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ON NORMAL NUMBERS MOD 2

BY

YOUNGHO AHN anxo GEON H. CHOE (TAEJON)

It is proved that a real-valued function f(z) = exp(mwixs(z)), where I
is an interval contained in [0, 1), is not of the form f(z) = ¢(2x)q(x) with
lg(x)] = 1 a.e. if I has dyadic endpoints. A relation of this result to the
uniform distribution mod 2 is also shown.

1. Introduction Let (X, ) be a probability measure space. A mea-
surable transformation 7" : X — X is said to be measure preserving if
w(T71E) = p(E) for every measurable subset E. A measure preserving
transformation 7" on X is called ergodic if f(T'z) = f(x) holds only for
constant functions f on X. Throughout the paper all set equalities, set in-
clusions and function equalities are understood modulo measure zero sets,
and all subsets are measurable unless otherwise stated. For example, we say
that I is an interval if the Lebesgue measure of I A [a,b] equals zero for
some a, b, where A denotes symmetric difference.

Let xg be the characteristic function of a set F and consider the beha-
vior of the sequence Zz;é xe(T*x) which counts the number of times the
points T*z visit E. The Birkhoff Ergodic Theorem applied to the ergodic
transformation 7" : x — {2z} on [0,1), where {t} is the fractional part of ¢,
gives the classical Borel Theorem on normal numbers:

n—1
.1 1
lim — E X[1/2,1)(Tk33) =5
k=0

n—co N 2
This implies that a.e. x is normal, i.e., the relative frequency of the digit 1
in the binary expansion of x is 1/2 (see [7]).

In this paper we are interested in the uniform distribution of the sequence
yn € {0,1} defined by
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yn(z) = i XE(Tkx) (mod 2),
k=0

where T : z +— {22}. When E = [1/2,1) it is shown that {y,(z)} is evenly
distributed in L?-sense [1]. If {y,(z)} is evenly distributed for a fixed set
E, that is, the limit of N—! 227:1 yn exists and equals 1/2, then we call =
a normal number mod 2 with respect to . Contrary to our intuition, the
limit might not exist and even when it exists it may not be equal to 1/2.
This type of problem was first studied by Veech [6]. He considered the case
when the transformations are given by irrational rotations on the unit circle,
and obtained results which showed that the length of the interval E and the
rotation angle 6 are closely related. For example, he proved that when the
irrational number # has bounded partial quotients in its continued fraction
expansion, then the sequence {y,} is evenly distributed if the length of the
interval is not an integral multiple of # modulo 1. For a related result, see [2].

We investigate the problem from the viewpoint of spectral theory. Let
(X, i) be a probability space and T an ergodic transformation on X which is
not necessarily invertible. Consider the behavior of the sequence 2y, (z)—1=
exp(7iy, ), and check whether the limit is zero in a suitable sense. Define an
isometry U on L?(X) by

(U f)(x) = exp(mixp(z))f(Tx).

Then for n > 1 and the constant function 1,

n—1
(U™ 1)(@) = exp (70 > xu(T"2) ) = exp(riyn(x)
k=0
and the problem is to study the existence of
1 X
(+) dim oy ")

Thus we ask whether the limit of () equals 0. By the von Neumann Mean
Ergodic Theorem, the L2-limit of N~! Zgil U™ f exists and equals Pf,
where P is the orthogonal projection onto the U-invariant subspace.

We briefly summarize the related results of [1]. Recall that a function
f(z) is called a coboundary if f(x) = q(x)q(Tz) with |¢(z)] = 1 a.e. on X.
Let M = {h € L*(X) : Uh = h}. Then the dimension of M is 0 or 1.
If dimM = 0, then N='SN U1 — 0 in L2 If dimM = 1, then (i)
exp(mixg) is a coboundary, (ii) there exists ¢ such that ¢(z) = exp(mixr(x))
for some F, exp(mixg(z)) = q(x)q(Tz), E = F AT 'F = FC AT71F°,
and (iii) N ! Zgzl U™l — Cq in L?, where C = {, q(x)dp. In fact, the
convergence is better than L? since the Birkhoff Ergodic Theorem implies
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that at a.e. x € X,

