COLLOQUIUM MATHEMATICUM

ON NORMAL NUMBERS MOD 2

BY
YOUNGHO AHN and GEON H. CHOE (TAEJON)

It is proved that a real-valued function $f(x)=\exp \left(\pi i \chi_{\underline{I}}(x)\right)$, where I is an interval contained in $[0,1)$, is not of the form $f(x)=q(2 x) q(x)$ with $|q(x)|=1$ a.e. if I has dyadic endpoints. A relation of this result to the uniform distribution mod 2 is also shown.

1. Introduction Let (X, μ) be a probability measure space. A measurable transformation $T: X \rightarrow X$ is said to be measure preserving if $\mu\left(T^{-1} E\right)=\mu(E)$ for every measurable subset E. A measure preserving transformation T on X is called ergodic if $f(T x)=f(x)$ holds only for constant functions f on X. Throughout the paper all set equalities, set inclusions and function equalities are understood modulo measure zero sets, and all subsets are measurable unless otherwise stated. For example, we say that I is an interval if the Lebesgue measure of $I \Delta[a, b]$ equals zero for some a, b, where Δ denotes symmetric difference.

Let χ_{E} be the characteristic function of a set E and consider the behavior of the sequence $\sum_{k=0}^{n-1} \chi_{E}\left(T^{k} x\right)$ which counts the number of times the points $T^{k} x$ visit E. The Birkhoff Ergodic Theorem applied to the ergodic transformation $T: x \mapsto\{2 x\}$ on $[0,1)$, where $\{t\}$ is the fractional part of t, gives the classical Borel Theorem on normal numbers:

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=0}^{n-1} \chi_{[1 / 2,1)}\left(T^{k} x\right)=\frac{1}{2}
$$

This implies that a.e. x is normal, i.e., the relative frequency of the digit 1 in the binary expansion of x is $1 / 2$ (see [7]).

In this paper we are interested in the uniform distribution of the sequence $y_{n} \in\{0,1\}$ defined by

[^0]$$
y_{n}(x) \equiv \sum_{k=0}^{n-1} \chi_{E}\left(T^{k} x\right)(\bmod 2)
$$
where $T: x \mapsto\{2 x\}$. When $E=[1 / 2,1)$ it is shown that $\left\{y_{n}(x)\right\}$ is evenly distributed in L^{2}-sense [1]. If $\left\{y_{n}(x)\right\}$ is evenly distributed for a fixed set E, that is, the limit of $N^{-1} \sum_{n=1}^{N} y_{n}$ exists and equals $1 / 2$, then we call x a normal number mod 2 with respect to E. Contrary to our intuition, the limit might not exist and even when it exists it may not be equal to $1 / 2$. This type of problem was first studied by Veech [6]. He considered the case when the transformations are given by irrational rotations on the unit circle, and obtained results which showed that the length of the interval E and the rotation angle θ are closely related. For example, he proved that when the irrational number θ has bounded partial quotients in its continued fraction expansion, then the sequence $\left\{y_{n}\right\}$ is evenly distributed if the length of the interval is not an integral multiple of θ modulo 1 . For a related result, see [2].

We investigate the problem from the viewpoint of spectral theory. Let (X, μ) be a probability space and T an ergodic transformation on X which is not necessarily invertible. Consider the behavior of the sequence $2 y_{n}(x)-1=$ $\exp \left(\pi i y_{n}\right)$, and check whether the limit is zero in a suitable sense. Define an isometry U on $L^{2}(X)$ by

$$
(U f)(x)=\exp \left(\pi i \chi_{E}(x)\right) f(T x)
$$

Then for $n \geq 1$ and the constant function 1 ,

$$
\left(U^{n} 1\right)(x)=\exp \left(\pi i \sum_{k=0}^{n-1} \chi_{E}\left(T^{k} x\right)\right)=\exp \left(\pi i y_{n}(x)\right)
$$

and the problem is to study the existence of

$$
\begin{equation*}
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N}\left(U^{n} 1\right)(x) \tag{*}
\end{equation*}
$$

Thus we ask whether the limit of $(*)$ equals 0 . By the von Neumann Mean Ergodic Theorem, the L^{2}-limit of $N^{-1} \sum_{n=1}^{N} U^{n} f$ exists and equals $P f$, where P is the orthogonal projection onto the U-invariant subspace.

