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CHAIN CONDITIONS IN MODULAR LATTICES

BY

M. LUÍSA G A L V Ã O (LISBOA) AND PATRICK F. S M I T H (GLASGOW)

We give an analogue for complete modular lattices of the result of Good-
earl who proved that an arbitrary module M over an arbitrary ring satis-
fies the ascending chain condition on essential submodules if and only if
M/ Soc(M) is Noetherian, where Soc(M) denotes the socle of M . Good-
earl’s Theorem can be extended for certain complete modular lattices to any
dual Krull dimension.

Let R be a ring with identity and let M be a unital right R-module.
Recall that a submodule K of M is essential provided K ∩ L 6= 0 for every
non-zero submodule L of M . The socle Soc(M) of M is the sum of all
simple submodules of M , or 0 if M has no simple submodules. It is well
known that Soc(M) is the intersection of all essential submodules of M (see,
for example [5, Prop. 9.7]). A well known theorem of Goodearl [6, Prop.
3.6] asserts that the module M satisfies the ascending chain condition on
essential submodules if and only if the R-module M/ Soc(M) is Noetherian.

There is a dual result. A submodule N of M is superfluous if N +L 6= M
for every proper submodule L of M . The radical Rad(M) of M is defined
to be the intersection of all maximal submodules of M , or M if M has
no maximal submodules. It is well known that Rad(M) is the sum of all
superfluous submodules of M (see, for example, [5, Prop. 9.13]). In [4] it
is proved that Rad(M) is Artinian if and only if M satisfies the descending
chain condition on superfluous submodules.

It is natural to ask whether these dual results have dual proofs. In order
to investigate this question Alkhazzi [3] looked at the corresponding results
in the context of modular lattices, his philosophy being that any proof of
the analogue of Goodearl’s result for modular lattices gives immediately the
dual theorem by passing to the opposite lattice. Alkhazzi was unable to
find such a proof. In fact, we suspect that no such proof exists but have
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been unable to find a counter-example. We do give an example of a modular
lattice L with least element 0 such that if E denotes the set of essential
elements of L then E is Noetherian, 0 =

∧
E, but L is not Noetherian.

However, this lattice L is not complete. In addition, we give necessary and
sufficient conditions for a complete modular lattice L with s =

∧
E to have

the property that the sublattice [s, 1] is Noetherian, where again E denotes
the set of essential elements of L.

There is another motivation for studying these questions in the context
of modular lattices, namely the papers of Albu and Smith [1], [2] where they
show that the lattice viewpoint is both natural and helpful for the Hopkins–
Levitzki Theorem and more particularly for its various generalizations in
terms of torsion theories. After the Hopkins–Levitzki Theorem, Goodearl’s
Theorem is a natural candidate for such treatment.

1. Independent sets. Throughout this paper L will denote a modular
lattice with least element 0 and greatest element 1, i.e. 0 ≤ a ≤ 1 for all
a ∈ L. Let x and y be elements in L with x ≤ y. Then we define y/x = {a ∈
L : x ≤ a ≤ y}. Recall that because L is modular, (a ∨ b)/b ' a/(a ∧ b), for
all a, b in L. This fact will be used repeatedly in the sequel.

A finite non-empty subset {x1, . . . , xn} of L is called join-independent if

xi 6= 0 and xi ∧ (x1 ∨ . . . ∨ xi−1 ∨ xi+1 ∨ . . . ∨ xn) = 0

for all 1 ≤ i ≤ n. An arbitrary non-empty subset X of L is called join-
independent if every finite non-empty subset of X is join-independent.

Lemma 1.1 (see [10, Prop. 1.5.1 and 1.5.2]). Let L be a modular lattice.
The following statements are equivalent for a finite non-empty subset X =
{x1, . . . , xn} of non-zero elements.

(i) X is join-independent.
(ii) xi ∧ (x1 ∨ . . . ∨ xi−1) = 0 for all 2 ≤ i ≤ n.
(iii) (

∨
A)∧ (

∨
B) = 0 for all disjoint non-empty subsets A and B of X.

Corollary 1.2. Let L be a modular lattice. Let a be a non-zero element
and let X be a non-empty subset of L. Then X ∪ {a} is join-independent if
and only if X is join-independent and a ∧ (

∨
S) = 0 for every finite subset

S of X.

P r o o f. By Lemma 1.1.

An element e in a lattice L is called essential if e ∧ a 6= 0 for every
non-zero element a in L. The set of essential elements of L will be denoted
by E(L). Note the following properties of essential elements.

Lemma 1.3. Let {b1, . . . , bn} be a finite subset of a modular lattice and
let ai ∈ E(bi/0) (1 ≤ i ≤ n). Then
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(i) a1 ∧ . . . ∧ an ∈ E((b1 ∧ . . . ∧ bn)/0), and
(ii) if {b1, . . . , bn} is join-independent then

a1 ∨ . . . ∨ an ∈ E((b1 ∨ . . . . . . ∨ bn)/0).