N N
N U= D awal) = ala) 3 3 a() = ) ) it
Hence the convergence is pointwise, which was not indicated in [1].
Suppose A\q(2x)q(z) = £1 for some |g| = 1. Then 1 = A\2¢2(2z)q¢*(z)
and \2¢%(z) = ¢?(2z). Since 1 is the only eigenvalue of x — {2z}, we see
that A2 = 1 and ¢? is constant. Thus A = +1.
Let F' be a Lebesgue measurable subset of R and m be the Lebesgue

measure on R. For a point = € R the metric density of F' at x is defined to
be

dp(z) = lir(r)1+ m(F N (m2— r,x 4 7))
T T

provided that this limit exists. The metric density of F' equals 1 and 0 at
a.e. point of F' and F, respectively. If (x — r,x + r) and 2r are replaced by
[z, x+7) and r respectively in the above limit, then we call the corresponding
limit df(z) the right metric density of F at z. Recall that for f € L'(R), a
point € R is called a Lebesgue point of f if

m = | |f() - f(o)] dm(y) = 0.

(x—r,z+r)

We know that for f € L1(R) almost every x € R is a Lebesgue point of f. If
7 is a Lebesgue point of xp, then dp(z) = df(x). Similarly the left metric
density dp(z) is defined.

The metric density of F' at a specific point may not be well defined.
Then the point is not a Lebesgue point of xr [3]: Given k and n, 0 <
k < n < 1, there exists ' C R so that the upper and lower limits of
m(F N (=6,0))/(20) are n and k, respectively, as § — 0. Recall that for a
point x a sequence A1, As, ... of measurable sets is said to shrink to x nicely
if there is a constant ¢ > 0 for which there is a sequence of positive numbers
r1,T2,... with limr,, = 0 such that A,, C (x —r,,x +r,) and m(A,) > cr,.
If a sequence {A,}, shrinks to x nicely and z is a Lebesgue point of xr,
then

. m(FNA,)
(see p. 140 of [5]).

Throughout the paper a rational number of the form Zle a; 27 a; €

{0,1} for 1 < i < k with a; = 1, is called a dyadic number and de-

noted by [ay,...,ar]. By convention, 0 and 1 are also regarded as dyadic
numbers.
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Note that for the set £ = [1/6,5/6], exp(mixg) is a coboundary since
E =FAT™'F for F = [1/3,2/3]. The numbers 1/6, 5/6 are not dyadic
and the sequence N ! Zi:;l yn(x) converges to f(x), where f(x) = 1/3 if
x € F and f(z) = 2/3 if x ¢ F almost everywhere. In this paper, we
will show that exp(mix(,) With a,b dyadic is a coboundary if and only if
a=1/4 and b= 3/4. The interval E= [1/4,3/4] satisfies the condition since
E=FAT 'Ffor F =[0,1/2]. But {exp(mixr)du = 0, so the sequence
converges to 0, hence we see that Borel’s theorem mod 2 holds for every
interval with dyadic endpoints.

2. Lemmas on metric density. Note that T-'F N [0,7] = £ F N[0, 7]
for0<r<1/2, and T'FN[r1]=(3F+3)N[r1) for1/2<r<1.

For a fixed set F' and real 0 < ¢ < 1 define a continuous function hp¢(r)
on (0,1 —t) by

m(FN|tt+r
hpi(r) = h(r) = ( [7" ])
Similarly for real 0 < ¢ <1 define a function gg¢(r) on (0,t) by
B m(F N[t —rt)])

gri(r) = g:(r) = , :

Note that dj.(t) = lim, o4 hr(r) and dg(t) = lim, 04 gr(r).

LEMMA 1. If two dyadic numbers 0 < a < b < 1 satisfy [a,b] = FAT™1F
for some set F', then:

(i) ho(r/2") = ho(r) for alln € N and all 0 < r < min{2a, 1}.
(ii) If df(0) ewists, then df(0) = ho(r) =0 or 1.
(iii) If d(0) = 1, then F contains an interval of the form [0,7], r > 0,
and if df(0) = 0, then F°© contains such an interval.

