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DOUBLING MEASURES WITH DIFFERENT BASES

BY

JANG-MEI WU (URBANA, ILLINOIS)

Doubling measures on the real line appear in the study of quasiconformal
mappings of the half-plane onto itself [BA] and harmonic measures of elliptic
operators [CFMS]. Dyadic doubling measures are related to martingales.
These measures have been completely characterized by Fefferman, Kenig
and Pipher [FKP].

However, the null sets for these measures have been less thoroughly stud-
ied. A class of porous sets which are null for doubling measures was intro-
duced by Martio [M], and was extended to a larger collection in [W]. It is
hardly surprising that the class of doubling measures and the class of dyadic
doubling measures are different, but much less trivial is the fact that the
corresponding null sets are also different [W].

We can define doubling measures with different bases, thus extending
the notion of dyadic doubling; and determine which classes have the same
null-sets.

Let A be an integer greater than one. An A-adic interval is an interval
having end points j/An and (j + 1)/An for some integers n and j. A mea-
sure µ on R1 is called an A-adic doubling measure if there exists a constant
λ(µ) so that µ(I) ≤ λ(µ)µ(J) for every pair of A-adic intervals I and J of
equal length whose union is contained in an A-adic interval of length A|I|.
The number λ(µ) is called an A-adic doubling constant for µ.

Let DA be the collection of all A-adic doubling measures on R1 and NA

consist of all sets in R1 having zero µ-measure for every µ ∈ DA. Based on
Kronecker’s Theorem on irrational numbers, we prove the following:

Theorem. Let A and B be two integers greater than 1. Then NA = NB

if and only if log A/ log B is rational.

A condition of this kind is not new. W. Schmidt[S] has proved that every
number normal to base A is also normal to base B if and only if log A/ log B
is rational.
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If log A/ log B is rational, then Aa = Bb for some positive integers a and
b. It is rather straightforward to check that DA = DAa = DBb = DB . Hence
NA = NB .

It remains to prove the converse.
The following three lemmas have been proved in [W] for A = 2; the proof

for any other A is similar.

Lemma 1. Let µ be an A-adic doubling measure on R1. Then there exist
α, β ≥ 1, depending only on A and the doubling constant λ(µ), so that for
any A-adic interval S and any subinterval T of S,

β−1(|T |/|S|)αµ(S) ≤ µ(T ) ≤ β(|T |/|S|)1/αµ(S).

Note that T need not be A-adic.

Lemma 2. Let S be any A-adic interval and µ and ν be two A-adic
doubling measures on R1 satisfying µ(S) = ν(S). Then the measure, equal
to µ on S and equal to ν on R1\S, is an A-adic doubling measure on R1

with a doubling constant bounded by the maximum of those for µ and ν.

Lemma 3. Let A be an integer greater than 1, and a, ε and δ be numbers
in (0, 1) satisfying ε + δa < 1/3. Then there exists µ ∈ DA with a doubling
constant λ(µ) bounded by a number Λ(A, a), depending on A and a only ,
such that µ([0, 1]) = 1, µ([0, ε]) = ε and µ([1− δ, 1]) = δa.

For x ∈ R1, let ‖x‖ denote the distance from x to the nearest integer.

Lemma 4. If ‖x‖ > 1/10, then the set {j : j is an integer satisfying
‖jx‖ ≤ 1/20} does not contain consecutive integers.

Lemma 5. Assume that log A/ log B is irrational and that M, N and
Q are numbers greater than or equal to 1. Then there exist integers n > N
and q > Q so that

M ≤ BqA−n ≤ 4AM and ‖BqA−n‖ > 1/10.

P r o o f. Choose first n0 > N and q0 > Q so that

2M ≤ Bq0A−n0 ≤ 2AM.

Let K = [Bq0A−n0 ] and ε = Bq0A−n0 − K. If 1/10 < ε < 9/10, then the
lemma is true with n = n0 and q = q0.

