ON NORMAL NUMBERS MOD 2

BY

YOUNGHO AHN AND GEON H. CHOE (TAEJON)

It is proved that a real-valued function $f(x) = \exp(\pi i \chi_{\underline{I}}(x))$, where I is an interval contained in [0,1), is not of the form f(x) = q(2x)q(x) with |q(x)| = 1 a.e. if I has dyadic endpoints. A relation of this result to the uniform distribution mod 2 is also shown.

1. Introduction Let (X, μ) be a probability measure space. A measurable transformation $T: X \to X$ is said to be measure preserving if $\mu(T^{-1}E) = \mu(E)$ for every measurable subset E. A measure preserving transformation T on X is called ergodic if f(Tx) = f(x) holds only for constant functions f on X. Throughout the paper all set equalities, set inclusions and function equalities are understood modulo measure zero sets, and all subsets are measurable unless otherwise stated. For example, we say that I is an interval if the Lebesgue measure of $I \triangle [a, b]$ equals zero for some a, b, where \triangle denotes symmetric difference.

Let χ_E be the characteristic function of a set E and consider the behavior of the sequence $\sum_{k=0}^{n-1} \chi_E(T^k x)$ which counts the number of times the points $T^k x$ visit E. The Birkhoff Ergodic Theorem applied to the ergodic transformation $T: x \mapsto \{2x\}$ on [0,1), where $\{t\}$ is the fractional part of t, gives the classical Borel Theorem on normal numbers:

$$\lim_{n \to \infty} \frac{1}{n} \sum_{k=0}^{n-1} \chi_{[1/2,1)}(T^k x) = \frac{1}{2}.$$

This implies that a.e. x is normal, i.e., the relative frequency of the digit 1 in the binary expansion of x is 1/2 (see [7]).

In this paper we are interested in the uniform distribution of the sequence $y_n \in \{0,1\}$ defined by

¹⁹⁹¹ Mathematics Subject Classification: 11K06, 11K16, 11K38.

 $[\]it Key\ words\ and\ phrases$: coboundary, uniform distribution, normal number, metric density.

Research supported by GARC-SRC and CAM-KAIST.

$$y_n(x) \equiv \sum_{k=0}^{n-1} \chi_E(T^k x) \pmod{2},$$

where $T: x \mapsto \{2x\}$. When E = [1/2, 1) it is shown that $\{y_n(x)\}$ is evenly distributed in L^2 -sense [1]. If $\{y_n(x)\}$ is evenly distributed for a fixed set E, that is, the limit of $N^{-1} \sum_{n=1}^{N} y_n$ exists and equals 1/2, then we call x a normal number mod 2 with respect to E. Contrary to our intuition, the limit might not exist and even when it exists it may not be equal to 1/2. This type of problem was first studied by Veech [6]. He considered the case when the transformations are given by irrational rotations on the unit circle, and obtained results which showed that the length of the interval E and the rotation angle θ are closely related. For example, he proved that when the irrational number θ has bounded partial quotients in its continued fraction expansion, then the sequence $\{y_n\}$ is evenly distributed if the length of the interval is not an integral multiple of θ modulo 1. For a related result, see [2].

We investigate the problem from the viewpoint of spectral theory. Let (X, μ) be a probability space and T an ergodic transformation on X which is not necessarily invertible. Consider the behavior of the sequence $2y_n(x)-1=\exp(\pi i y_n)$, and check whether the limit is zero in a suitable sense. Define an isometry U on $L^2(X)$ by

$$(Uf)(x) = \exp(\pi i \chi_E(x)) f(Tx).$$

Then for $n \geq 1$ and the constant function 1,

$$(U^n 1)(x) = \exp\left(\pi i \sum_{k=0}^{n-1} \chi_E(T^k x)\right) = \exp(\pi i y_n(x)),$$

and the problem is to study the existence of

(*)
$$\lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} (U^n 1)(x).$$

Thus we ask whether the limit of (*) equals 0. By the von Neumann Mean Ergodic Theorem, the L^2 -limit of $N^{-1} \sum_{n=1}^N U^n f$ exists and equals Pf, where P is the orthogonal projection onto the U-invariant subspace.