Moreover , if a ≤ b ≤ c in L, a ∈ E(b/0) and b ∈ E(c/0) then a ∈ E(c/0).

P r o o f. By [8, Lemma 2 and Corollary 4].

An element u of a lattice L is called uniform if u 6= 0 and a ∧ b 6= 0 for
all non-zero elements a and b in u/0, i.e. every non-zero element of u/0 is
essential. For any set X, the cardinality of X will be denoted by |X|. The
next result can be found in [8, Theorem 5].

Lemma 1.4. Suppose that a modular lattice L does not contain an infinite
join-independent subset. Then there exists a positive integer m and uniform
elements ui (1 ≤ i ≤ m) such that the set {u1, . . . , um} is join-independent
and the element u1 ∨ . . .∨ um is essential in L. Moreover , |X| ≤ m for any
join-independent subset X of L.

Let L be a lattice with no infinite join-independent sets. If m and n are
positive integers and {u1, . . . , um} and {v1, . . . , vn} sets of uniform elements
of L with u1∨ . . .∨um and v1∨ . . .∨vn both essential then Lemma 1.4 gives
m = n. The integer n will be called the Goldie (or uniform) dimension of
L and we say that L has finite Goldie dimension. The Goldie dimension of
L will be denoted by u(L). If L does not have finite Goldie dimension then
L contains an infinite join-dependent subset and we write u(L) = ∞.

Lemma 1.5 (see [10, Lemma 1.6.4]). Let L be a modular lattice and let a
be an element of L such that a/0 and 1/a both have finite Goldie dimension.
Then L has finite Goldie dimension.

2. Semi-essential elements. Let L be a modular lattice (with least
element 0 and greatest element 1). An element e of L is called semi-essential
(in L) if e 6= 0 and e does not belong to an infinite independent subset X of
L. (This idea can be found in [7], although the term “semi-essential” is not
used.) We now list some properties of semi-essential elements.

Lemma 2.1. Let L be a modular lattice.

(i) Every essential element of L is semi-essential.
(ii) If e is semi-essential in L and e ≤ f ∈ L then f is semi-essential

in L.
(iii) If e is a semi-essential element of L then e ∧ a is a semi-essential

element of a/0 for each a in L.
(iv) Let e be any semi-essential element of L and let b ∈ L with

e ∧ b = 0. Then b/0 has finite Goldie dimension.
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(v) Let c be any element of L such that 1/c has finite Goldie dimension.
Then c is semi-essential.

P r o o f. (i) Clear.
(ii) By Corollary 1.2.
(iii) By [7, Prop. 3(ii)].
(iv) Suppose that b 6= 0. Let X be any join-independent subset of b/0.

By Corollary 1.2, X∪{e} is a join-independent subset of L. Thus X is finite.
It follows that b/0 has finite Goldie dimension.

(v) Let S = {x1, . . . , xn} be any finite subset of L such that S ∪ {c} is
join-independent. Consider the subset T = {xi ∨ c : 1 ≤ i ≤ n} of 1/c. For
each i ≥ 2,

(xi ∨ c) ∧ [(x1 ∨ c) ∨ . . . ∨ (xi−1 ∨ c)] = (xi ∨ c) ∧ (c ∨ x1 ∨ . . . ∨ xi−1)
= c ∨ [(xi ∨ c) ∧ (x1 ∨ . . . ∨ xi−1)]
= c ∨ 0 = c,

by Lemma 1.1. Thus T is join-independent in 1/c. It follows that n is
bounded above by the Goldie dimension of 1/c. Thus c is semi-essential.

It will be convenient to consider 0 as a “special” semi-essential element.
We say that 0 is semi-essential if L has finite Goldie dimension.

The converse of Lemma 2.1(v) is false in general. For example, if L is the
lattice of Z-submodules of the Z-module Q and e denotes the submodule Z
then e ∈ E(L) but 1/e does not have finite Goldie dimension.

Lemma 2.2 (see [7, Theorem 1]). Let L be a modular lattice and let e
be any semi-essential element which is not essential. Then there exists a
positive integer n and uniform elements ui (1 ≤ i ≤ n) of L such that
{e, u1, . . . , un} is join-independent and e ∨ u1 ∨ . . . ∨ un is essential in L.

Lemma 2.3 (see [7, Theorem 1]). Let L be a modular lattice and let e be
any semi-essential element which is not essential. Let m be a positive integer
and let ui (1 ≤ i ≤ m) be uniform elements of L such that {e, u1, . . . , um}
is a join-independent set with e∨u1∨ . . .∨um essential in L. Then |X| ≤ m
for any subset X of L such that X ∪ {e} is join-independent.