Suppose 0 ≤ ε ≤ 1/10. Because log B/ log A is irrational, {k log B/ log A
(mod 1) : k is a positive integer} is dense in [0, 1] by a theorem of Kronecker
[HW]. Therefore there exist positive integers n′ and q′ so that

(10K log A)−1 ≤ q′ log B/ log A− n′ ≤ (9K log A)−1,

thus 1+(10K)−1 ≤ Bq′
A−n′ ≤ 1+2(9K)−1. Let n = n0+n′ and q = q0+q′,

it is easy to check that K +1/10 < BqA−n < K +1/2 and 2M ≤ BqA−n ≤
4AM .
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Suppose that 9/10 ≤ ε < 1. Choose positive integers n′′ and q′′ so that

−(4(K + 1) log A)−1 ≤ q′′ log B/ log A− n′′ ≤ −(5(K + 1) log A)−1;

and let n = n0 + n′′ and q = q0 + q′′.

In the remaining part of this note, we assume that log A/ log B is irra-
tional and construct a set S in NB\NA. Some of the ideas are adapted from
[W].

Let Km = m4 − 1, and choose nk and qk inductively so that whenever
m ≥ 1 and k ∈ [1 + Km,Km+1], we have qk+1 > qk,

nk+1 > nk + 20 + 8 logA m,(1)
m4 ≤ BqkA−nk ≤ 4Am4,(2)

and

(3) ‖BqkA−nk‖ > 1/10.

This is possible in view of Lemma 5.
Given m ≥ 1, denote by m̃ the smallest integer power of A that is greater

than m, i.e., m̃ = A[logAm]+1. Let k ∈ [1 + Km,Km+1] and j be integers,
and define the A-adic intervals

Lk,j =
[

j

Ank
,
j + 1
Ank

]
, Ik,j =

(
j

Ank
,

j

Ank
+

1
Ankm̃4

]
and Jk,j =

[
j + 1
Ank

− 1
Ankm̃8

,
j + 1
Ank

]
;

note from (1) that

|Ik,j |/|Jk,j′ | = m̃4 ≥ A4 and |Jk,j |/|Lk+1,j′ | > A2.

To construct S, we let SJ
1 = [0, 1], select a group of mutually disjoint

subintervals Jk,j of SJ
1 with k ranging from 1 + K1 to K2, and call their

union SJ
2 . We again select a group of mutually disjoint subintervals Jk,j of

SJ
2 with k ranging from 1+K2 to K3, and call their union SJ

3 , etc. Finally,
we let S =

⋂
SJ

m.
Define for each k ≥ 1,

(4) Jk = {j : j is an integer so that ‖jBqkA−nk‖ > 1/20},
and note from (3) and Lemma 4 that the complement of Jk does not contain
consecutive integers.

Let J ′
1 be the integers in [1, An1 − 1],

CI
1 = {I1,j : j ∈ J1 ∩ J ′

1}, CJ
1 = {J1,j−1 : j ∈ J1 ∩ J ′

1},
T I

1 be the union of all intervals in CI
1 , T J

1 be the union of all intervals in CJ
1

and T1 = T I
1 ∪ T J

1 . Note that SJ
1 \T1 may be expressed as a union of A-adic

intervals of length |L2,j |.
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After J ′
k, CI

k , CJ
k , T I

k , T J
k and Tk are defined for some k ∈ [1+K1,K2−1],

let

J ′
k+1 = {j : Jk+1,j−1 ∪ Ik+1,j ⊆ SJ

1 \Tk},
CI

k+1 = CI
k ∪ {Ik+1,j : j ∈ Jk+1 ∩ J ′

k+1},(5)

CJ
k+1 = CJ

k ∪ {Jk+1,j−1 : j ∈ Jk+1 ∩ J ′
k+1},(6)

T I
k+1 = the union of intervals in CI

k+1,(7)

T J
k+1 = the union of intervals in CJ

k+1,(8)
and

Tk+1 = T I
k+1 ∪ T J

k+1.(9)

Note that all intervals in CI
K2
∪ CJ

K2
are mutually disjoint, and that each

interval in CJ
K2

is adjacent to an interval in CI
K2

and vice versa. Let

SI
2 = T I

K2
and SJ

2 = T J
K2

.