We briefly summarize the related results of [1]. Recall that a function $f(x)$ is called a coboundary if $f(x)=q(x) q(T x)$ with $|q(x)|=1$ a.e. on X. Let $\mathcal{M}=\left\{h \in L^{2}(X): U h=h\right\}$. Then the dimension of \mathcal{M} is 0 or 1 . If $\operatorname{dim} \mathcal{M}=0$, then $N^{-1} \sum_{n=1}^{N} U^{n} 1 \rightarrow 0$ in L^{2}. If $\operatorname{dim} \mathcal{M}=1$, then (i) $\exp \left(\pi i \chi_{E}\right)$ is a coboundary, (ii) there exists q such that $q(x)=\exp \left(\pi i \chi_{F}(x)\right)$ for some $F, \exp \left(\pi i \chi_{E}(x)\right)=q(x) q(T x), E=F \Delta T^{-1} F=F^{\mathrm{c}} \Delta T^{-1} F^{\mathrm{c}}$, and (iii) $N^{-1} \sum_{n=1}^{N} U^{n} 1 \rightarrow C q$ in L^{2}, where $C=\int_{X} q(x) d \mu$. In fact, the convergence is better than L^{2} since the Birkhoff Ergodic Theorem implies
that at a.e. $x \in X$,

$$
\frac{1}{N} \sum_{n=1}^{N} U^{n} 1=\frac{1}{N} \sum_{n=1}^{N} q(x) q\left(T^{n} x\right)=q(x) \frac{1}{N} \sum_{n=1}^{N} q\left(T^{n} x\right) \rightarrow q(x) \int_{X} q(y) d \mu(y)
$$

Hence the convergence is pointwise, which was not indicated in [1].
Suppose $\lambda \overline{q(2 x)} q(x)= \pm 1$ for some $|q|=1$. Then $1=\lambda^{2} \overline{q^{2}(2 x)} q^{2}(x)$ and $\lambda^{2} q^{2}(x)=q^{2}(2 x)$. Since 1 is the only eigenvalue of $x \mapsto\{2 x\}$, we see that $\lambda^{2}=1$ and q^{2} is constant. Thus $\lambda= \pm 1$.

Let F be a Lebesgue measurable subset of \mathbb{R} and m be the Lebesgue measure on \mathbb{R}. For a point $x \in \mathbb{R}$ the metric density of F at x is defined to be

$$
d_{F}(x) \equiv \lim _{r \rightarrow 0+} \frac{m(F \cap(x-r, x+r))}{2 r}
$$

provided that this limit exists. The metric density of F equals 1 and 0 at a.e. point of F and F^{c}, respectively. If $(x-r, x+r)$ and $2 r$ are replaced by $[x, x+r)$ and r respectively in the above limit, then we call the corresponding limit $d_{F}^{+}(x)$ the right metric density of F at x. Recall that for $f \in L^{1}(\mathbb{R})$, a point $x \in \mathbb{R}$ is called a Lebesgue point of f if

$$
\lim _{r \rightarrow 0+} \frac{1}{2 r} \int_{(x-r, x+r)}|f(y)-f(x)| d m(y)=0
$$

We know that for $f \in L^{1}(\mathbb{R})$ almost every $x \in \mathbb{R}$ is a Lebesgue point of f. If x is a Lebesgue point of χ_{F}, then $d_{F}(x)=d_{F}^{+}(x)$. Similarly the left metric density $d_{F}^{-}(x)$ is defined.

The metric density of F at a specific point may not be well defined. Then the point is not a Lebesgue point of χ_{F} [3]: Given κ and $\eta, 0 \leq$ $\kappa \leq \eta \leq 1$, there exists $F \subset \mathbb{R}$ so that the upper and lower limits of $m(F \cap(-\delta, \delta)) /(2 \delta)$ are η and κ, respectively, as $\delta \rightarrow 0$. Recall that for a point x a sequence A_{1}, A_{2}, \ldots of measurable sets is said to shrink to x nicely if there is a constant $c>0$ for which there is a sequence of positive numbers r_{1}, r_{2}, \ldots with $\lim r_{n}=0$ such that $A_{n} \subset\left(x-r_{n}, x+r_{n}\right)$ and $m\left(A_{n}\right) \geq c r_{n}$. If a sequence $\left\{A_{n}\right\}_{n}$ shrinks to x nicely and x is a Lebesgue point of χ_{F}, then

$$
d_{F}(x)=\lim _{n \rightarrow \infty} \frac{m\left(F \cap A_{n}\right)}{m\left(A_{n}\right)}
$$

(see p. 140 of [5]).
Throughout the paper a rational number of the form $\sum_{i=1}^{k} a_{i} 2^{-i}, a_{i} \in$ $\{0,1\}$ for $1 \leq i \leq k$ with $a_{k}=1$, is called a dyadic number and denoted by $\left[a_{1}, \ldots, a_{k}\right]$. By convention, 0 and 1 are also regarded as dyadic numbers.