Let e be any semi-essential element of L. We define ue(L)=0 if e∈E(L).
Otherwise, we define ue(L) = n where n is the positive integer such that
{e, u1, . . . , un} (or {u1, . . . , un}, if e = 0) is join-independent for uniform
elements ui (1 ≤ i ≤ n) of L with e∨u1∨ . . .∨um essential in L. By Lemma
2.3, ue(L) is well defined. We call ue(L) the Goldie (or uniform) dimension
of L relative to e. If a is any element of L which is not semi-essential then
we set ua(L) = ∞.
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Theorem 2.4. Let L be a modular lattice. Then the following statements
are equivalent for an element e of L.

(i) The element e is semi-essential.
(ii) There exists a in L such that e ∧ a = 0, e ∨ a is essential in L and

a/0 has finite Goldie dimension.
(iii) For every ascending chain a1 ≤ a2 ≤ . . . in 1/e there exists a positive

integer n such that ai is essential in ai+1/0 for all i ≥ n.

In this case ue(L) = u(a/0).

P r o o f. (i)⇒(ii). By Lemma 2.2.
(ii)⇒(iii). Let a1 ≤ a2 ≤ . . . be any ascending chain in 1/e. Consider

the ascending chain a ∧ a1 ≤ a ∧ a2 ≤ . . . in a/0. Since a/0 has finite
Goldie dimension it follows that there exists a positive integer n such that
a∧aii∈ E((a∧ai+1)/0) for all i≥n. Let i≥n. Now e∧ (a∧ai+1)=0, so that
Lemma 1.3 gives that e∨ (a∧ai) ∈ E(e∨ (a∧ai+1)/0). But e∨ (a∧ai+1) =
(e ∨ a) ∧ ai+1 ∈ E(ai+1/0), again by Lemma 1.3. Since e ∨ (a ∧ ai) ≤ ai it
follows that ai ∈ E(ai+1/0). Thus ai ∈ E(ai+1/0) for all i ≥ n.

(iii)⇒(i). Suppose that e is not semi-essential. Then there exists an in-
finite subset X of L such that {e} ∪X is join-independent. Let xi ∈ X for
all i ≥ 1. Then e ≤ e ∨ x1 ≤ e ∨ x1 ∨ x2 ≤ . . . and e ∨ x1 ∨ . . . ∨ xj is not
essential in e ∨ x1 ∨ . . . ∨ xj+1, for all j ≥ 1. It follows that (iii) implies (i).

The last part follows by Lemmas 1.5 and 2.3.

3. Chain conditions on essential elements. Again L is a modular
lattice with least element 0 and greatest element 1. It is clear that L satisfies
the ascending chain condition on essential elements (i.e. the sublattice E(L)
is Noetherian) if and only if 1/e is Noetherian for every essential element
e in L. In this case E(L) has Krull dimension [9, Corollaire 6] and 1/e has
finite Goldie dimension for every essential element e in L. It is perhaps worth
pointing out here that, in general, lattices with Krull dimension do not have
finite Goldie dimension. Let L(Z) denote the lattice of ideals of the ring Z
of integers. Let L◦(Z) denote the opposite lattice of L(Z). Then L◦(Z) is a
complete modular lattice with Krull dimension 0 (i.e. L◦(Z) is Artinian) and
dual Krull dimension 1, but L◦(Z) does not have finite Goldie dimension.
For example, the set X of maximal ideals of Z is an infinite join-independent
subset of L◦(Z). It is proved in [1, Remarks 1.4(2)] that an Artinian lattice
L has finite Goldie dimension if and only if for each a ∈ L there exists b ∈ L
such that a ∧ b = 0 and a ∨ b ∈ E(L).

The next result gives a further characterization of semi-essential elements
of L in a particular case.
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Theorem 3.1. Let L be a modular lattice and let a be an element of L
such that 1/e has finite Goldie dimension for every e ∈ E(L) with a ≤ e.
Then a is semi-essential if and only if 1/a has finite Goldie dimension.

P r o o f. The sufficiency is proved in Lemma 2.1(v). Conversely, suppose
that a is semi-essential. By Theorem 2.4 there exists b ∈ L such that a∧b =
0, a ∨ b ∈ E(L) and b/0 has finite Goldie dimension. Now (a ∨ b)/a ' b/0.
Thus 1/(a ∨ b) and (a ∨ b)/a both have finite Goldie dimension. It follows
that 1/a has finite dimension (Lemma 1.5).