We shall keep SI
2 permanently out of S, and make the second stage con-

struction inside SJ
2 only.

Let

J ′
1+K2

= {j : J1+K2,j−1 ∪ I1+K2,j ⊆ SJ
2 },

CI
1+K2

= {I1+K2,j : j ∈ J1+K2 ∩ J ′
1+K2

},
CJ
1+K2

= {J1+K2,j−1 : j ∈ J1+K2 ∩ J ′
1+K2

},

T I
1+K2

be the union of intervals in CI
1+K2

, T J
1+K2

be the union of intervals
in CJ

1+K2
and T1+K2 = T I

1+K2
∪ T J

1+K2
.

After J ′
k, CI

k , CJ
k , T I

k , T J
k and Tk are defined for some k in [1+K2,K3−1],

let

J ′
k+1 = {j : Jk+1,j−1 ∪ Ik+1,j ⊆ SJ

2 \Tk},
and define the sets CI

k+1, CJ
k+1, T I

k+1, T J
k+1 and Tk+1 according to (5)

through (9). Let

SI
3 = T I

K3
and SJ

3 = T J
K3

.

Keep SI
3 permanently in the complement of S and make the third stage

construction inside SJ
3 . Continue this process indefinitely and let

S =
∞⋂

m=1

SJ
m.

To prove that S ∈ NB , we let m ≥ 10 and Jk,j−1 ∈ CJ
Km

; hence k ∈
[1 + Km−1,Km] and j ∈ Jk ∩ J ′

k. Because of (4),

(p + 1/20)B−qk < jA−nk < (p + 19/20)B−qk
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for an integer p. Recall that Jk,j−1 and Ik,j share a common boundary
point jA−nk and have lengths A−nkm̃−8 and A−nkm̃−4 respectively. Note
from (2) that |Jk,j−1| ≤ m−2B−qk , thus Jk,j−1 is contained in the B-adic
interval [pB−qk , (p + 1)B−qk ]. Note again from (2) that |Ik,j | ≥ A−4B−qk ;
since A ≥ 2, we have |Ik,j ∩ [pB−qk , (p + 1)B−qk ]| ≥ A−5B−qk .

Let ν be any B-adic doubling measure. It follows from Lemma 1 that
there exist α and β depending only on B and on a doubling constant for ν
so that

ν(Jk,j−1) ≤ βm−2/αν([pB−qk , (p + 1)B−qk ]) ≤ β2m−2/αA5αν(Ik,j).

Because intervals in CJ
Km

∪ CI
Km

are mutually disjoint, summing over all
Jk,j−1 in CJ

Km
we obtain

ν(SJ
m) ≤ β2m−2/αA5αν([0, 1]).

Therefore ν(S) = 0 and S is a set in NB .
To prove that S 6∈ NA, we need to find a measure µ in DA which carries

a positive mass on S. In the reasoning below, scale invariant versions of
Lemmas 2 and 3 are used respectively; all measures µk below are required
to be periodic with period 1, and contained in DA with doubling constants
bounded above by the number Λ(A, 1/4) of the statement of Lemma 3.

Let µ0 be the Lebesgue measure on R1. After µk−1 has been constructed
for some k ∈ [1+Km,Km+1], we redistribute the mass in each Lk,j to form a
new measure µk in DA with doubling constant again bounded by Λ(A, 1/4),
which satisfies

µk(Lk,j) = µk−1(Lk,j), µk(Ik,j) = m̃−4µk(Lk,j),
µk(Jk,j) = m̃−2µk(Lk,j).