We briefly summarize the related results of [1]. Recall that a function f(x) is called a coboundary if $f(x) = \overline{q(x)}q(Tx)$ with |q(x)| = 1 a.e. on X. Let $\mathcal{M} = \{h \in L^2(X) : Uh = h\}$. Then the dimension of \mathcal{M} is 0 or 1. If dim $\mathcal{M} = 0$, then $N^{-1} \sum_{n=1}^{N} U^n 1 \to 0$ in L^2 . If dim $\mathcal{M} = 1$, then (i) $\exp(\pi i \chi_E)$ is a coboundary, (ii) there exists q such that $q(x) = \exp(\pi i \chi_F(x))$ for some F, $\exp(\pi i \chi_E(x)) = q(x)q(Tx)$, $E = F \triangle T^{-1}F = F^c \triangle T^{-1}F^c$, and (iii) $N^{-1} \sum_{n=1}^{N} U^n 1 \to Cq$ in L^2 , where $C = \int_X q(x) d\mu$. In fact, the convergence is better than L^2 since the Birkhoff Ergodic Theorem implies

that at a.e. $x \in X$,

$$\frac{1}{N} \sum_{n=1}^{N} U^{n} 1 = \frac{1}{N} \sum_{n=1}^{N} q(x) q(T^{n} x) = q(x) \frac{1}{N} \sum_{n=1}^{N} q(T^{n} x) \to q(x) \int_{X} q(y) d\mu(y).$$

Hence the convergence is pointwise, which was not indicated in [1].

Suppose $\lambda \overline{q(2x)}q(x) = \pm 1$ for some |q| = 1. Then $1 = \lambda^2 \overline{q^2(2x)}q^2(x)$ and $\lambda^2 q^2(x) = q^2(2x)$. Since 1 is the only eigenvalue of $x \mapsto \{2x\}$, we see that $\lambda^2 = 1$ and q^2 is constant. Thus $\lambda = \pm 1$.

Let F be a Lebesgue measurable subset of \mathbb{R} and m be the Lebesgue measure on \mathbb{R} . For a point $x \in \mathbb{R}$ the *metric density* of F at x is defined to be

$$d_F(x) \equiv \lim_{r \to 0+} \frac{m(F \cap (x - r, x + r))}{2r}$$

provided that this limit exists. The metric density of F equals 1 and 0 at a.e. point of F and F^c , respectively. If (x-r,x+r) and 2r are replaced by [x,x+r) and r respectively in the above limit, then we call the corresponding limit $d_F^+(x)$ the right metric density of F at x. Recall that for $f \in L^1(\mathbb{R})$, a point $x \in \mathbb{R}$ is called a Lebesgue point of f if

$$\lim_{r \to 0+} \frac{1}{2r} \int_{(x-r,x+r)} |f(y) - f(x)| \, dm(y) = 0.$$

We know that for $f \in L^1(\mathbb{R})$ almost every $x \in \mathbb{R}$ is a Lebesgue point of f. If x is a Lebesgue point of χ_F , then $d_F(x) = d_F^+(x)$. Similarly the left metric density $d_F^-(x)$ is defined.

The metric density of F at a specific point may not be well defined. Then the point is not a Lebesgue point of χ_F [3]: Given κ and η , $0 \le \kappa \le \eta \le 1$, there exists $F \subset \mathbb{R}$ so that the upper and lower limits of $m(F \cap (-\delta, \delta))/(2\delta)$ are η and κ , respectively, as $\delta \to 0$. Recall that for a point x a sequence A_1, A_2, \ldots of measurable sets is said to shrink to x nicely if there is a constant c > 0 for which there is a sequence of positive numbers r_1, r_2, \ldots with $\lim r_n = 0$ such that $A_n \subset (x - r_n, x + r_n)$ and $m(A_n) \ge cr_n$. If a sequence $\{A_n\}_n$ shrinks to x nicely and x is a Lebesgue point of χ_F , then

$$d_F(x) = \lim_{n \to \infty} \frac{m(F \cap A_n)}{m(A_n)}$$

(see p. 140 of [5]).

Throughout the paper a rational number of the form $\sum_{i=1}^{k} a_i 2^{-i}$, $a_i \in \{0,1\}$ for $1 \leq i \leq k$ with $a_k = 1$, is called a *dyadic number* and denoted by $[a_1, \ldots, a_k]$. By convention, 0 and 1 are also regarded as dyadic numbers.