Let L be a modular lattice with Krull dimension. Then L has dual Krull
dimension, i.e. the opposite lattice L◦ has Krull dimension (see [9, Corol-
laire 6]). In this case we shall denote the Krull and dual Krull dimensions of
L by k(L) and k0(L), respectively. Next note that E(L) has Krull dimension
if and only if 1/e has Krull dimension for all e ∈ E(L). For if E(L) has Krull
dimension then so does the sublattice 1/e for any e ∈ E(L) by [9, Prop. 2].
On the other hand, if e ∈ E(L) and 1/e has Krull dimension then 1/e
has dual Krull dimension, by [9, Corollaire 6]. Clearly E(L) has dual Krull
dimension. By [9, Corollaire 6] again, E(L) has Krull dimension.

Corollary 3.2. Let L be a modular lattice and let a be a semi-essential
element of L such that 1/e has Krull dimension for all e ∈ E(L) with a ≤ e.
Then 1/a has Krull dimension. In this case,

k(1/a) ≤ 1 + sup{k(1/e) : a ≤ e ∈ E(L)},
k0(1/a) ≤ sup{k0(1/e) : a ≤ e ∈ E(L)}.

P r o o f. If a is essential then 1/a has Krull dimension, by hypothesis.
If a is not essential then by Lemma 2.2 there exists a positive integer n
and uniform elements ui (1 ≤ i ≤ n) such that the set {a, u1, . . . , un} is
join-independent and b = a ∨ u1 ∨ . . . ∨ un ∈ E(L). By hypothesis, 1/b has
Krull dimension.

Let 1 ≤ i ≤ n. Let 0 6= c ≤ ui. Let d = a∨u1∨. . . ui−1∨c∨ui+1∨. . .∨un.
Then a ≤ d, d ∈ E(L) (Lemma 1.3) and ui/c ' b/d. Thus ui/c has (dual)
Krull dimension for all 0 6= c ≤ ui. It follows that ui/0 has Krull dimension.
Thus ui/0 has Krull dimension for all 1 ≤ i ≤ n and hence b/a has Krull
dimension, because b/a ' (u1 ∨ . . . ∨ un)/0. Since 1/b has Krull dimension,
it follows that 1/a has Krull dimension by [10, Prop. 3.2.1].

The rest of the proof clearly follows.

Note that the hypothesis of Corollary 3.2 is satisfied if E(L) has Krull
dimension. Note too that the converse of Corollary 3.2 is false in general,
i.e. if b is an element of a lattice L such that 1/b has Krull dimension then it
does not follow that b is semi-essential. Consider again the opposite lattice
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L◦(Z) of L(Z). Note that L◦(Z) is an Artinian lattice. For each maximal
ideal m in Z, 1/m has Krull dimension but m is not semi-essential.

Combining Theorem 3.1 and Corollary 3.2 we have at once:

Corollary 3.3. Let L be a modular lattice and let a be an element of L
such that 1/a has finite Goldie dimension and 1/e has Krull dimension for
all e ∈ E(L) with a ≤ e. Then 1/a has Krull dimension.

The next result can be found in [11, Prop. 3.1].

Corollary 3.4. Let L be a modular lattice and let a ∈ L. Then 1/a is
Noetherian if and only if a is semi-essential and 1/e is Noetherian for all
e ∈ E(L) with a ≤ e.

P r o o f. By Lemma 2.1, Theorem 3.1 and Corollary 3.2.

4. Complete lattices. Throughout this section all lattices will be com-
plete modular lattices. We shall investigate whether there is an analogue
of Goodearl’s Theorem mentioned in the introduction. In terms of lattices
we have the following question: Let L be a complete modular lattice such
that E(L) is Noetherian and let s =

∧
E(L); is 1/s Noetherian? Goodearl’s

Theorem [6, Prop. 3.6] asserts that this question has an affirmative answer
for the complete modular lattice of submodules of an arbitrary module over
an arbitrary ring. The next result is [11, Lemma 1.3], but we give its proof
for completeness.

Lemma 4.1. Let L be a complete modular lattice and let X be a maximal
independent subset of L. Suppose that y(x) ∈ E(x/0) for each x ∈ X. Let
Y = {y(x) : x ∈ X}. Then

∨
Y ∈ E(L).

P r o o f. Suppose not. Let 0 6= a ∈ L such that a ∧ (
∨

Y ) = 0. Then
a∧ y(x)=0 for all x∈X, and hence a 6∈X. Thus X∪{a} is not independent.
By Corollary 1.2, there exists a finite subset F of X such that a∧(

∨
F ) 6=0.

Let Y ′ = {y(x) : x ∈ F}. Then a∧(
∨

Y ′) 6= 0 (Lemma 1.3). But a∧(
∨

Y ′) ≤
a ∧ (

∨
Y ) = 0, a contradiction.