The existence of µk is guaranteed by Lemmas 2 and 3.
Let µ be the weak∗ limit of {µKm}. Clearly, µ is in DA and has a

doubling constant bounded by Λ(A, 1/4).
Because I’s, J ’s and L’s are A-adic intervals and |Lk+1,j | < |Jk,j′ | <

|Ik,j′′ | < |Lk,j′′′ |, any mass redistribution passing the kth step does not
alter the total measures on Jk,j , Ik,j and Lk,j . Therefore µ(Jk,j) = µk(Jk,j),
µ(Ik,j) = µk(Ik,j) and µ(Lk,j) = µk(Lk,j); and for k ∈ [1 + Km,Km+1],

µ(Ik,j) = m̃−4µ(Lk,j) and µ(Jk,j) = m̃−2µ(Lk,j).

Let α and β be the numbers associated with µ as in Lemma 1. We claim
that for each m ≥ 1,

(10) µ(SJ
m+1 ∪ SI

m+1) ≥ (1− (1−m−2β−1A−4α)Km+1−Km)µ(SJ
m)

and

(11) µ(SI
m+1) ≤ m−2βA2αµ(SJ

m+1 ∪ SI
m+1).
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Fix an m ≥ 1 and note that SJ
m may be expressed as a union of A-

adic intervals of length A−nKm m̃−8, which in turn may be expressed as a
union of A-adic intervals of length A2−n1+Km . Let G be any A-adic interval
contained in SJ

m of length A2−n1+Km . Then G contains exactly A2 intervals
from {L1+Km,j}. Because A2 ≥ 4 and the complement of J1+Km does not
contain consecutive integers, G must contain at least one pair of intervals
(J1+Km,j′−1, I1+Km,j′) from CJ

1+Km
× CI

1+Km
. Denote these intervals by J ′

and I ′ respectively and the interval L1+Km,j′−1 by L′. Then by Lemma 1,

µ(T1+Km ∩G) ≥ µ(J ′ ∪ I ′) ≥ µ(J ′) = m̃−2µ(L′)

≥ m̃−2β−1A−2αµ(G) ≥ m−2β−1A−4αµ(G).

Summing over all such G’s, we have

µ(T1+Km
) ≥ m−2β−1A−4αµ(SJ

m).

Note that

µ(T I
1+Km

∩G) ≤
∑′

µ(I1+Km,j) = m̃−4
∑′

µ(L1+Km,j)

= m̃−4µ(G) ≤ m−2βA2αµ(T1+Km ∩G),

where
∑′ sums over all I1+Km,j

in G. Therefore

µ(T I
1+Km

) ≤ m−2βA2αµ(T1+Km
).

The set SJ
m\T1+Km may be expressed as a union of A-adic intervals of

length |J1+Km,j |, which in turn may be expressed as a union of A-adic in-
tervals of length A2|L2+Km,j |. Let G be any interval in SJ

m\T1+Km
of length

A2|L2+Km,j |. Repeating the argument of the last paragraph and using the
fact that the complement of J2+Km does not contain consecutive integers,
we obtain the inequalities

µ(T2+Km\T1+Km) ≥ m−2β−1A−4αµ(SJ
m\T1+Km)

and
µ(T I

2+Km
\T1+Km) ≤ m−2βA2αµ(T2+Km\T1+Km).

Repeating the same reasoning in each SJ
m\Tk, we conclude that for k ∈

[1 + Km, Km+1 − 1],

µ(Tk+1\Tk) ≥ m−2β−1A−4αµ(SJ
m\Tk)

and
µ(T I

k+1\Tk) ≤ m−2βA2αµ(Tk+1\Tk).

The estimates (10) and (11) follow from these inequalities.
Note from (11) that for m > m0 ≡ [β1/2Aα] + 1,

µ(SJ
m+1) ≥ (1−m−2βA2α)µ(SJ

m+1 ∪ SI
m+1) > 0.
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Therefore by (10),

µ(S) ≥ µ(SJ
m0

)
∏

m>m0

(
(1−m−2βA2α)

(
1− (1−m−2β−1A−4α)Km+1−Km

))
.

Since Km = m4 − 1, calculation shows that µ(S) > 0. Therefore S 6∈ NA.
This proves that NA 6= NB when log A/ log B is irrational.
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