COLLOQUIUM MATHEMATICUM

VOL. 76

1998

NO. 1

PERIODIC $\operatorname{Lip}^{\alpha}$ FUNCTIONS WITH $\operatorname{Lip}^{\beta}$ DIFFERENCE FUNCTIONS

$_{\rm BY}$

TAMÁS KELETI (BUDAPEST)

1. Introduction. In [7] the following notion was introduced: Let \mathbb{G} be either the additive subgroup of the reals \mathbb{R} or the circle group $\mathbb{T} = \mathbb{R}/\mathbb{Z}$. Let \mathcal{F} and \mathcal{G} be classes of functions on \mathbb{G} with $\mathcal{F} \supset \mathcal{G}$. We denote by $\mathfrak{H}(\mathcal{F}, \mathcal{G})$ the class of those subsets H of \mathbb{G} for which a function $f \in \mathcal{F}$ can have difference functions $\Delta_h f(x) = f(x+h) - f(x)$ in \mathcal{G} for every $h \in H$ without f belonging to \mathcal{G} . That is,

$$\mathfrak{H}(\mathcal{F},\mathcal{G}) = \{ H \subset \mathbb{G} : \exists f \in \mathcal{F} \setminus \mathcal{G} \ \Delta_h f \in \mathcal{G} \ \forall h \in H \}.$$

We denote by $\operatorname{Lip}^{\alpha}$ the class of functions f on \mathbb{T} for which there exists an L > 0 such that $|f(x) - f(y)| \leq L|x - y|^{\alpha}$ for every $x, y \in \mathbb{T}$. (Sometimes we identify \mathbb{T} with [0, 1). If $a \in \mathbb{T}$ then by |a| we mean $\min(a, 1 - a)$.)

It was proved in [7] (Theorem 4.10) that for $0 < \alpha < \beta \leq 1$ we have $\mathfrak{H}(\operatorname{Lip}^{\alpha}, \operatorname{Lip}^{\beta}) \subset \mathfrak{F}_{\sigma}$, where \mathfrak{F}_{σ} denotes the family of those subsets of \mathbb{T} that can be covered by a proper F_{σ} subgroup of \mathbb{T} . Generalizing a result of M. Balcerzak, Z. Buczolich and M. Laczkovich [1], it was also proved in [7] (Theorem 5.3) that equality holds if $\beta = 1$. In this paper we investigate the case when $0 < \alpha < \beta < 1$.

A set $H \subset \mathbb{T}$ is called a *pseudo-Dirichlet set* if there exists an increasing sequence (q_n) of integers and a sequence (ε_n) converging to zero such that for any $x \in H$ there exists an $n_0(x)$ such that $|\sin q_n \pi x| < \varepsilon_n$ if $n \ge n_0(x)$. We denote the family of pseudo-Dirichlet sets by $p\mathfrak{D}$.

The pseudo-Dirichlet sets were considered by N. Bary [2] who proved that they are contained in the class of N_0 -sets. Clearly $p\mathfrak{D}$ contains all the Dirichlet sets; in fact, pseudo-Dirichlet sets are the countable increasing unions of Dirichlet sets (see [3]). These notions together with several other notions of thinness in harmonic analysis are discussed e.g. in [4] and [5].

¹⁹⁹¹ Mathematics Subject Classification: Primary 26A16; Secondary 26A33, 39A70, 42A16.

The author wishes to express his gratitude to Professor Miklós Laczkovich for his advice and encouragement during the completion of a PhD dissertation [6] which this paper is based on.

Supported by OTKA grant F 019468.

^[99]

In this paper we prove that

$$p\mathfrak{D} \subset \mathfrak{H}(\operatorname{Lip}^{\alpha}, \operatorname{Lip}^{\beta}),$$

and that all the $\mathfrak{H}(\operatorname{Lip}^{\alpha},\operatorname{Lip}^{\beta})$ classes are the same for any $0 < \alpha < \beta < 1$.

