k0 be defined by k0 = 0 if
β1 > 2 and k0 = max{k : 1 ≤ k ≤ n, βk ≤ 2} if β1 ≤ 2. Remark 2.6 of
[F-G-U] says that, for k0 < n, Σ(β1,...,βn) = Σ(2,...,2,βk0+1,...,βn) is the closed
convex polygonal region with vertices Ak0

, (0, 0), (1, 1), Bn, Bn−1, . . . , Bk0+1

and their symmetric images B′
n, B′

n−1, . . . B
′
k0+1 with respect to the nonprin-

cipal diagonal, and for k0 = n, Σ(β1,...,βn) is the closed triangular region with
vertices (0, 0), (1, 1) and An. Our aim is to prove that Eµ = Σ(β1,...,βn) for
k0 < n. The remaining case is done in [F-G-U].

For B = (1/p, 1/q) ∈ (0, 1)×(0, 1) and T : Lp → Lq we write, to simplify
the notation, ‖T‖B instead of ‖T‖p,q .

Lemma 3.2. There exists c > 0, independent of r1, . . . , rk−1, such that

for R ∈ N and k0 + 1 ≤ k ≤ n,
∥∥∥

∑

1≤rk,...,rn≤R

Tνr1,...,rn
(I − Pk,rk

)(I − Q̃k,rk
)
∥∥∥

Bk

≤ c exp2

(
−

k−1∑

j=1

rj

βj
·

βj(β
−1
j − β−1

k )

1 + Sk+1 + kβ−1
k

)

where exp2(x) = 2x.

P r o o f. We fix k and consider the operator
∑

1≤rk≤R

Tνr1,...,rn
(I − Pk,rk

)(I − Q̃k,rk
).

Lemma 2.6 and the weak Young inequality imply that it is of weak type
(1, 1 + β−1

k ) with weak constant less than c exp2(−
∑

j 6=k rj/βj), with c in-

dependent of R and rj , j 6= k. We set D = (1, 1/(1 + β−1
k )).
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We now study the behavior of this operator on the nonprincipal diagonal.
We note that νr1,...,rn

≤ µr1,...,rn
where µr1,...,rn

is the measure µ restricted
to ∏

1≤j≤n

{t ∈ R : 2−(rj−1)/βj ≤ |t| ≤ 2−(rj−4)/βj}.

Let Jz = δ ⊗ . . . ⊗ δ ⊗ Iz, where Iz is the analytic extension to C of the
fractional integration kernel

2−z/2

Γ (z/2)
|t|z−1.

We consider the analytic family of operators given by

Tzf =
∑

1≤rk≤R

µr1,...,rn
∗ Jz ∗ f, z ∈ C, f ∈ S(Rn+1).

A computation shows that ‖Tz‖1,∞ ≤ c if Re(z) = 1. Reasoning as in the
proof of Theorem 3.2 of [F-G-U], using Lemma 2.2 of [R-S] and the van der
Corput Lemma (see [St], p. 332), we obtain

∣∣∣
∑

1≤rk≤R

µ̂r1,...,rn
(y1, . . . , yn+1)

∣∣∣

≤ c exp2

(∑

j 6=k

rj

βj
·
βj − 2

2

)
|yn+1|

−(n−1)/2−1/βk .

Thus the complex interpolation theorem, applied on the strip −(n − 1)/2−
1/βk ≤ Re(z) ≤ 1, gives us

∥∥∥
∑

1≤rk≤R

Tµr1,...,rn

∥∥∥
An−1

≤ c exp2

(∑

j 6=k

rj

βj
·

βj − 2

n + 1 + 2β−1
k

)

where

An−1 =

(
n + 2β−1

k

1 + n + 2β−1
k

,
1

1 + n + 2β−1
k

)
.

Since νr1,...,rn
≤ µr1,...,rn

, Lemma 2.5 implies that

(3.3)
∥∥∥

∑

1≤rk≤R

Tνr1,...,rn
(I − Pk,rk

)(I − Q̃k,rk
)
∥∥∥

An−1

≤ c exp2

(∑

j 6=k

rj

βj
·

βj − 2

n + 1 + 2β−1
k

)
.

We set, for t ∈ (0, 1], Bn
t = tAn−1 + (1 − t)D. The Marcinkiewicz interpo-

lation theorem (see [B-S], p. 227, Remark 4.15(d)) gives us
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(3.4)
∥∥∥

∑

1≤rk≤R

Tνr1,...,rn
(I − Pk,rk

)(I − Q̃k,rk
)
∥∥∥

Bn
t

≤ c exp2

(
−

∑

j 6=k

rj

βj

(
(1 − t) −

βj − 2

n + 1 + 2β−1
k

t

))

for some positive constant c independent of t, R and rj , j 6= k.