Note that for the set $E=[1 / 6,5 / 6], \exp \left(\pi i \chi_{E}\right)$ is a coboundary since $E=F \Delta T^{-1} F$ for $F=[1 / 3,2 / 3]$. The numbers $1 / 6,5 / 6$ are not dyadic and the sequence $N^{-1} \sum_{n=1}^{N} y_{n}(x)$ converges to $f(x)$, where $f(x)=1 / 3$ if $x \in F$ and $f(x)=2 / 3$ if $x \notin F$ almost everywhere. In this paper, we will show that $\exp \left(\pi i \chi_{[a, b]}\right)$ with a, b dyadic is a coboundary if and only if $a=1 / 4$ and $b=3 / 4$. The interval $E=[1 / 4,3 / 4]$ satisfies the condition since $E=F \Delta T^{-1} F$ for $F=[0,1 / 2]$. But $\int \exp \left(\pi i \chi_{F}\right) d \mu=0$, so the sequence converges to 0 , hence we see that Borel's theorem mod 2 holds for every interval with dyadic endpoints.
2. Lemmas on metric density. Note that $T^{-1} F \cap[0, r]=\frac{1}{2} F \cap[0, r]$ for $0<r \leq 1 / 2$, and $T^{-1} F \cap[r, 1]=\left(\frac{1}{2} F+\frac{1}{2}\right) \cap[r, 1)$ for $1 / 2 \leq r<1$.

For a fixed set F and real $0 \leq t<1$ define a continuous function $h_{F, t}(r)$ on $(0,1-t)$ by

$$
h_{F, t}(r) \equiv h_{t}(r)=\frac{m(F \cap[t, t+r])}{r} .
$$

Similarly for real $0<t \leq 1$ define a function $g_{F, t}(r)$ on $(0, t)$ by

$$
g_{F, t}(r) \equiv g_{t}(r)=\frac{m(F \cap[t-r, t])}{r}
$$

Note that $d_{F}^{+}(t)=\lim _{r \rightarrow 0+} h_{F, t}(r)$ and $d_{F}^{-}(t)=\lim _{r \rightarrow 0+} g_{F, t}(r)$.
Lemma 1. If two dyadic numbers $0<a<b<1$ satisfy $[a, b]=F \Delta T^{-1} F$ for some set F, then:
(i) $h_{0}\left(r / 2^{n}\right)=h_{0}(r)$ for all $n \in \mathbb{N}$ and all $0<r \leq \min \{2 a, 1\}$.
(ii) If $d_{F}^{+}(0)$ exists, then $d_{F}^{+}(0)=h_{0}(r)=0$ or 1 .
(iii) If $d_{F}^{+}(0)=1$, then F contains an interval of the form $[0, r], r>0$, and if $d_{F}^{+}(0)=0$, then F^{c} contains such an interval.

Proof. (i) Take r with $0<r \leq \min \{2 a, 1\}$. Since $\left(F \triangle T^{-1} F\right) \cap[0, r / 2]=$ \emptyset, we have $F \cap[0, r / 2]=T^{-1} F \cap[0, r / 2]$. Thus $m(F \cap[0, r / 2])=m\left(T^{-1} F \cap\right.$ $[0, r / 2])=m\left(\frac{1}{2} F \cap[0, r / 2]\right)=\frac{1}{2} m(F \cap[0, r])$ and $h_{0}(r / 2)=h_{0}(r)$. Hence $h_{0}\left(r / 2^{n}\right)=h_{0}\left(r / 2^{n-1}\right)=\ldots=h_{0}(r)$.
(ii) Put $c=\min \{2 a, 1\}$. Since $h_{0}\left(r / 2^{n}\right)=h_{0}(r)$ for all $n \in \mathbb{N}$ and $0 \leq r<c$ by (i), we have

$$
d_{F}^{+}(0)=\lim _{s \rightarrow 0+} \frac{m(F \cap[0, s])}{s}=\lim _{n \rightarrow \infty} h_{0}\left(\frac{r}{2^{n}}\right)=h_{0}(r) .
$$

Assume that $d_{F}^{+}(0)=\alpha, 0<\alpha<1$. Since for every $0 \leq r<c$, there exists a sufficiently small $\delta(r)>0$ such that $0 \leq r+\varepsilon<c$ for all $0<\varepsilon<\delta(r)$, i.e.,

$$
\frac{m(F \cap[0, r+\varepsilon])}{r+\varepsilon}=\alpha
$$

we have $m(F \cap[r, r+\varepsilon])=m(F \cap[0, r+\varepsilon])-m(F \cap[0, r])=\alpha(r+\varepsilon)-\alpha r=\alpha \varepsilon$. Hence $m(F \cap[r, r+\varepsilon]) / \varepsilon=\alpha$ so F has right metric density α at r, for all $0 \leq r<c$. Since $0<\alpha<1$, this contradicts the fact that almost everywhere the metric density is 0 or 1 .
(iii) Assume that $d_{F}^{+}(0)=1$ and F does not contain any interval. Then for every $0<r \leq \min \{2 a, 1\}$,

$$
h_{0}(r)=\frac{m(F \cap[0, r])}{r}<1
$$

But $h_{0}(r)=d_{F}^{+}(0)=1$. This is a contradiction. Thus F contains an interval of the form $[0, r], r>0$. The other case is similarly proved.