Let L be a (complete modular) lattice. A non-empty subset X of L will
be called completely join-independent if x ∧ (

∨
(X \ {x})) = 0 for each x in

X. Clearly, completely join-independent sets are join-independent and finite
join-independent sets are completely join-independent. However, let L◦(Z)
denote the opposite lattice of the lattice of ideals of the ring Z of integers.
Let X denote the set of maximal ideals of Z. Then in L◦(Z), the set X is
join-independent but not completely join-independent.

Recall that a lattice L is called upper continuous if

a ∧ (
∨

Ibi) =
∨

I(a ∧ bi),
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for any a ∈ L, any index set I and chain {bi : i ∈ I} in L. The lattice L
will be called weakly upper continuous if a ∧ (

∨
Ibi) = 0 for any a ∈ L and

chain {bi : i ∈ I} in L such that a∧ bi = 0 for all i ∈ I. A lattice L is upper
continuous if and only if 1/a is weakly upper continuous for all a in L. In
particular, upper continuous lattices are weakly upper continuous but the
converse is not true as the following example of Alkhazzi [3, Example 5.4.2]
shows.

Example 4.2. Let L be the subset of R2 consisting of the points (0, 0),
(1, 1), and (x, y) for all 0< x< 1, 0< y< 1. For any (a, b) and (c, d) in L,
we define (a, b) ≤ (c, d) if a ≤ c and b ≤ d. Then L is a complete modular
lattice with Goldie dimension 1 which is weakly upper continuous but not
upper continuous.

P r o o f. It can easily be checked that L is a complete modular lattice
with greatest element (1, 1) and least element (0, 0). Moreover, u(L) = 1
so that L is clearly weakly upper continuous. Let a = (3/4, 1/4) and let
C = {(1/2, y) : 0 < y < 1}. Then C is a chain in L with

∨
C = (1, 1) and so

a ∧ (
∨

C) = a = (3/4, 1/4). However, a ∧ (1/2, y) = (3/4, 1/4) ∧ (1/2, y) =
(1/2, 1/4) for all 1/4 ≤ y ≤ 1, so that

∨
{a ∧ c : c ∈ C} = (1/2, 1/4). Thus

L is not upper continuous.

Lemma 4.3. Let L be a weakly upper continuous modular lattice. Then
any join-independent subset of L is completely join-independent.

P r o o f. Let X be any join-independent subset of L with |X| ≥ 2. Let
x ∈ X and let X ′ = X \ {x}. Let

Ω = {Y ⊆ X ′ : (
∨

Y ) ∧ (
∨

F ) = 0 for all finite subsets F of X \ Y }.

Because |X| ≥ 2, Ω is non-empty. Let {Ci : i ∈ I} be any chain in Ω and
let C =

⋃
I Ci. Then C is a subset of X ′. Let ci =

∨
Ci for each i ∈ I

and let c =
∨

C =
∨

Ici. Let F be any finite subset of X \ C. For each
i∈ I, F ⊆X \ Ci and hence (

∨
F ) ∧ ci = 0. Now {ci : i∈ I} is a chain in L,

so we have (
∨

F ) ∧ c = 0. Thus C belongs to Ω. By Zorn’s Lemma, Ω has
a maximal member P (say).

Now P ⊆X ′. Suppose that P 6=X ′. Let y∈X ′\P . Let p =
∨

P . Let G be
any finite subset of X \(P ∪{y}). Then y∧(

∨
G) = 0 and p∧(y∨(

∨
G)) = 0.

By Lemma 1.1, (
∨

G)∧ (p∨ y) = 0. But p∨ y =
∨

(P ∪ {y}). Thus P ∪ {y}
belongs to Ω, contradicting the choice of P . Therefore P = X ′. It follows
that x ∧ (

∨
X ′) = 0, as required.

There exist complete modular lattices which, although not weakly upper
continuous, have finite Goldie dimension and hence every join-independent
subset is completely join-independent, as the following example shows.
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Example 4.4. For each positive integer n ≥ 2 there exists an Artinian
complete modular lattice with Goldie dimension n which is not weakly upper
continuous.

P r o o f. Let R be a semilocal Noetherian commutative domain with n
maximal ideals. Let L(R) denote the lattice of ideals of R and let L◦(R) de-
note the opposite lattice of L(R). Then L◦(R) is an Artinian complete mod-
ular lattice. Since every proper ideal of R is contained in a maximal ideal, the
maximal ideals are atoms in the lattice L◦(R) and hence u(L◦(R)) = n. For
any distinct maximal ideals p and q in R, p+qk = R for each positive integer
k but p+(

⋂
k≥1 qk) = p by [13, p. 216, Cor. 1]. Thus in L◦(R), {qk : k ≥ 1}

is a chain such that p ∧ qk = 0 for all k ≥ 1, but p ∧ (
∨
{qk : k ≥ 1}) = p.