Proof. (i) Take r with 0<r < min{2a,1}. Since (F AT~'F)N[0,r/2]=
0, we have FN[0,r/2] = T"1FN[0,7/2]. Thus m(FN[0,r/2]) = m(T~1FnN
[0,7/2]) = m(3F N [0,7/2]) = 2m(F N[0,r]) and ho(r/2) = ho(r). Hence
ho(r/2™) = ho(r/2" 1) = ... = ho(r).

(ii) Put ¢ = min{2a,1}. Since ho(r/2") = ho(r) for all n € N and
0 <r <cby (i), we have

o m(FN[0,s]) T\
dp(0) = 313& s N nlLH;o fio on | fro(r)-

Assume that d5(0) = a, 0 < o < 1. Since for every 0 < r < ¢, there
exists a sufficiently small §(r) > 0 such that 0 < r4e < cforall 0 < e < §(r),
ie.,

m(FN[0,r+¢])
r+e

)
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we have m(F'N[r,r+¢]) = m(FN[0,r+¢])—m(FN[0,7]) = a(r+e)—ar = ac.
Hence m(F N [r,r +€])/e = a so F has right metric density « at r, for all
0 <r < e¢. Since 0 < a < 1, this contradicts the fact that almost everywhere
the metric density is 0 or 1.
(iii) Assume that d(0) = 1 and F does not contain any interval. Then
for every 0 < r < min{2a, 1},
~ m(FN[0,r])

ho(r) = —— == < 1.

But ho(r) = d}.(0) = 1. This is a contradiction. Thus F contains an interval
of the form [0, 7], » > 0. The other case is similarly proved. m

REMARK. If a,b and F satisfy the conditions of Lemma 1, then similar
results also hold for dj(1) and g, (r):

(i) g1(r/2") = g1(r) foralln € Nand all 0 <7 <1 —b/2.
(ii) If d (1) exists, then dz(1) = gi1(r) =0 or 1.
(iii) If dz(1) = 1, then F contains an interval of the form [s,1], s < 1,
and if d.(1) = 1, then F° contains such an interval.

Hence we investigate the existence of d}.(0) in Lemmas 2 and 3. The
existence of dy (1) is similarly proved.

LEMMA 2. Let a = [a1,...,ap|, b = [b1,...,b,] and F satisfy the con-
ditions of Lemma 1. Put ro = 1/2%, where k = max{p,q}. Then for t =
[c1,...,al, he(r/2™) = he(r) and either hy = hg or hy =1 — hg for n € N
and 0 < r < ro/2'. Hence the right metric density of F exists at 0 if and
only if it exists at every dyadic point t; in that case either dj(t) = dj(0) or
di(t) =1—dL(0).

Proof. Step 1. We consider the case of [ = 1. Put E = [a,b]. Then
ho(r) = ho(r/2") for n € N and 0 < r < 7y by Lemma 1, and either
EN[1/2,1/2+70/2] =0 or EN[1/2,1/2 +10/2] = [1/2,1/2 + 10/2).

Case 1. If EN[1/2,1/2 4+ r¢/2] =0, then m(EN[1/2,1/2+r]) =0 for
0<r<rg/2. Since E=F AT7'F, it follows that m(F N[1/2,1/2 +r]) =
m(T'FN[1/2,1/2+7]) =m(T'FN0,r]) = $m(F N[0, 2r]). Thus

hij2(r) = ho(2r) = ho(r).
Furthermore,
hl/Q(T‘/Qn) = h()(?”/Qn) = ho(?") = hl/Q(T‘)
for all n and 0 < r < rg/2.