If k = n, we check that there exists t ∈ (0, 1) such that Bn
t = Bn. Using

this t in the above expression, we get the lemma in this case.

If k0 + 1 ≤ k ≤ n − 1, we will construct inductively an open polygonal
region that contains Bk and such that at each of its points,

∥∥∥
∑

1≤rk,...,rn≤R

Tνr1,...,rn
(I − Pk,rk

)(I − Q̃k,rk
)
∥∥∥

≤ c exp2

(
−

k−1∑

j=1

rj

βj
·

βj(β
−1
j − β−1

k )

1 + Sk+1 + kβ−1
k

)
.

We define tn ∈ (0, 1) as the value of t that annihilates the coefficient of
rn/βn in (3.4). Now we set Bn(ε) = Bn

tn−ε. So a computation shows that

(3.5)
∥∥∥

∑

1≤rn≤R

∑

1≤rk≤R

Tνr1,...,rn
(I − Pk,rk

)(I − Q̃k,rk
)
∥∥∥

Bn(ε)

≤ cε exp2

(
−

n−1∑

j=1, j 6=k

rj

βj

(
βj(β

−1
j − β−1

n )

nβ−1
n − β−1

n + 2β−1
k β−1

n + 1

+ ε

(
1 +

βj − 2

n + 1 + 2β−1
k

)))
.

We set, for k − 1 ≤ m ≤ n − 1,

Am =

(
1 + m + 2β−1

k + 2Sm+2

2 + m + 2β−1
k + 2Sm+2

,
1

2 + m + 2β−1
k + 2Sm+2

)
.

We note that Ak−1 = Ak−1. Reasoning as in the proof of (3.3), but now
using the complex interpolation theorem on the strip −m/2−1/βk−Sm+2 ≤
Re(z) ≤ 1, we obtain

(3.6)
∥∥∥

∑

1≤rm+2,...,rn≤R

∑

1≤rk≤R

Tνr1,...rn
(I − Pk,rk

)(I − Q̃k,rk
)
∥∥∥

Am

≤ c exp2

( m+1∑

j=1, j 6=k

rj

βj
·

βj − 2

m + 2 + 2β−1
k + 2Sm+2

)
.

For 1 ≤ j ≤ m − 1, k ≤ m ≤ n and ε > 0 small enough, we define δ(m, j, ε)
and Bm(ε) recursively on m. These definitions will be done in such a way
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that, for k + 1 ≤ m,

(3.7)
∥∥∥

∑

rm,...,rn

∑

rk

Tνr1,...,rn
(I − Pk,rk

)(I − Q̃k,rk
)
∥∥∥

Bm(ε)

≤ cε exp2

(
−

m−1∑

j=1, j 6=k

rj

βj

[
βj(β

−1
j − β−1

m )

(m − 1)β−1
m + 2β−1

k β−1
m + Sm+1 + 1

+ δ(m, j, ε)

])

for some positive constant cε.

(3.5) is (3.7) with m = n,

cε = c
∑

rn∈N

exp2

(
−

rn

βn
ε

(
1 +

βn − 2

n + 1 + 2β−1
k

))

and

δ(n, j, ε) = ε

(
1 +

βj − 2

n + 1 + 2β−1
k

)
.

Suppose that we have defined Bm+1(ε) and δ(m + 1, j, ε) for 1 ≤ j ≤ m
so that (3.7) holds for m + 1 instead of m. We set, for t ∈ [0, 1], Bm

t (ε) =
tAm−1+(1−t)Bm+1(ε). The Marcinkiewicz interpolation theorem and (3.6)
applied to m − 1 instead of m give us

(3.8)
∥∥∥

∑

1≤rm+1,...,rn≤R

∑

1≤rk≤R

Tνr1,...,rn
(I − Pk,rk

)(I − Q̃k,rk
)
∥∥∥

Bm
t (ε)

≤ cε exp2

(
−

m∑

j=1, j 6=k

rj

βj

[
(1 − t)

×

(
βj(β

−1
j − β−1

m+1)

mβ−1
m+1 + 2β−1

k β−1
m+1 + Sm+2 + 1

+ δ(m + 1, j, ε)

)

− t
βj − 2

m + 1 + 2β−1
k + 2Sm+1

])
.

We define tm by

(1− tm)
βm(β−1

m − β−1
m+1)

mβ−1
m+1 + 2β−1

k β−1
m+1 + Sm+2 + 1

− tm
βm − 2

m + 1 + 2β−1
k + 2Sm+1

= 0.