2. $p\mathfrak{D} \subset \mathfrak{H}(\operatorname{Lip}^{\alpha}, \operatorname{Lip}^{\beta})$. We will use the following well known lemma (see e.g. [2], Chapter XI, p. 691, Theorem 2):

LEMMA 2.1. If $0 < \gamma < 1$ and (q_n) is an increasing sequence of integers such that $q_{n+1}/q_n > \lambda$ for a suitable $\lambda > 1$, then for any sequence (a_n) of complex numbers,

$$|a_n| = O(1/q_n^{\gamma}) \Leftrightarrow g(x) = \sum_{n=1}^{\infty} a_n e^{2\pi i q_n x} \in \operatorname{Lip}^{\gamma}.$$

THEOREM 2.2. For any $0 < \alpha < \beta < 1$,

$$p\mathfrak{D} \subset \mathfrak{H}(\mathrm{Lip}^{\alpha},\mathrm{Lip}^{\beta}).$$

That is, for any $0 < \alpha < \beta < 1$ and for any pseudo-Dirichlet set H, there exists a Lip^{α} function f such that $\Delta_h f$ is Lip^{β} for any $h \in H$ but f is not Lip^{β}.

Proof. Let H be a pseudo-Dirichlet set. Take a sequence $q_1 < q_2 < \ldots$ and a sequence $\varepsilon_n \to 0$ witnessing the pseudo-Dirichlet property of H. Selecting a suitable subsequence, we may assume that $q_{n+1} > 2q_n$ for every $n \in \mathbb{N}$. Let

$$f(x) = \sum_{n=1}^{\infty} \frac{1}{q_n^{\beta} \delta_n} e^{2\pi i q_n x}, \quad \text{where} \quad \delta_n = \max(\varepsilon_n, 1/q_n^{\beta-\alpha}).$$

Since $1/(q_n^\beta \delta_n) \leq 1/q_n^\alpha$ and $q_{n+1}/q_n > 2$ $(n \in \mathbb{N})$, we can apply Lemma 2.1 to obtain $f \in \operatorname{Lip}^\alpha$. On the other hand, since $\delta_n \to 0$, we have $1/(q_n^\beta \delta_n) \neq O(1/q_n^\beta)$, so Lemma 2.1 implies that $f \notin \operatorname{Lip}^\beta$.

For $h \in H$,

$$\Delta_h f(x) = \sum_{n=1}^{\infty} \frac{1}{q_n^\beta \delta_n} (e^{2\pi i q_n h} - 1) e^{2\pi i q_n x}$$

and

$$\left|\frac{1}{q_n^\beta \delta_n} (e^{2\pi i q_n h} - 1)\right| = \frac{1}{q_n^\beta \delta_n} 2|\sin \pi q_n h| \le \frac{1}{q_n^\beta \delta_n} 2\varepsilon_n \le \frac{2}{q_n^\beta},$$

therefore, by Lemma 2.1, $\Delta_h f \in \text{Lip}^{\beta}$.

Combining the previous theorem with the result of [7] mentioned in the introduction, we get the following:

COROLLARY 2.3. For any $0 < \alpha < \beta < 1$,

$$p\mathfrak{D} \subset \mathfrak{H}(\operatorname{Lip}^{\alpha}, \operatorname{Lip}^{\beta}) \subset \mathfrak{F}_{\sigma}.$$

3. The classes $\mathfrak{H}(\operatorname{Lip}^{\alpha}, \operatorname{Lip}^{\beta})$ are the same for $0 < \alpha < \beta < 1$. The following easy lemmas were obtained in [7]:

LEMMA 3.1 (Monotonicity Lemma). If $\mathcal{F}_1 \supset \mathcal{F}_2 \supset \mathcal{G}$ then $\mathfrak{H}(\mathcal{F}_1, \mathcal{G}) \supset \mathfrak{H}(\mathcal{F}_2, \mathcal{G})$.