CasE 2. Tf E (1 [1/2,1/2 +1r0/2] = [1/2,1/2 +10/2], then m(E A [1/2,
1/247]) =rfor 0 <r <rg/2. Som(FN[1/2,1/2+7]) =r—m(T~*FN[1/2,
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1/2+7)=r—m(T 'FN[0,r]) =r— 2m(FNI0,2r]). Thus
hl/z(’l") =1- h0(2’l") =1- ho(’l“)
and
hl/g(T/2n) =1- hg(T‘/2n) =1- hg(’l") = hl/g(’l")
forn € Nand 0 < r < ry/2.
Hence

hi2(r/2") = hya(r) = ho(r) or 1 —ho(r)
forneNand 0 <r <ry/2.

Step 2. By induction assume that if s = [s1,...,s;-1] then hs(r/2") =
hg(r) and hg = hg or 1 — hg for all 0 < r < ro/271.

Let t = [c1,...,¢] and s = [ca,...,¢]. Then either t = [0,c¢a,...,¢] or
t=1[1,co,...,¢q). Ifft =1[0,co,...,¢] then t = %s, and if t = [1,¢9,...,q]
then t = 2s+ 1. Note that either EN[t,t+7¢/2!] =0 or ENt,t+1¢/2!] =
[t,t+70/2Y.

CASE 1. If EN[t,t +19/2!] = 0, then m(EN[t,t+7]) =0 for 0 < r <
ro/2!. Since E = F AT7'F, it follows that m(F N [t,t +7]) = m(T~1F N
[t,t +7r]) = im(F N [s,s + 2r]). Thus he(r) = hs(2r) = h(r) = ho(r)
or 1 — ho(r) and hy(r/2"™) = hs(r/2") = hgs(r) = hy(r) for n € N and
0<r<ry/2.

CASE 2. If EN[t,t +ro/2] = [t,t + 10/2'], then m(E N [t,t +7]) =
for 0 < r < rg/2'. Since m(F N [t,t +7]) = r—m(T*FN[t,t+7])
r—im(F N [s,s 4 2r]) we have hy(r) = 1 — hy(2r) = 1 — hy(r) = ho(r) or
1 — ho(r) and he(r/2") =1 — hg(r/2™) = 1 — hg(r) = hy(r) for n € N and
0<r<ry/2.

Hence for t = [¢y, ..., ¢] we have

hi(r/2") = hy(r) = ho(r) or 1 — ho(r)
for n € N and 0 < r < r9/2!. From this the second assertion follows. m

LEMMA 3. Ifa,b and F satisfy the conditions of Lemma 1, then the right
metric density of F' exists at every dyadic point.

Proof. By Lemma 2 it is sufficient to show that the right metric density
of F exists at 0. Assume that lim,_,o4 ho(r) does not exist. Let E = [a,b]
with a = [a1,...,ap], b= [b1,...,b,] and 7 be as in Lemma 2. From Lemma
2 we see that for t = [cq,...,¢], he(r/2™) = hy(r) = ho(r) or 1 — ho(r) for
ne€Nand 0 <r <rg/2h.

Take a Lebesgue point £ of xp with dp(§) = 1, and put r,, = ro/2". For
every n choose &, € {[c1,...,cn] : m < n} so that the sequence &, converges
to & and [£,, &, +1n] C (E—1/2771 €4+1/2771). Since m([€n, &n + 70]) /272
= ro/4, the subsets [¢,,, &, + 1] shrink to £ nicely. For fixed rg, there exists



NORMAL NUMBERS 167

e > 0 such that ¢ < hg(rg) < 1 —e. If not, the metric density at 0 must
exist. Hence

m(F 0 [&n,&n + nl)

Tn

= he, (rn) = ho(rn) or 1—ho(r,) <1—¢

for all n. Since the metric density of F' at £ is 1, this is a contradiction. m

LEMMA 4. If [0,b] = F AT 'F with b = [by,...,by] a dyadic number,
then

(i) ho(r/2%%) = ho(r) and ho(r/2?"1) = 1 — ho(r) for alln € N and
0 <7 < min{2b, 1}.

(ii) Put ro = 1/29. Then for t = [c1,...,cl, he(r/2%27%) = h(r),
he(r/22"=1) = 1 — hy(r) and hy = hg or 1 — hg for alln € N and 0 <
r<re/2.

