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PERIODIC Lipα FUNCTIONS WITH Lipβ DIFFERENCE FUNCTIONS

BY

TAMÁS KELET I (BUDAPEST)

1. Introduction. In [7] the following notion was introduced: Let G be
either the additive subgroup of the reals R or the circle group T = R/Z. Let
F and G be classes of functions on G with F ⊃ G. We denote by H(F ,G)
the class of those subsets H of G for which a function f ∈ F can have
difference functions ∆hf(x) = f(x+h)−f(x) in G for every h ∈ H without
f belonging to G. That is,

H(F ,G) = {H ⊂ G : ∃f ∈ F \ G ∆hf ∈ G ∀h ∈ H}.

We denote by Lipα the class of functions f on T for which there exists
an L > 0 such that |f(x)−f(y)| ≤ L|x−y|α for every x, y ∈ T. (Sometimes
we identify T with [0, 1). If a ∈ T then by |a| we mean min(a, 1 − a).)

It was proved in [7] (Theorem 4.10) that for 0 < α < β ≤ 1 we have
H(Lipα,Lipβ) ⊂ Fσ, where Fσ denotes the family of those subsets of T that
can be covered by a proper Fσ subgroup of T. Generalizing a result of
M. Balcerzak, Z. Buczolich and M. Laczkovich [1], it was also proved in [7]
(Theorem 5.3) that equality holds if β = 1. In this paper we investigate the
case when 0 < α < β < 1.

A set H ⊂ T is called a pseudo-Dirichlet set if there exists an increasing
sequence (qn) of integers and a sequence (εn) converging to zero such that
for any x ∈ H there exists an n0(x) such that |sin qnπx| < εn if n ≥ n0(x).
We denote the family of pseudo-Dirichlet sets by pD.

The pseudo-Dirichlet sets were considered by N. Bary [2] who proved
that they are contained in the class of N0-sets. Clearly pD contains all
the Dirichlet sets; in fact, pseudo-Dirichlet sets are the countable increasing
unions of Dirichlet sets (see [3]). These notions together with several other
notions of thinness in harmonic analysis are discussed e.g. in [4] and [5].
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In this paper we prove that

pD ⊂ H(Lipα,Lipβ),

and that all the H(Lipα,Lipβ) classes are the same for any 0 < α < β < 1.

2. pD ⊂ H(Lipα,Lipβ). We will use the following well known lemma
(see e.g. [2], Chapter XI, p. 691, Theorem 2):

Lemma 2.1. If 0 < γ < 1 and (qn) is an increasing sequence of integers

such that qn+1/qn > λ for a suitable λ > 1, then for any sequence (an) of

complex numbers,

|an| = O(1/qγ
n) ⇔ g(x) =

∞
∑

n=1

ane2πiqnx ∈ Lipγ .

Theorem 2.2. For any 0 < α < β < 1,

pD ⊂ H(Lipα,Lipβ).

That is, for any 0 < α < β < 1 and for any pseudo-Dirichlet set H, there

exists a Lipα function f such that ∆hf is Lipβ for any h ∈ H but f is not

Lipβ.

P r o o f. Let H be a pseudo-Dirichlet set. Take a sequence q1 < q2 < . . .
and a sequence εn → 0 witnessing the pseudo-Dirichlet property of H.
Selecting a suitable subsequence, we may assume that qn+1 > 2qn for every
n ∈ N. Let

f(x) =

∞
∑

n=1

1

qβ
nδn

e2πiqnx, where δn = max(εn, 1/qβ−α
n ).

Since 1/(qβ
nδn) ≤ 1/qα

n and qn+1/qn > 2 (n ∈ N), we can apply Lem-
ma 2.1 to obtain f ∈ Lipα. On the other hand, since δn → 0, we have
1/(qβ

nδn) 6= O(1/qβ
n), so Lemma 2.1 implies that f 6∈ Lipβ .

For h ∈ H,

∆hf(x) =
∞
∑

n=1

1

qβ
nδn

(e2πiqnh − 1)e2πiqnx

and
∣

∣

∣

∣

1

qβ
nδn

(e2πiqnh − 1)

∣

∣

∣

∣

=
1

qβ
nδn

2|sin πqnh| ≤
1

qβ
nδn

2εn ≤
2

qβ
n

,

therefore, by Lemma 2.1, ∆hf ∈ Lipβ .

Combining the previous theorem with the result of [7] mentioned in the
introduction, we get the following:
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Corollary 2.3. For any 0 < α < β < 1,

pD ⊂ H(Lipα,Lipβ) ⊂ Fσ.

3. The classes H(Lipα,Lipβ) are the same for 0 < α < β < 1. The
following easy lemmas were obtained in [7]:

Lemma 3.1 (Monotonicity Lemma). If F1 ⊃ F2 ⊃ G then H(F1,G) ⊃
H(F2,G).

Lemma 3.2. If F1 ⊃ F2 ⊃ F3 and H(F1,F2) ⊂ H(F2,F3) then H(F1,F3)
= H(F2,F3).