Remark. If a, b and F satisfy the conditions of Lemma 1, then similar results also hold for $d_{F}^{-}(1)$ and $g_{1}(r)$:
(i) $g_{1}\left(r / 2^{n}\right)=g_{1}(r)$ for all $n \in \mathbb{N}$ and all $0<r \leq 1-b / 2$.
(ii) If $d_{F}^{-}(1)$ exists, then $d_{F}^{-}(1)=g_{1}(r)=0$ or 1 .
(iii) If $d_{F}^{-}(1)=1$, then F contains an interval of the form $[s, 1], s<1$, and if $d_{F}^{-}(1)=1$, then F^{c} contains such an interval.

Hence we investigate the existence of $d_{F}^{+}(0)$ in Lemmas 2 and 3. The existence of $d_{F}^{-}(1)$ is similarly proved.

Lemma 2. Let $a=\left[a_{1}, \ldots, a_{p}\right], b=\left[b_{1}, \ldots, b_{q}\right]$ and F satisfy the conditions of Lemma 1. Put $r_{0}=1 / 2^{k}$, where $k=\max \{p, q\}$. Then for $t=$ $\left[c_{1}, \ldots, c_{l}\right], h_{t}\left(r / 2^{n}\right)=h_{t}(r)$ and either $h_{t}=h_{0}$ or $h_{t}=1-h_{0}$ for $n \in \mathbb{N}$ and $0<r \leq r_{0} / 2^{l}$. Hence the right metric density of F exists at 0 if and only if it exists at every dyadic point t; in that case either $d_{F}^{+}(t)=d_{F}^{+}(0)$ or $d_{F}^{+}(t)=1-d_{F}^{+}(0)$.

Proof. Step 1. We consider the case of $l=1$. Put $E=[a, b]$. Then $h_{0}(r)=h_{0}\left(r / 2^{n}\right)$ for $n \in \mathbb{N}$ and $0<r \leq r_{0}$ by Lemma 1 , and either $E \cap\left[1 / 2,1 / 2+r_{0} / 2\right]=\emptyset$ or $E \cap\left[1 / 2,1 / 2+r_{0} / 2\right]=\left[1 / 2,1 / 2+r_{0} / 2\right]$.

CASE 1. If $E \cap\left[1 / 2,1 / 2+r_{0} / 2\right]=\emptyset$, then $m(E \cap[1 / 2,1 / 2+r])=0$ for $0<r \leq r_{0} / 2$. Since $E=F \triangle T^{-1} F$, it follows that $m(F \cap[1 / 2,1 / 2+r])=$ $m\left(T^{-1} F \cap[1 / 2,1 / 2+r]\right)=m\left(T^{-1} F \cap[0, r]\right)=\frac{1}{2} m(F \cap[0,2 r])$. Thus

$$
h_{1 / 2}(r)=h_{0}(2 r)=h_{0}(r)
$$

Furthermore,

$$
h_{1 / 2}\left(r / 2^{n}\right)=h_{0}\left(r / 2^{n}\right)=h_{0}(r)=h_{1 / 2}(r)
$$

for all n and $0<r \leq r_{0} / 2$.
CASE 2. If $E \cap\left[1 / 2,1 / 2+r_{0} / 2\right]=\left[1 / 2,1 / 2+r_{0} / 2\right]$, then $m(E \cap[1 / 2$, $1 / 2+r])=r$ for $0<r \leq r_{0} / 2$. So $m(F \cap[1 / 2,1 / 2+r])=r-m\left(T^{-1} F \cap[1 / 2\right.$,

$$
\begin{gathered}
1 / 2+r])=r-m\left(T^{-1} F \cap[0, r]\right)=r-\frac{1}{2} m(F \cap[0,2 r]) . \text { Thus } \\
h_{1 / 2}(r)=1-h_{0}(2 r)=1-h_{0}(r)
\end{gathered}
$$

and

$$
h_{1 / 2}\left(r / 2^{n}\right)=1-h_{0}\left(r / 2^{n}\right)=1-h_{0}(r)=h_{1 / 2}(r)
$$

for $n \in \mathbb{N}$ and $0<r \leq r_{0} / 2$.
Hence

$$
h_{1 / 2}\left(r / 2^{n}\right)=h_{1 / 2}(r)=h_{0}(r) \quad \text { or } \quad 1-h_{0}(r)
$$

for $n \in \mathbb{N}$ and $0<r \leq r_{0} / 2$.
Step 2. By induction assume that if $s=\left[s_{1}, \ldots, s_{l-1}\right]$ then $h_{s}\left(r / 2^{n}\right)=$ $h_{s}(r)$ and $h_{s}=h_{0}$ or $1-h_{0}$ for all $0<r \leq r_{0} / 2^{l-1}$.