(iii) [0,8] # F A T~YF for every measurable set F.

Proof. (i) Take r with 0<r<min{2b,1}. Since (F A T~1F)N[0,r/2]=
[0,7/2], we have m(FN[0,r/2]) =r/2—m(T*FN[0,r/2]) =r/2—m(3FN
[0,7/2]) = r/2—im(FN[0,7]) and ho(r/2) = 1—ho(r). Hence ho(r/2*") =
1 —ho(r/22n=1) = ... = ho(r) and ho(r/22"71) =1 — ho(r/22" %) = ... =
hg(’l“).

(ii) Put E = [0,b]. Then hq(r/2%") = ho(r) and ho(r/2?"~1) = 1 — ho(r
forn € Nand 0 < r < ro by (i) and EN[1/2,1/2 +ro/2] = 0 or EN
[1/2,1/2 +7ro/2] =[1/2,1/2 + ro/2]. Now proceed as in Lemma 2.

(iii) Take &, rg, 7, and &, as in the proof of Lemma 3. Then

dr(&) = nh_}néo he, (rn) = nh_}néo ho(ry) or 1—ho(r,) =1—ho(rg) or ho(ro)

by (ii). If dp(€) = 1 — ho(ro), then ho(rg) = 0 and [0,b] # F A T~1F for
this F'. The other cases are similarly proved. m

~—

REMARK. For the case [a,1] = F A T7'F with a = [a1,...,a,] a dyadic
number, we consider the left metric density for F' and g;(r). Then we have
the same conclusion as in Lemma 4. For example, put ro = 1/2P. Then for
t=lc1,...,al, gu(r/2%") = gi(r), g:(r/22"~1) = 1 — g,(r) and either g, = ¢4
or1—g; foralln € Nand 0 < r < ry/2'. Hence we may assume that if
[a,b] = F AT~L1F for some F with a,b dyadic, then either F or F° contains
an interval of the form [0, r] or [r, 1] for some 0 < r < 1.

3. Main result. We say that [«, 5] is the optimal bounding interval for
F if F C |o, 8] modulo measure zero sets and « is the infimum of points at
which F' has a positive metric density, while 3 is the supremum of points at
which F' has a positive right metric density. From now on, if K is connected
and m(S) = 0, then we regard K\S as being connected, and if E is an
interval, then we regard E\S as an interval.
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THEOREM 1. Let T' be the transformation defined by x — 2x (mod 1) on
[0,1). Let a and b be dyadic numbers. Then exp(mix[qp) is a coboundary if
and only if a =1/4 and b= 3/4.

Proof. Recall that there exists a measurable set F' such that neither
F nor its complement contain any interval of positive length [5]. But if F
is an interval with dyadic endpoints, then F' or F¢ contains an interval of
the form [0,7] or [s,1], 7 >0, s <1, and E = F¢ A T~'F°. Hence we may
assume that F'° contains an interval of the form [0, 7] or [s,1], 7 >0, s < 1.
For this F', the optimal bounding interval [a, 8] has either a > 0 or g < 1.

CASE 1. Assume that F C [o,f(], 0 < a < 8 < 1/2 and [«, 5] is the

optimal bounding interval for F'.

F | [/// [/ | |

I 777 7770 I 1

1
2

| [/// // /1 |
T 777 77771
B 1 1+ 148 1
2 2 2 2

Then m(F N [3/2,8]) >0, m(T~*FN[3/2,8]) =0 and

m<T1Fm [H—a ﬂD >0, m(Fﬂ [1 +a, ﬂD =0.

2 2 2 2
But in E = FAT'F, m(EN|[3/2,6]) > 0, m(EnN|[3,1/2]) = 0, and
m(EN[1/2,(1+4 B)/2]) > 0. So this reduces to the assumption that E is an
interval. If F A T~1F is an interval, then « =0, 3 =1/2 and F = [0,1/2].
In this case E = [1/4,3/4].