Taking account of 1 < β1 ≤ . . . ≤ βn, we easily check that tm ∈ [0, 1). We
set

Bm(ε) = tmAm−1 + (1 − tm)Bm+1(ε).

A computation shows that tm satisfies, for 1 ≤ j ≤ m,
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(1 − tm)
βj(β

−1
j − β−1

m+1)

mβ−1
m+1 + 2β−1

k β−1
m+1 + Sm+2 + 1

− tm
βj − 2

m + 1 + 2β−1
k + 2Sm+1

=
βj(β

−1
j − β−1

m )

(m − 1)β−1
m + 2β−1

k β−1
m + Sm+1 + 1

.

Then from (3.8) we obtain (3.7) if m ≥ k + 1, with

δ(m, j, ε) = (1 − tm)δ(m + 1, j, ε)

and some positive constant cε. Thus

(3.9)
∥∥∥

∑

1≤rk,...,rn≤R

Tνr1,...,rn
(I − Pk,rk

)(I − Q̃k,rk
)
∥∥∥

Bm(ε)

≤ cε

∑

rk+1,...,rm−1

exp2

(
−

m−1∑

j=1, j 6=k

rj

βj

(
βj(β

−1
j − β−1

m )

(m − 1)β−1
m + 2β−1

k β−1
m + Sm+1 + 1

+ δ(m, j, ε)

))

≤ cε exp2

(
−

k−1∑

j=1

rj

βj

(
βj(β

−1
j − β−1

m )

(m − 1)β−1
m + 2β−1

k β−1
m + Sm+1 + 1

+ δ(m, j, ε)

))

≤ cε exp2

(
−

k−1∑

j=1

rj

βj

(
βj(β

−1
j − β−1

k )

(k − 1)β−1
k + 2β−1

k β−1
k + Sk+1 + 1

+ δ(k, j, ε)

))

≤ cε exp2

(
−

k−1∑

j=1

rj

βj
·

βj(β
−1
j − β−1

k )

1 + Sk+1 + kβ−1
k

)

where δ(k, j, ε) = (1 − tk)δ(k + 1, j, ε).

Also, (3.8) with m = k and t = tk gives us

(3.10)
∥∥∥

∑

1≤rk,...,rn≤R

Tνr1,...,rn
(I − Pk,rk

)(I − Q̃k,rk
)
∥∥∥

Bk(ε)

= cε exp2

(
−

k−1∑

j=1

rj

βj

[(
βj(β

−1
j − β−1

k )

(k − 1)β−1
k + 2β−1

k β−1
k + Sk+1 + 1

+ δ(k, j, ε)

)])

≤ cε exp2

(
−

k−1∑

j=1

rj

βj
·

βj(β
−1
j − β−1

k )

1 + Sk+1 + kβ−1
k

)
.

Now,

βj(β
−1
j − β−1

k )

1 + Sk+1 + kβ−1
k

≤ 1,
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so the same bound holds for the norm of
∑

1≤rk,...,rn≤R

Tνr1,...,rn
(I − Pk,rk

)(I − Q̃k,rk
)

at the points D and (1/2, 1/2).

We set Bm = limε→0 Bm(ε). Taking account of the definition of tm one
can check inductively on m that

Bm =

(
1 + Sm+1 + (m − 2)β−1

m + 2β−1
m β−1

k

1 + Sm+1 + (m − 1)β−1
m + 2β−1

m β−1
k

,

(1 + β−1
k )−1(1 − β−1

m + β−1
m β−1

k )

1 + Sm+1 + (m − 1)β−1
m + 2β−1

m β−1
k

)
.

Now, it is easy to see that Bk belongs to the open segment that joins Bk

and D, so for ε small enough, it belongs to the open convex polygonal re-
gion with vertices D, Bn(ε), . . . , Bk(ε) and (1/2, 1/2). Therefore the lemma
follows from (3.9), (3.10) and the Marcinkiewicz interpolation theorem.

Lemma 3.11. There exists c > 0, independent of r1, . . . , rk−1, such that

for each R ∈ N and for k0 + 1 ≤ k ≤ n,
∥∥∥

∑

1≤rk≤R

. . .
∑

1≤rn≤R

Tνr1,...,rn
Pk,rk

∥∥∥
Bk

≤ c exp2

(
−

k−1∑

j=1

rj

βj
·

βj(β
−1
j − β−1

k )

1 + Sk+1 + kβ−1
k

)
.

P r o o f. In view of Lemmas 2.4 and 2.7, the proof follows as in Lemma
3.2.