Thus L◦(R) is not weakly upper continuous.

In Example 4.4, if in addition the ring R is a Dedekind domain (i.e. a
principal ideal domain in this case [13, p. 278, Theorem 16]) then the lattice
L(R) is distributive (see, for example, [13, pp. 279–280]), and hence so too
is L◦(R). In particular, if p1, . . . , pn are n distinct primes in Z then the
localization R of Z with respect to the set {p1, . . . , pn} is a commutative
principal ideal domain with precisely n maximal ideals.

Lemma 4.5. Let L be a complete modular lattice. Let X be a completely
join-independent subset of L. For each x in X, let y(x) ∈ x/0 with y(x) 6= x.
Let y =

∨
{y(x) : x ∈ X}. Then {x ∨ y : x ∈ X} is a completely join-

independent subset of 1/y.

P r o o f. Let x ∈ X and let X ′ = X \ {x}. Let y′ =
∨
{y(z) : z ∈ X ′}.

Then
x ∧ y = x ∧ (y(x) ∨ y′) = y(x) ∨ (x ∧ y′) = y(x) 6= x,

because x ∧ y′ ≤ x ∧ (
∨

X ′) = 0. Thus x ∨ y 6= y. Let w =
∨

X ′. Then

(x ∨ y) ∧ (
∨
{z ∨ y : z ∈ X ′}) = (x ∨ y) ∧ (w ∨ y) = y ∨ (x ∧ (w ∨ y))

= y ∨ (y(x) ∨ (x ∧ (w ∨ y′))
= y ∨ (x ∧ w) = y.

Thus x ∨ y 6= y and (x ∨ y) ∧ (
∨
{z ∨ y : z ∈ X ′}) = y for all x in X. Thus

{x ∨ y : x ∈ X} is a completely join-independent subset of 1/y.

As we have already seen there exist complete modular lattices which have
Krull dimension but which do not have finite Goldie dimension. However,
we have the following result for completely join-independent sets.

Theorem 4.6. Let L be a complete modular lattice with Krull dimension.
Then any completely join-independent subset of L is finite.

P r o o f. Suppose the result is false. Let α ≥ −1 be the least ordinal
such that there exists a complete modular lattice L such that L has Krull
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dimension α and L contains an infinite completely join-independent subset.
Then α ≥ 0. Let X be an infinite completely join-independent subset of L.
Let {xn : n ≥ 1} be a countably infinite subset of X. Let y1 = x1∨x2∨x3∨
. . . , y2 = x2 ∨ x4 ∨ x6 ∨ . . . , y3 = x4 ∨ x8 ∨ x12 ∨ . . ., and so on. Then y1 ≥
y2 ≥ y3 ≥ . . . There exists a positive integer n such that k(yn/yn+1) < k(L).
Now there exist elements zi (i ≥ 1) in X such that yn = z1 ∨ z2 ∨ z3 ∨ . . .
and yn+1 = z2 ∨ z4 ∨ z6 ∨ . . . Note that z2n+2 < z2n+1 ∨ z2n+2 for all n ≥ 0.
By Lemma 4.5, {z2i+1 ∨ z2i+2 ∨ yn+1 : i ≥ 0} is an infinite completely
join-independent subset of yn/yn+1, a contradiction.

We shall say that an element a of a lattice L has property (∗) if for every
non-empty subset X of L such that the set {a} ∪ X (X in case a = 0) is
join-independent and for every x in X, we have

x ∧ [a ∨ (
∨

(X \ {x}))] = 0.

Note that 0 has property (∗) if and only if every join-independent subset of
L is completely join-independent. This is typical, as the following results
shows.

Lemma 4.7. Let L be a complete modular lattice. Then an element a in L
has property (∗) if and only if for every non-empty subset X of L such that
the set {a} ∪X is join-independent the set {x ∨ a : x ∈ X} is a completely
join-independent subset of 1/a.

P r o o f. The necessity is clear. Conversely, suppose that {x∨a : x ∈ X}
is completely join-independent in 1/a. Let x ∈ X and let X ′ = X \ {x}.
Then x ∧ [a ∨ (

∨
X ′)] ≤ (x ∨ a) ∧ [

∨
{x′ ∨ a : x′ ∈ X ′}] = a, and thus

x ∧ [a ∨ (
∨

X ′)] ≤ x ∧ a = 0. Thus a has property (∗).

It is clear that for any lattice L any semi-essential element a has property
(∗). In certain circumstances, the converse is also true as the following result
shows.

Theorem 4.8. Let L be a complete modular lattice. Let s =
∧

E(L) and
let a ∈ 1/s such that 1/e has finite Goldie dimension for every essential
element e in L with a ≤ e. Then the following statements are equivalent
for a.