Let $t=\left[c_{1}, \ldots, c_{l}\right]$ and $s=\left[c_{2}, \ldots, c_{l}\right]$. Then either $t=\left[0, c_{2}, \ldots, c_{l}\right]$ or $t=\left[1, c_{2}, \ldots, c_{l}\right]$. If $t=\left[0, c_{2}, \ldots, c_{l}\right]$ then $t=\frac{1}{2} s$, and if $t=\left[1, c_{2}, \ldots, c_{l}\right]$ then $t=\frac{1}{2} s+\frac{1}{2}$. Note that either $E \cap\left[t, t+r_{0} / 2^{l}\right]=\emptyset$ or $E \cap\left[t, t+r_{0} / 2^{l}\right]=$ $\left[t, t+r_{0} / 2^{l}\right]$.

CASE 1. If $E \cap\left[t, t+r_{0} / 2^{l}\right]=\emptyset$, then $m(E \cap[t, t+r])=0$ for $0<r \leq$ $r_{0} / 2^{l}$. Since $E=F \Delta T^{-1} F$, it follows that $m(F \cap[t, t+r])=m\left(T^{-1} F \cap\right.$ $[t, t+r])=\frac{1}{2} m(F \cap[s, s+2 r])$. Thus $h_{t}(r)=h_{s}(2 r)=h_{s}(r)=h_{0}(r)$ or $1-h_{0}(r)$ and $h_{t}\left(r / 2^{n}\right)=h_{s}\left(r / 2^{n}\right)=h_{s}(r)=h_{t}(r)$ for $n \in \mathbb{N}$ and $0<r \leq r_{0} / 2^{l}$.

CASE 2. If $E \cap\left[t, t+r_{0} / 2^{l}\right]=\left[t, t+r_{0} / 2^{l}\right]$, then $m(E \cap[t, t+r])=r$ for $0<r \leq r_{0} / 2^{l}$. Since $m(F \cap[t, t+r])=r-m\left(T^{-1} F \cap[t, t+r]\right)=$ $r-\frac{1}{2} m(F \cap[s, s+2 r])$ we have $h_{t}(r)=1-h_{s}(2 r)=1-h_{s}(r)=h_{0}(r)$ or $1-h_{0}(r)$ and $h_{t}\left(r / 2^{n}\right)=1-h_{s}\left(r / 2^{n}\right)=1-h_{s}(r)=h_{t}(r)$ for $n \in \mathbb{N}$ and $0<r \leq r_{0} / 2^{l}$.

Hence for $t=\left[c_{1}, \ldots, c_{l}\right]$ we have

$$
h_{t}\left(r / 2^{n}\right)=h_{t}(r)=h_{0}(r) \quad \text { or } \quad 1-h_{0}(r)
$$

for $n \in \mathbb{N}$ and $0<r \leq r_{0} / 2^{l}$. From this the second assertion follows.
Lemma 3. If a, b and F satisfy the conditions of Lemma 1 , then the right metric density of F exists at every dyadic point.

Proof. By Lemma 2 it is sufficient to show that the right metric density of F exists at 0 . Assume that $\lim _{r \rightarrow 0+} h_{0}(r)$ does not exist. Let $E=[a, b]$ with $a=\left[a_{1}, \ldots, a_{p}\right], b=\left[b_{1}, \ldots, b_{q}\right]$ and r_{0} be as in Lemma 2. From Lemma 2 we see that for $t=\left[c_{1}, \ldots, c_{l}\right], h_{t}\left(r / 2^{n}\right)=h_{t}(r)=h_{0}(r)$ or $1-h_{0}(r)$ for $n \in \mathbb{N}$ and $0<r \leq r_{0} / 2^{l}$.