We will need the notion of fractional integration. There are several
different notions of fractional integrals (see e.g. the monograph [8]); here we
use the so-called Weyl fractional integral which is defined in the following
way (see [8], p. 263, or [9], Vol. II, p. 133):

Let f be an integrable function on T and suppose that
T
T

f = 0. Then,
for any γ > 0, let

(1) Iγ [f ](x) =
\
T

f(t)Ψγ(x − t) dt,

where

(2) Ψγ(t) =
∑

n∈Z\{0}

e2πint

(2πin)γ
.

It is known (see e.g. [9]) that the series in (2) converges everywhere on T\{0}
and the integral in (1) exists almost everywhere. (If f ∼

∑

cne2πinx then
Iγ [f ] ∼

∑

cne2πinx/(2πin)γ .)
Since the operator Iγ is defined by a convolution it commutes with the

translation operator and it is linear; that is,

(3) Iγ [f(y + h)](x) = Iγ [f(y)](x + h),

and

(4) Iγ [cf + dg] = cIγ [f ] + dIγ [g].

Denote by Lipλ
0 the class of Lipλ functions with integral 0 (over T). It is

also well known (see e.g. [8], p. 275) that if γ, λ > 0 and γ + λ < 1, then
Iγ is a bijection (actually, an isomorphism) between the classes Lipλ

0 and

Lipλ+γ
0 ; that is,

(5) Iγ : Lipλ
0 ↔ Lipλ+γ

0 (λ + γ < 1).

Theorem 3.3. For any 0 < α1 < β1 < 1 and 0 < α2 < β2 < 1,

H(Lipα1 ,Lipβ1) = H(Lipα2 ,Lipβ2).
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P r o o f. First we prove that if 0 < α < β and β + γ < 1 then

(6) H(Lipα+γ ,Lipβ+γ) = H(Lipα,Lipβ).

Indeed, (3) and (4) implies that the operator Iγ also commutes with the
difference operator ∆h; that is,

(7) ∆hIγ [f ] = Iγ [∆hf ].

It follows from (5) and (7) that if f0 ∈ Lipα
0 \Lipβ

0 and ∆hf0 ∈ Lipβ
0 for

every h ∈ H then Iγ [f0] ∈ Lipα+γ
0

\Lipβ+γ
0

and ∆hIγ [f0] ∈ Lipβ+γ
0

for every

h ∈ H. Furthermore, if g0 ∈ Lipα+γ
0

\Lipβ+γ
0

and ∆hg0 ∈ Lipβ+γ
0

for every

h ∈ H then I−1
γ [g0] ∈ Lipα

0 \Lipβ
0 and ∆hI−1

γ [g0] ∈ Lipβ
0 for every h ∈ H.

Therefore if the function f : T → R witnesses that H ∈ H(Lipα,Lipβ) then
Iγ [f0], where f0 = f −

T
T

f , witnesses that H ∈ H(Lipα+γ ,Lipβ+γ); further-

more, if the function g : T → R witnesses that H ∈ H(Lipα+γ ,Lipβ+γ) then
I−1
γ [g0], where g0(x) = g −

T
T

g, witnesses that H ∈ H(Lipα,Lipβ).
Now we prove that for any 0 < η < δ < β < 1,

(8) H(Lipβ−δ ,Lipβ) = H(Lipβ−η,Lipβ).

Indeed, by (6), H(Lipβ−δ ,Lipβ−δ/2) = H(Lipβ−δ/2,Lipβ), which implies,

by Lemma 3.2, that H(Lipβ−δ,Lipβ) = H(Lipβ−δ/2,Lipβ). Thus we also

have H(Lipβ−δ,Lipβ) = H(Lipβ−δ/2
k

,Lipβ) for any k ∈ N. Then, by the
Monotonicity Lemma, H(Lipβ−δ,Lipβ) = H(Lipβ−η,Lipβ).

Finally, supposing that β1 ≤ β2 and applying (6) and (8), we get

H(Lipα1 ,Lipβ1) = H(Lipα1+β2−β1 ,Lipβ2) = H(Lipα2 ,Lipβ2).

Remark 3.4. Unfortunately this proof does not work if β1 or β2 equals 1.
Namely, (5) is not true for λ + γ = 1. In this case Iγ is a bijection between

Lip1−γ
0 and Λ∗0, the class of Zygmund functions on T with zero integral.
(A function f is Zygmund if for any x and h, |f(x+h)−2f(x)+f(x−h)| ≤

Ch. The class of Zygmund functions is denoted by Λ∗. It is known (see e.g.
[9], Vol. I, 43–44, and Vol. II, p. 138) that

Lip1(R) ⊂ Λ∗ ⊂ Lipα(R) ∀0 < α < 1,

and Λ∗ 6= Lip1(R).)
Therefore with this method we can only prove that

H(Lipα, Λ∗(T)) = H(Lipα1 ,Lipβ1)

for any 0 < α < 1 and 0 < α1 < β1 < 1.
However, if, for a fixed 0 < α < 1, one could find a linear operator I

that commutes with the translation operator and is a bijection between Lip1

and Lipα (or between Lip1 and Λ∗) then Theorem 3.3 would remain true
for β1 = 1. This would give a complete answer to our question since, as we
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mentioned in the introduction, it was proved in [7] that H(Lipα,Lip1) = Fσ,
so the existence of such an operator would imply that H(Lipα,Lipβ) = Fσ

for any 0 < α < β ≤ 1.
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