(i) a is semi-essential.
(ii) Every join-independent subset of L containing a is completely join-

independent.
(iii) a has property (∗).

In Theorem 4.8 if a = 0 then by “every join-independent subset of L
containing a” we mean “every join-independent subset of L.”

P r o o f. (i)⇒(ii)⇒(iii). Clear.
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(iii)⇒(i). Let X be a maximal join-independent subset of L containing
a. Let Z = X \ {a}. Let x ∈ Z. Then x ∧ a = 0 and hence x 6= x ∧ s.
There exists e ∈ E(L) such that x 6= x ∧ e. Let y(x) = x ∧ e. Note that
y(x) ∈ E(x/0) by Lemma 1.3. Let Y = {y(x) : x ∈ Z}. By Lemma 4.1,
t = a∨ (

∨
Y ) ∈ E(L). Now {x∨ a : x ∈ Z} is a completely join-independent

subset of 1/a by Lemma 4.7 and hence {x ∨ t : x ∈ Z} is a (completely)
join-independent subset of 1/t by Lemma 4.5. Hence Z is finite. It follows
that a is semi-essential.

Combining Theorem 4.8 with Corollary 3.4 we have at once:

Corollary 4.9. Let L be a complete modular lattice, let s =
∧

E(L) and
let a ∈ 1/s. Then 1/a is Noetherian if and only if a has property (∗) and
1/e is Noetherian for every e ∈ E(L) with a ≤ e.

As special cases of Theorem 4.8 and Corollary 4.9, we have the following:

Corollary 4.10. Let L be a complete modular lattice such that ev-
ery join-independent subset is completely join-independent. Let s =

∧
E(L).

Then

(i) 1/e has finite Goldie dimension for every essential element e in L if
and only if 1/a has finite Goldie dimension for every a ∈ 1/s, and

(ii) 1/e is Noetherian for every essential element e in L if and only if
1/a is Noetherian for every a ∈ 1/s.

Corollary 4.10 holds for (weakly) upper continuous lattices L by Lemma
4.3 and so is a lattice version of [6, Prop. 3.6] and [12, Theorem 2.1]. We now
want to prove an analogue of Corollary 4.10 for distributive lattices L. Note
that the opposite lattice of the lattice of ideals of Z is a distributive lattice
for which not every join-independent subset is completely join-independent.
However, for certain distributive lattices L, we can show that every element
a of L has property (∗). First we note a result of Puczy lowski [11, Lemma
3.5].

Lemma 4.11. Let L be a complete distributive lattice and let X be any
join-independent subset of L. Let a ∈ L. Then {x ∨ a : x ∈ X, x 6≤ a} is a
join-independent subset of 1/a.

Lemma 4.12. Let L be a complete distributive lattice and let B be a
non-empty subset of L such that 1/b has finite Goldie dimension for every
b ∈ B. Let c =

∧
B. Then every element a of 1/c has property (∗).

P r o o f. Let a ∈ 1/c. Let X be any subset of L such that X ∪ {a} is
join-independent. Let x ∈ X and let X ′ = X \ {x}. Let b ∈ B. By Lemma



96 M. L. GALVÃO AND P. F. SMITH

4.11, the set X ′′ = {y ∈ X ′ : y 6≤ b} is finite, so b∨ (
∨

X ′) = b∨ (
∨

X ′′) and

x ∧ (a ∨ (
∨

X ′)) = (x ∧ a) ∨ (x ∧ (
∨

X ′)) ≤ x ∧ (b ∨ (
∨

X ′′))
= (x ∧ b) ∨ (x ∧ (

∨
X ′′)) = x ∧ b ≤ b.

Thus
x ∧ (a ∨ (

∨
X ′)) ≤

∧
B = c ≤ a.

Now x ∧ (a ∨ (
∨

X ′)) ≤ x ∧ a = 0. Thus a has property (∗).
Note that in Corollary 4.12 we can weaken the hypothesis “1/b has finite

Goldie dimension” to “every join-independent subset of 1/b is completely
join-independent” for every b ∈ B. Combining Theorems 3.1 and 4.8 and
Corollaries 4.9 and 4.12 we have the following analogue of Corollary 4.10.

Theorem 4.13. Let L be complete distributive lattice and let s =
∧

E(L).
Then

(i) 1/e has finite Goldie dimension for every e ∈ E(L) if and only if 1/a
has finite Goldie dimension for every a ∈ 1/s, and

(ii) 1/e is Noetherian for every e ∈ E(L) if and only if 1/a is Noetherian
for every a ∈ 1/s.

Theorem 4.13(ii) is proved by Puczy lowski [11, Theorem 3.7] in case
a = s, but his proof is completely different.

Let L be a lattice and let s =
∧

E(L). If 1/s has Krull dimension then so
does 1/e for any e ∈ E(L). Now we show that the converse holds in certain
situations.