Take a Lebesgue point ξ of χ_{F} with $d_{F}(\xi)=1$, and put $r_{n}=r_{0} / 2^{n}$. For every n choose $\xi_{n} \in\left\{\left[c_{1}, \ldots, c_{m}\right]: m \leq n\right\}$ so that the sequence ξ_{n} converges to ξ and $\left[\xi_{n}, \xi_{n}+r_{n}\right] \subset\left(\xi-1 / 2^{n-1}, \xi+1 / 2^{n-1}\right)$. Since $m\left(\left[\xi_{n}, \xi_{n}+r_{n}\right]\right) / 2^{n-2}$ $=r_{0} / 4$, the subsets $\left[\xi_{n}, \xi_{n}+r_{n}\right]$ shrink to ξ nicely. For fixed r_{0}, there exists
$\varepsilon>0$ such that $\varepsilon<h_{0}\left(r_{0}\right)<1-\varepsilon$. If not, the metric density at 0 must exist. Hence

$$
\frac{m\left(F \cap\left[\xi_{n}, \xi_{n}+r_{n}\right]\right)}{r_{n}}=h_{\xi_{n}}\left(r_{n}\right)=h_{0}\left(r_{n}\right) \quad \text { or } \quad 1-h_{0}\left(r_{n}\right)<1-\varepsilon
$$

for all n. Since the metric density of F at ξ is 1 , this is a contradiction.
Lemma 4. If $[0, b]=F \triangle T^{-1} F$ with $b=\left[b_{1}, \ldots, b_{q}\right]$ a dyadic number, then
(i) $h_{0}\left(r / 2^{2 n}\right)=h_{0}(r)$ and $h_{0}\left(r / 2^{2 n-1}\right)=1-h_{0}(r)$ for all $n \in \mathbb{N}$ and $0<r \leq \min \{2 b, 1\}$.
(ii) Put $r_{0}=1 / 2^{q}$. Then for $t=\left[c_{1}, \ldots, c_{l}\right], h_{t}\left(r / 2^{2 n}\right)=h_{t}(r)$, $h_{t}\left(r / 2^{2 n-1}\right)=1-h_{t}(r)$ and $h_{t}=h_{0}$ or $1-h_{0}$ for all $n \in \mathbb{N}$ and $0<$ $r \leq r_{0} / 2^{l}$.
(iii) $[0, b] \neq F \triangle T^{-1} F$ for every measurable set F.

Proof. (i) Take r with $0<r \leq \min \{2 b, 1\}$. Since $\left(F \Delta T^{-1} F\right) \cap[0, r / 2]=$ $[0, r / 2]$, we have $m(F \cap[0, r / 2])=r / 2-m\left(T^{-1} F \cap[0, r / 2]\right)=r / 2-m\left(\frac{1}{2} F \cap\right.$ $[0, r / 2])=r / 2-\frac{1}{2} m(F \cap[0, r])$ and $h_{0}(r / 2)=1-h_{0}(r)$. Hence $h_{0}\left(r / 2^{2 n}\right)=$ $1-h_{0}\left(r / 2^{2 n-1}\right)=\ldots=h_{0}(r)$ and $h_{0}\left(r / 2^{2 n-1}\right)=1-h_{0}\left(r / 2^{2 n-2}\right)=\ldots=$ $h_{0}(r)$.
(ii) Put $E=[0, b]$. Then $h_{0}\left(r / 2^{2 n}\right)=h_{0}(r)$ and $h_{0}\left(r / 2^{2 n-1}\right)=1-h_{0}(r)$ for $n \in \mathbb{N}$ and $0<r \leq r_{0}$ by (i) and $E \cap\left[1 / 2,1 / 2+r_{0} / 2\right]=\emptyset$ or $E \cap$ $\left[1 / 2,1 / 2+r_{0} / 2\right]=\left[1 / 2,1 / 2+r_{0} / 2\right]$. Now proceed as in Lemma 2.
(iii) Take ξ, r_{0}, r_{n} and ξ_{n} as in the proof of Lemma 3. Then
$d_{F}(\xi)=\lim _{n \rightarrow \infty} h_{\xi_{n}}\left(r_{n}\right)=\lim _{n \rightarrow \infty} h_{0}\left(r_{n}\right)$ or $1-h_{0}\left(r_{n}\right)=1-h_{0}\left(r_{0}\right)$ or $h_{0}\left(r_{0}\right)$
by (ii). If $d_{F}(\xi)=1-h_{0}\left(r_{0}\right)$, then $h_{0}\left(r_{0}\right)=0$ and $[0, b] \neq F \triangle T^{-1} F$ for this F. The other cases are similarly proved.

Remark. For the case $[a, 1]=F \Delta T^{-1} F$ with $a=\left[a_{1}, \ldots, a_{p}\right]$ a dyadic number, we consider the left metric density for F and $g_{t}(r)$. Then we have the same conclusion as in Lemma 4. For example, put $r_{0}=1 / 2^{p}$. Then for $t=\left[c_{1}, \ldots, c_{l}\right], g_{t}\left(r / 2^{2 n}\right)=g_{t}(r), g_{t}\left(r / 2^{2 n-1}\right)=1-g_{t}(r)$ and either $g_{t}=g_{1}$ or $1-g_{1}$ for all $n \in \mathbb{N}$ and $0<r \leq r_{0} / 2^{l}$. Hence we may assume that if $[a, b]=F \triangle T^{-1} F$ for some F with a, b dyadic, then either F or F^{c} contains an interval of the form $[0, r]$ or $[r, 1]$ for some $0<r<1$.
3. Main result. We say that $[\alpha, \beta]$ is the optimal bounding interval for F if $F \subset[\alpha, \beta]$ modulo measure zero sets and α is the infimum of points at which F has a positive metric density, while β is the supremum of points at which F has a positive right metric density. From now on, if K is connected and $m(S)=0$, then we regard $K \backslash S$ as being connected, and if E is an interval, then we regard $E \backslash S$ as an interval.