LEMMA 3.2. If $\mathcal{F}_1 \supset \mathcal{F}_2 \supset \mathcal{F}_3$ and $\mathfrak{H}(\mathcal{F}_1, \mathcal{F}_2) \subset \mathfrak{H}(\mathcal{F}_2, \mathcal{F}_3)$ then $\mathfrak{H}(\mathcal{F}_1, \mathcal{F}_3) = \mathfrak{H}(\mathcal{F}_2, \mathcal{F}_3)$.

We will need the notion of fractional integration. There are several different notions of fractional integrals (see e.g. the monograph [8]); here we use the so-called Weyl fractional integral which is defined in the following way (see [8], p. 263, or [9], Vol. II, p. 133):

Let f be an integrable function on T and suppose that $\int_{\mathbb{T}} f = 0$. Then, for any $\gamma > 0$, let

(1)
$$I_{\gamma}[f](x) = \int_{\mathbb{T}} f(t)\Psi_{\gamma}(x-t) dt,$$

where

(2)
$$\Psi_{\gamma}(t) = \sum_{n \in \mathbb{Z} \setminus \{0\}} \frac{e^{2\pi i n t}}{(2\pi i n)^{\gamma}}$$

It is known (see e.g. [9]) that the series in (2) converges everywhere on $\mathbb{T}\setminus\{0\}$ and the integral in (1) exists almost everywhere. (If $f \sim \sum c_n e^{2\pi i n x}$ then $I_{\gamma}[f] \sim \sum c_n e^{2\pi i n x} / (2\pi i n)^{\gamma}$.)

Since the operator I_{γ} is defined by a convolution it commutes with the translation operator and it is linear; that is,

(3)
$$I_{\gamma}[f(y+h)](x) = I_{\gamma}[f(y)](x+h),$$

and

(4)
$$I_{\gamma}[cf + dg] = cI_{\gamma}[f] + dI_{\gamma}[g].$$

Denote by $\operatorname{Lip}_{0}^{\lambda}$ the class of $\operatorname{Lip}^{\lambda}$ functions with integral 0 (over \mathbb{T}). It is also well known (see e.g. [8], p. 275) that if $\gamma, \lambda > 0$ and $\gamma + \lambda < 1$, then I_{γ} is a bijection (actually, an isomorphism) between the classes $\operatorname{Lip}_{0}^{\lambda}$ and $\operatorname{Lip}_{0}^{\lambda+\gamma}$; that is,

(5)
$$I_{\gamma}: \operatorname{Lip}_{0}^{\lambda} \leftrightarrow \operatorname{Lip}_{0}^{\lambda+\gamma} \quad (\lambda+\gamma<1).$$

THEOREM 3.3. For any $0 < \alpha_1 < \beta_1 < 1$ and $0 < \alpha_2 < \beta_2 < 1$,

$$\mathfrak{H}(\mathrm{Lip}^{\alpha_1},\mathrm{Lip}^{\beta_1})=\mathfrak{H}(\mathrm{Lip}^{\alpha_2},\mathrm{Lip}^{\beta_2}).$$

Proof. First we prove that if $0 < \alpha < \beta$ and $\beta + \gamma < 1$ then

(6)
$$\mathfrak{H}(\operatorname{Lip}^{\alpha+\gamma},\operatorname{Lip}^{\beta+\gamma}) = \mathfrak{H}(\operatorname{Lip}^{\alpha},\operatorname{Lip}^{\beta}).$$

Indeed, (3) and (4) implies that the operator I_{γ} also commutes with the difference operator Δ_h ; that is,