Theorem 4.14. Let L be a complete modular lattice such that E(L) has
Krull dimension. Let s =

∧
E(L) and suppose that s has property (∗). Then

1/s has Krull dimension. Moreover ,

k(1/s) ≤ 1 + sup{k(1/e) : e ∈ E(L)},
k◦(1/s) = sup{k◦(1/e) : e ∈ E(L)}.

P r o o f. Let X be a maximal join-independent subset of L containing
s. Let X ′ = X \ {s}. For each x in X ′ there exists e ∈ E(L) such that
x 6= x ∧ e and we set y(x) = x ∧ e. Then x 6= y(x) ∈ E(x/0) for all x ∈ X ′.
Let y =

∨
{y(x) : x ∈ X ′}. Then t = y ∨ s ∈ E(L) (Lemma 4.1). Now

{x ∨ t : x ∈ X ′} is a completely join-independent subset of 1/t by Lemmas
4.5 and 4.7. By Theorem 4.6, {x ∨ t : x ∈ X ′} is finite. Thus X is finite.
Hence s is semi-essential and the result follows by Corollary 3.2.

Corollary 4.15. Let L be a complete modular lattice such that every
independent subset is completely independent. Let s =

∧
E(L). Then 1/s

has Krull dimension if and only if E(L) has Krull dimension.

P r o o f. By Theorem 4.14.
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In particular, Corollary 4.15 applies to (weakly) upper continuous lat-
tices. Note also that Theorem 4.14 applies to distributive lattices L such that
1/e has Krull dimension and finite Goldie dimension for every e ∈ E(L).

5. An example. In this section we shall give an example of a non-
complete modular lattice L such that E(L) is Noetherian, 0 =

∧
E(L) but

L is not Noetherian. We do not know if there exists a complete modular
lattice with these properties.

Let Z denote the ring of integers and let M be the free Z-module of
countably infinite rank. Each element of M is a countable sequence of inte-
gers with at most a finite number non-zero. For each n ≥ 1, let en denote
the element of M with nth component 1 and all other components 0 and
let Ln =

∑
i≥n Zei. Let L(M) denote the lattice of submodules of M. Let

L denote the collection of submodules N of M such that either N is finitely
generated or N = K + Ln for some n ≥ 1 and some finitely generated
submodule K.

Lemma 5.1. With the above notation, L is a sublattice of L(M). In par-
ticular , L is a modular lattice with least element 0 and greatest element M.

P r o o f. Let X and Y belong to L. If X or Y is finitely generated then
so too is X ∧ Y = X ∩ Y . Also X ∨ Y = X + Y is finitely generated or
has the form K + Ln for some finitely generated submodule K and positive
integer n. Suppose that neither X nor Y is finitely generated. Then there
exist finitely generated submodules K1 and K2 of M and a positive integer n
such that X = K1⊕Ln and Y = K2⊕Ln. Clearly, X ∧Y = (K1∩K2)⊕Ln

and X ∨ Y = (K1 + K2)⊕Ln, so that X ∧ Y ∈ L and X ∨ Y ∈ L. The last
part follows at once.

Lemma 5.2. With the above notation, E ∈ E(L) if and only if there exists
a non-zero ideal A of Z and a positive integer n such that E ⊇ Ae1 ⊕ . . .⊕
Aen ⊕ Ln+1.

P r o o f. If E ⊇ Ae1 ⊕ . . . ⊕ Aen ⊕ Ln+1 for some non-zero ideal A and
positive integer n then E is essential in L(M) and hence E ∈ E(L). Con-
versely, suppose that E is essential in L. Clearly, E is not finitely generated.
There exist an integer n ≥ 0 and a finitely generated submodule K of
Ze1 ⊕ . . . ⊕ Zen such that E = K ⊕ Ln+1. Since E ∈ E(L) it follows that
E ∩ Zei ∈ E(Zei) for each 1 ≤ i ≤ n. Thus Ae1 ⊕ . . . ⊕ Aen ⊆ K for some
non-zero ideal A of Z.

Theorem 5.3. With the above notation, L is a modular lattice such that
E(L) is Noetherian, 0 =

∧
E(L), and L is not Noetherian.

P r o o f. By Lemmas 5.1 and 5.2, L is a modular lattice with least element
0 and greatest element M such that E(L) is Noetherian. Now let E1 =
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Z2⊕Z⊕Z⊕ . . . , E2 = Z4⊕Z2⊕Z⊕Z⊕ . . . , E3 = Z8⊕Z4⊕Z2⊕Z⊕ . . .,
and so on. Clearly each En ∈ E(L) (Lemma 5.2) and

∧
nEn =

⋂
n En = 0.

Finally, it is clear that L is not Noetherian.
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