Theorem 1. Let T be the transformation defined by $x \mapsto 2 x(\bmod 1)$ on $[0,1)$. Let a and b be dyadic numbers. Then $\exp \left(\pi i \chi_{[a, b]}\right)$ is a coboundary if and only if $a=1 / 4$ and $b=3 / 4$.

Proof. Recall that there exists a measurable set F such that neither F nor its complement contain any interval of positive length [5]. But if E is an interval with dyadic endpoints, then F or F^{c} contains an interval of the form $[0, r]$ or $[s, 1], r>0, s<1$, and $E=F^{c} \Delta T^{-1} F^{c}$. Hence we may assume that F^{c} contains an interval of the form $[0, r]$ or $[s, 1], r>0, s<1$. For this F, the optimal bounding interval $[\alpha, \beta]$ has either $\alpha>0$ or $\beta<1$.

Case 1. Assume that $F \subset[\alpha, \beta], 0 \leq \alpha<\beta<1 / 2$ and $[\alpha, \beta]$ is the optimal bounding interval for F.

Then $m(F \cap[\beta / 2, \beta])>0, m\left(T^{-1} F \cap[\beta / 2, \beta]\right)=0$ and

$$
m\left(T^{-1} F \cap\left[\frac{1+\alpha}{2}, \frac{1+\beta}{2}\right]\right)>0, \quad m\left(F \cap\left[\frac{1+\alpha}{2}, \frac{1+\beta}{2}\right]\right)=0
$$

But in $E=F \triangle T^{-1} F, m(E \cap[\beta / 2, \beta])>0, m(E \cap[\beta, 1 / 2])=0$, and $m(E \cap[1 / 2,(1+\beta) / 2])>0$. So this reduces to the assumption that E is an interval. If $F \Delta T^{-1} F$ is an interval, then $\alpha=0, \beta=1 / 2$ and $F=[0,1 / 2]$. In this case $E=[1 / 4,3 / 4]$.

CASE 2. If $F \subset[\alpha, \beta]$ where $1 / 2<\alpha<\beta \leq 1$, and $[\alpha, \beta]$ is the optimal bounding interval for F, then as in Case 1, if $F \triangle T^{-1} F$ is an interval, then $\alpha=1 / 2, \beta=1$ and $F=[1 / 2,1]$. In this case $E=[1 / 4,3 / 4]$.

CASE 3. If $F \subset[\alpha, \beta]$ where $0<\alpha<1 / 2<\beta<1$, and $[\alpha, \beta]$ is the optimal bounding interval for F, then there are three possibilities.

If $\beta / 2<\alpha$, then $F \cap \frac{1}{2} F=\emptyset, m\left(T^{-1} F \cap[\alpha / 2, \beta / 2]\right)>0, m\left(T^{-1} F \cap\right.$ $[\beta / 2, \alpha])=0, m(F \cap[\beta / 2, \alpha])=0$, and $m(F \cap[\alpha, 1 / 2])>0$. This contradicts the fact that $E=F \triangle T^{-1} F$ is an interval.

If $\beta / 2=\alpha$ then $m\left(F \cap \frac{1}{2} F\right)=0, m\left(T^{-1} F \cap[\alpha / 2, \beta / 2]\right)>0, m(F \cap$ $[\alpha, 1 / 2])>0, m(F \cap[\beta, 1+\beta / 2])=0$ and $m\left(T^{-1} F \cap[\beta,(1+\beta) / 2]\right)=0$. Thus for E to be an interval, F must contain the interval $[\alpha, 2 \alpha]$. This is due to the fact that the measure of $\frac{1}{2} F$ is half that of F. Since $2 \alpha=\beta$ and $[\alpha, \beta]$ is the optimal bounding interval for F by assumption, $F=[\alpha, \beta]$. Furthermore, $(1+\alpha) / 2=\beta$. If not, we have a contradiction to the fact that E is an interval. Thus $F=[\alpha, \beta]=[1 / 3,2 / 3]$. In this case $F \triangle T^{-1} F=E=$ $[1 / 6,5 / 6]$. But this is not an interval with dyadic endpoints.