CASE 2. If F C [a, f] where 1/2 < v < < 1, and [a, (] is the optimal
bounding interval for F, then as in Case 1, if F A T~'F is an interval, then
a=1/2, =1and F =[1/2,1]. In this case E = [1/4,3/4].

CASE 3. If F C [a, 3] where 0 < o < 1/2 < 8 < 1, and [a, (] is the
optimal bounding interval for F', then there are three possibilities.

F ! [// // // ! // // //] !
0 « % 15} 1
—1
T F l [////// //////] l [////// //////] l
B 1 14+ 1458
0 5 3 2 5= 5 1
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If /2 < a, then FNLF =0, m(T7'F N [a/2,8/2]) >0, m(T~'Fn
[8/2,a]) =0, m(FN[B/2,a]) =0, and m(F N[, 1/2]) > 0. This contradicts
the fact that E = F A T~'F is an interval.

If 3/2 = a then m(F NiF) =0, m(T~*F N [a/2,5/2]) > 0, m(F N
(0,1/2)) > 0, m(F 1 [8,1+ 3/)) = 0 and m(TF 1 8, (1+ B)/2]) = 0.
Thus for E to be an interval, F' must contain the interval [a,2a]. This is
due to the fact that the measure of %F is half that of F'. Since 2a =
and [«, ] is the optimal bounding interval for F' by assumption, F' = [«, f].
Furthermore, (1 + «)/2 = f. If not, we have a contradiction to the fact that
E is an interval. Thus F =, 8]=[1/3,2/3]. In this case FAT 'F= E=
[1/6,5/6]. But this is not an interval with dyadic endpoints.

If /2 > «a, then m(F N [a/2,a]) = 0, m(F N[5,(1+/5)/2]) = 0 and
m(3F N [a/2,a]) >0, m((3F + 3) N [B, (1 + B)/2]) > 0. Hence for E to
be an interval, F' must contain the intervals [«,2a] and [28 — 1, 5]. Since
m((F AT YF)Na/2,0]) > 0 and m((F o TYF)N[8,(1+8)/2]) > 0
since F' contains the interval [a, 2a], and since [a, 8] is the optimal bound-
ing interval for F, for F A T~'F to be connected, we must have m(F N
[2a,4a]) = 0. By similar reasons, F' must contain the interval [4a, 8a]. By
induction we see that F contains the interval [22("~Dq,22"q] for n such
that 22"a < 1, and does not contain the interval [22"a,22("*Da] for n
such that 22" < 1. Furthermore, m(T~'F N[3/2, (1 + «)/2]) = 0. For
F AT7'F to be connected, F' must contain the interval [3/2, (1 + «)/2]
and T'FN[(1+a)/2,1/2+a] = [(1 + a)/2,1/2 + a]. Thus we obtain the
following equalities: 2"a = 8 — 1/2, 2""la = 3/2, 2" 2a = (1 + «)/2, and
2"H3q = o + 1/2 for some n. Hence 2""3a =1+ a = a + 1/2, which is a
contradiction. So if F' is bounded by the pair (o, 3) then E = F AT 'F
cannot be connected.

Casg 4. If F C [a,1] where 0 < a < 1/2, and [a,1] is the optimal
bounding interval for F', then we know that F'is a disjoint union of [«;, §;],
e, F = |, B3] with a1 = @, and 8, = 1 as in Case 3. Let o, = f3.
If 5 <1/2 then F°¢ C [0,3]. This is the situation of Case 1. So we assume
that 8 > 1/2. In other words, F' = U?;ll [ai, B;] U [B,1]. Then by a similar
argument to Case 3, we see that there is no F such that F A T7!F is an
interval.

F I [// // // I // // //]

N[—=

—1
T F I [// // // // // //] [// // // // // //]

1+«
=4< 1

o
IS
N[—=
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CASES. If FF C [0, 58] with 1/2 < 8 < 1, and [0, ] is the optimal bounding
interval for F, then by a similar argument to Case 4, there is no F' for which
F AT™'F is an interval. m
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