(7)
$$\Delta_h I_{\gamma}[f] = I_{\gamma}[\Delta_h f].$$

It follows from (5) and (7) that if $f_0 \in \operatorname{Lip}_0^{\alpha} \setminus \operatorname{Lip}_0^{\beta}$ and $\Delta_h f_0 \in \operatorname{Lip}_0^{\beta}$ for every $h \in H$ then $I_{\gamma}[f_0] \in \operatorname{Lip}_0^{\alpha+\gamma} \setminus \operatorname{Lip}_0^{\beta+\gamma}$ and $\Delta_h I_{\gamma}[f_0] \in \operatorname{Lip}_0^{\beta+\gamma}$ for every $h \in H$. Furthermore, if $g_0 \in \operatorname{Lip}_0^{\alpha+\gamma} \setminus \operatorname{Lip}_0^{\beta+\gamma}$ and $\Delta_h g_0 \in \operatorname{Lip}_0^{\beta+\gamma}$ for every $h \in H$ then $I_{\gamma}^{-1}[g_0] \in \operatorname{Lip}_0^{\alpha} \setminus \operatorname{Lip}_0^{\beta}$ and $\Delta_h I_{\gamma}^{-1}[g_0] \in \operatorname{Lip}_0^{\beta}$ for every $h \in H$. Therefore if the function $f: \mathbb{T} \to \mathbb{R}$ witnesses that $H \in \mathfrak{H}(\operatorname{Lip}^{\alpha+\gamma}, \operatorname{Lip}^{\beta})$ then $I_{\gamma}[f_0]$, where $f_0 = f - \int_{\mathbb{T}} f$, witnesses that $H \in \mathfrak{H}(\operatorname{Lip}^{\alpha+\gamma}, \operatorname{Lip}^{\beta+\gamma})$; furthermore, if the function $g: \mathbb{T} \to \mathbb{R}$ witnesses that $H \in \mathfrak{H}(\operatorname{Lip}^{\alpha+\gamma}, \operatorname{Lip}^{\beta+\gamma})$ then $I_{\gamma}^{-1}[g_0]$, where $g_0(x) = g - \int_{\mathbb{T}} g$, witnesses that $H \in \mathfrak{H}(\operatorname{Lip}^{\alpha}, \operatorname{Lip}^{\beta})$.

Now we prove that for any $0 < \eta < \delta < \beta < 1$,

(8)
$$\mathfrak{H}(\operatorname{Lip}^{\beta-\delta},\operatorname{Lip}^{\beta}) = \mathfrak{H}(\operatorname{Lip}^{\beta-\eta},\operatorname{Lip}^{\beta})$$

Indeed, by (6), $\mathfrak{H}(\operatorname{Lip}^{\beta-\delta}, \operatorname{Lip}^{\beta-\delta/2}) = \mathfrak{H}(\operatorname{Lip}^{\beta-\delta/2}, \operatorname{Lip}^{\beta})$, which implies, by Lemma 3.2, that $\mathfrak{H}(\operatorname{Lip}^{\beta-\delta}, \operatorname{Lip}^{\beta}) = \mathfrak{H}(\operatorname{Lip}^{\beta-\delta/2}, \operatorname{Lip}^{\beta})$. Thus we also have $\mathfrak{H}(\operatorname{Lip}^{\beta-\delta}, \operatorname{Lip}^{\beta}) = \mathfrak{H}(\operatorname{Lip}^{\beta-\delta/2^{k}}, \operatorname{Lip}^{\beta})$ for any $k \in \mathbb{N}$. Then, by the Monotonicity Lemma, $\mathfrak{H}(\operatorname{Lip}^{\beta-\delta}, \operatorname{Lip}^{\beta}) = \mathfrak{H}(\operatorname{Lip}^{\beta-\eta}, \operatorname{Lip}^{\beta})$.