If $\beta / 2>\alpha$, then $m(F \cap[\alpha / 2, \alpha])=0, m(F \cap[\beta,(1+\beta) / 2])=0$ and $m\left(\frac{1}{2} F \cap[\alpha / 2, \alpha]\right)>0, m\left(\left(\frac{1}{2} F+\frac{1}{2}\right) \cap[\beta,(1+\beta) / 2]\right)>0$. Hence for E to be an interval, F must contain the intervals $[\alpha, 2 \alpha]$ and $[2 \beta-1, \beta]$. Since $m\left(\left(F \triangle T^{-1} F\right) \cap[\alpha / 2, \alpha]\right)>0$ and $m\left(\left(F \triangle T^{-1} F\right) \cap[\beta,(1+\beta) / 2]\right)>0$ since F contains the interval $[\alpha, 2 \alpha]$, and since $[\alpha, \beta]$ is the optimal bounding interval for F, for $F \triangle T^{-1} F$ to be connected, we must have $m(F \cap$ $[2 \alpha, 4 \alpha])=0$. By similar reasons, F must contain the interval $[4 \alpha, 8 \alpha]$. By induction we see that F contains the interval $\left[2^{2(n-1)} \alpha, 2^{2 n} \alpha\right]$ for n such that $2^{2 n} \alpha<1$, and does not contain the interval $\left[2^{2 n} \alpha, 2^{2(n+1)} \alpha\right]$ for n such that $2^{2(n+1)} \alpha<1$. Furthermore, $m\left(T^{-1} F \cap[\beta / 2,(1+\alpha) / 2]\right)=0$. For $F \triangle T^{-1} F$ to be connected, F must contain the interval $[\beta / 2,(1+\alpha) / 2]$ and $T^{-1} F \cap[(1+\alpha) / 2,1 / 2+\alpha]=[(1+\alpha) / 2,1 / 2+\alpha]$. Thus we obtain the following equalities: $2^{n} \alpha=\beta-1 / 2,2^{n+1} \alpha=\beta / 2,2^{n+2} \alpha=(1+\alpha) / 2$, and $2^{n+3} \alpha=\alpha+1 / 2$ for some n. Hence $2^{n+3} \alpha=1+\alpha=\alpha+1 / 2$, which is a contradiction. So if F is bounded by the pair (α, β) then $E=F \triangle T^{-1} F$ cannot be connected.

Case 4. If $F \subset[\alpha, 1]$ where $0<\alpha<1 / 2$, and $[\alpha, 1]$ is the optimal bounding interval for F, then we know that F is a disjoint union of $\left[\alpha_{i}, \beta_{i}\right]$, i.e., $F=\bigcup_{i=1}^{n}\left[\alpha_{i}, \beta_{i}\right]$ with $\alpha_{1}=\alpha$, and $\beta_{n}=1$ as in Case 3. Let $\alpha_{n}=\beta$. If $\beta \leq 1 / 2$ then $F^{c} \subset[0, \beta]$. This is the situation of Case 1 . So we assume that $\beta>1 / 2$. In other words, $F=\bigcup_{i=1}^{n-1}\left[\alpha_{i}, \beta_{i}\right] \cup[\beta, 1]$. Then by a similar argument to Case 3 , we see that there is no F such that $F \triangle T^{-1} F$ is an interval.

CASE 5. If $F \subset[0, \beta]$ with $1 / 2<\beta<1$, and $[0, \beta]$ is the optimal bounding interval for F, then by a similar argument to Case 4, there is no F for which $F \triangle T^{-1} F$ is an interval.

REFERENCES

[1] G. H. Choe, Spectral types of uniform distribution, Proc. Amer. Math. Soc. 120 (1994), 715-722.
[2] -, Ergodicity and irrational rotations, Proc. Roy. Irish Acad. 93A (1993), 193-202.
[3] R. B. Kirk, Sets which split families of measurable sets, Amer. Math. Monthly 79 (1972), 884-886.
[4] K. Petersen, Ergodic Theory, Cambridge Univ. Press, 1983.
[5] W. Rudin, Real and Complex Analysis, McGraw-Hill, 1986.
[6] W. A. Veech, Strict ergodicity in zero dimensional dynamical systems and the Kronecker-Weyl theorem mod 2, Trans. Amer. Math. Soc. 140 (1969), 1-33.
[7] P. Walters, An Introduction to Ergodic Theory, Springer, New York, 1982.
Korea Advanced Institute of Science and Technology
Taejon 305-701
Korea
E-mail: choe@euclid.kaist.ac.kr

[^0]: 1991 Mathematics Subject Classification: 11K06, 11K16, 11K38.
 Key words and phrases: coboundary, uniform distribution, normal number, metric density.

 Research supported by GARC-SRC and CAM-KAIST.