Theorem 3.12. Eµ is the closed convex polygonal region with vertices

(1, 1), Bn, . . . , Bk0+1, Ak0
, B′

k0+1, . . . , B
′
n and (0, 0).

P r o o f. Since Ak0
∈ Eµ (see [F-G-U], Lemma 3.1). Taking account of

Eν ⊂ Eµ ⊂ Σ(2,...,2,βk0+1,...,βn), we first prove that Bn, . . . , Bk0+1 ∈ Eν . Let
R ∈ N. We prove inductively on k that, if k0 + 1 ≤ k ≤ n, then

(3.13)
∥∥∥

∑

1≤rk,...,rn≤R

Tνr1,...,rn

∥∥∥
Bk

≤ c exp2

(
−

k−1∑

j=1

rj

βj
·

β−1
j − β−1

k

β−1
j (1 + Sk+1 + kβ−1

k )

)
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with c independent of r1, . . . , rk−1 and R. Indeed, if k = n we decompose
∑

rn

Tνr1,...,rn
=

∑

rn

Tνr1,...,rn
Pn,rn

+
∑

rn

Tνr1,...,rn
(I − Pn,rn

)(I − Q̃n,rn
)

+
∑

rn

Tνr1,...,rn
(I − Pn,rn

)Q̃n,rn
.

Reasoning as in the proof of (3.3), we obtain

‖Tνr1,...,rn
‖An

≤ c exp2

( n∑

j=1

rj

βj
·
βj − 2

n + 2

)
.

Using the Riesz–Thorin interpolation theorem between An and (1, 1) we get

sup
rn

‖Tνr1,...,rn
‖Bn

< c exp2

(
−

n−1∑

j=1

βn − βj

n + βn
·

rj

βj

)
.

So, Lemmas 2.2, 3.2 and 3.11 imply

∥∥∥
∑

1≤rn≤R

Tνr1,...,rn

∥∥∥
Bn

≤ c exp2

(
−

n−1∑

j=1

rj

βj
·
βn − βj

n + βn

)

with c independent of r1, . . . , rn−1 and R. Suppose (3.13) holds for k. Let
us prove it for k − 1. We decompose

∑

1≤rk−1,...,rn≤R

Tνr1,...,rn

=
∑

1≤rk−1,...,rn≤R

Tνr1,...,rn
(I − Pk−1,rk−1

)(I − Q̃k−1,rk−1
)

+
∑

1≤rk−1,...,rn≤R

Tνr1,...,rn
Pk−1,rk−1

+
∑

1≤rk−1,...,rn≤R

Tνr1,...,rn
(I − Pk−1,rk−1

)Q̃k−1,rk−1.

Again, reasoning as in the proof of (3.3), we obtain

(3.14)
∥∥∥

∑

1≤rk,...,rn≤R

Tνr1,...,rn

∥∥∥
Ak−1

≤ c exp2

(k−1∑

j=1

rj

βj
·

βj − 2

k + 1 + 2Sk

)

and so (3.13), (3.14) and the Riesz–Thorin theorem imply

sup
rk−1

∥∥∥
∑

1≤rk,...,rn≤R

Tνr1,...,rn

∥∥∥
Bk−1

≤ c exp2

(
−

k−2∑

j=1

rj

βj
·

βj(β
−1
j − β−1

k−1)

1 + Sk + (k − 1)β−1
k−1

)
.
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This inequality and Lemmas 2.2, 3.2 and 3.11 give us (3.13) with k replaced
by k − 1. So (3.13) holds.

Now, it is easy to see that Bk ∈ Eν for k0 + 1 ≤ k ≤ n. Indeed, if
βk−1 6= βk, we can sum over r1, . . . , rk−1 ∈ N in (3.13). In the other case,
let s = min{j ≥ k0 + 1 : βj = βk}. Then Bk = Bs and we can sum over
r1, . . . , rs−1 ∈ N in (3.13). Since c is independent of R we conclude that, in
both cases, Bk ∈ Eν .

A simple computation shows that (Tµ)∗ = Tµ∗ where

µ∗(E) = µ(−E) =
\
Q

χE(x1, . . . , xn,−ϕ(x1, . . . , xn)) dx1 . . . dxn.

Reasoning as before, we deduce, by duality that B′
n, . . . , B′

k0+1 belong to
Eµ.
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5000 Córdoba, Argentina
E-mail: eferrey@mate.uncor.edu

godoy@mate.uncor.edu
urciuolo@mate.uncor.edu

Received 11 June 1996;

revised 22 March 1997