Finally, supposing that $\beta_1 \leq \beta_2$ and applying (6) and (8), we get

$$\mathfrak{H}(\mathrm{Lip}^{\alpha_1},\mathrm{Lip}^{\beta_1})=\mathfrak{H}(\mathrm{Lip}^{\alpha_1+\beta_2-\beta_1},\mathrm{Lip}^{\beta_2})=\mathfrak{H}(\mathrm{Lip}^{\alpha_2},\mathrm{Lip}^{\beta_2}). \blacksquare$$

REMARK 3.4. Unfortunately this proof does not work if β_1 or β_2 equals 1. Namely, (5) is not true for $\lambda + \gamma = 1$. In this case I_{γ} is a bijection between $\operatorname{Lip}_0^{1-\gamma}$ and Λ_{*0} , the class of Zygmund functions on \mathbb{T} with zero integral.

(A function f is Zygmund if for any x and h, $|f(x+h)-2f(x)+f(x-h)| \leq Ch$. The class of Zygmund functions is denoted by Λ_* . It is known (see e.g. [9], Vol. I, 43–44, and Vol. II, p. 138) that

$$\operatorname{Lip}^{1}(\mathbb{R}) \subset \Lambda_{*} \subset \operatorname{Lip}^{\alpha}(\mathbb{R}) \ \forall 0 < \alpha < 1,$$

and $\Lambda_* \neq \operatorname{Lip}^1(\mathbb{R})$.)

Therefore with this method we can only prove that

$$\mathfrak{H}(\mathrm{Lip}^{lpha}, \Lambda_*(\mathbb{T})) = \mathfrak{H}(\mathrm{Lip}^{lpha_1}, \mathrm{Lip}^{eta_1})$$

for any $0 < \alpha < 1$ and $0 < \alpha_1 < \beta_1 < 1$.

However, if, for a fixed $0 < \alpha < 1$, one could find a linear operator I that commutes with the translation operator and is a bijection between Lip¹ and Lip^{α} (or between Lip¹ and Λ_*) then Theorem 3.3 would remain true for $\beta_1 = 1$. This would give a complete answer to our question since, as we

mentioned in the introduction, it was proved in [7] that $\mathfrak{H}(\operatorname{Lip}^{\alpha}, \operatorname{Lip}^{1}) = \mathfrak{F}_{\sigma}$, so the existence of such an operator would imply that $\mathfrak{H}(\operatorname{Lip}^{\alpha}, \operatorname{Lip}^{\beta}) = \mathfrak{F}_{\sigma}$ for any $0 < \alpha < \beta \leq 1$.

REFERENCES

- M. Balcerzak, Z. Buczolich and M. Laczkovich, Lipschitz differences and Lipschitz functions, Colloq. Math. 72 (1997), 319-324.
- N. K. Bary, Trigonometric Series, Moscow, 1961 (in Russian); English transl.: A Treatise on Trigonometric Series, Macmillan, New York, 1964.
- Z. Bukovská, Thin sets in trigonometrical series and quasinormal convergence, Math. Slovaca 40 (1990), 53-62.
- [4] L. Bukovský, N. N. Kholshchevnikova and M. Repický, Thin sets of harmonic analysis and infinite combinatorics, Real Anal. Exchange 20 (1994–1995), 454–509.
- [5] S. Kahane, Antistable classes of thin sets in harmonic analysis, Illinois J. Math. 37 (1993), 186-223.
- T. Keleti, Difference functions of periodic measurable functions, PhD thesis, Eötvös Loránd University, Budapest, 1996 (http://www.cs.elte.hu/phd_th/).
- [7] —, Difference functions of periodic measurable functions, submitted.
- [8] S. G. Samko, A. A. Kilbas and O. I. Marichev, *Fractional Integrals and Differentiations and Some Applications*, Science and Technology, Minsk, 1987 (in Russian).
- [9] A. Zygmund, Trigonometric Series, Vols. I–II, Cambridge Univ. Press, 1959.

Mathematical Institute of the Hungarian Academy of Sciences P.O. Box 127 1364 Budapest, Hungary E-mail: elek@cs.elte.hu

> Received 25 February 1997; revised 2 June 1997