Note that for the set E=[1/6,5/6], $\exp(\pi i \chi_E)$ is a coboundary since $E=F \vartriangle T^{-1}F$ for F=[1/3,2/3]. The numbers 1/6, 5/6 are not dyadic and the sequence $N^{-1}\sum_{n=1}^N y_n(x)$ converges to f(x), where f(x)=1/3 if $x\in F$ and f(x)=2/3 if $x\not\in F$ almost everywhere. In this paper, we will show that $\exp(\pi i \chi_{[a,b]})$ with a,b dyadic is a coboundary if and only if a=1/4 and b=3/4. The interval E=[1/4,3/4] satisfies the condition since $E=F\vartriangle T^{-1}F$ for F=[0,1/2]. But $\int \exp(\pi i \chi_F)\,d\mu=0$, so the sequence converges to 0, hence we see that Borel's theorem mod 2 holds for every interval with dyadic endpoints.

2. Lemmas on metric density. Note that $T^{-1}F \cap [0, r] = \frac{1}{2}F \cap [0, r]$ for $0 < r \le 1/2$, and $T^{-1}F \cap [r, 1] = \left(\frac{1}{2}F + \frac{1}{2}\right) \cap [r, 1)$ for $1/2 \le r < 1$.

For a fixed set F and real $0 \le t < 1$ define a continuous function $h_{F,t}(r)$ on (0, 1-t) by

$$h_{F,t}(r) \equiv h_t(r) = \frac{m(F \cap [t,t+r])}{r}.$$

Similarly for real $0 < t \le 1$ define a function $g_{F,t}(r)$ on (0,t) by

$$g_{F,t}(r) \equiv g_t(r) = \frac{m(F \cap [t-r,t])}{r}.$$

Note that $d_F^+(t) = \lim_{r \to 0+} h_{F,t}(r)$ and $d_F^-(t) = \lim_{r \to 0+} g_{F,t}(r)$.

LEMMA 1. If two dyadic numbers 0 < a < b < 1 satisfy $[a,b] = F \triangle T^{-1}F$ for some set F, then:

- (i) $h_0(r/2^n) = h_0(r)$ for all $n \in \mathbb{N}$ and all $0 < r \le \min\{2a, 1\}$.
- (ii) If $d_F^+(0)$ exists, then $d_F^+(0) = h_0(r) = 0$ or 1.
- (iii) If $d_F^+(0) = 1$, then F contains an interval of the form [0, r], r > 0, and if $d_F^+(0) = 0$, then F^c contains such an interval.

Proof. (i) Take r with $0 < r \le \min\{2a, 1\}$. Since $(F \triangle T^{-1}F) \cap [0, r/2] = \emptyset$, we have $F \cap [0, r/2] = T^{-1}F \cap [0, r/2]$. Thus $m(F \cap [0, r/2]) = m(T^{-1}F \cap [0, r/2]) = m(\frac{1}{2}F \cap [0, r/2]) = \frac{1}{2}m(F \cap [0, r])$ and $h_0(r/2) = h_0(r)$. Hence $h_0(r/2^n) = h_0(r/2^{n-1}) = \dots = h_0(r)$.

(ii) Put $c = \min\{2a, 1\}$. Since $h_0(r/2^n) = h_0(r)$ for all $n \in \mathbb{N}$ and $0 \le r < c$ by (i), we have

$$d_F^+(0) = \lim_{s \to 0+} \frac{m(F \cap [0,s])}{s} = \lim_{n \to \infty} h_0\left(\frac{r}{2^n}\right) = h_0(r).$$

Assume that $d_F^+(0) = \alpha$, $0 < \alpha < 1$. Since for every $0 \le r < c$, there exists a sufficiently small $\delta(r) > 0$ such that $0 \le r + \varepsilon < c$ for all $0 < \varepsilon < \delta(r)$, i.e.,

$$\frac{m(F \cap [0, r + \varepsilon])}{r + \varepsilon} = \alpha,$$

we have $m(F \cap [r, r+\varepsilon]) = m(F \cap [0, r+\varepsilon]) - m(F \cap [0, r]) = \alpha(r+\varepsilon) - \alpha r = \alpha \varepsilon$. Hence $m(F \cap [r, r+\varepsilon])/\varepsilon = \alpha$ so F has right metric density α at r, for all $0 \le r < c$. Since $0 < \alpha < 1$, this contradicts the fact that almost everywhere the metric density is 0 or 1.

(iii) Assume that $d_F^+(0) = 1$ and F does not contain any interval. Then for every $0 < r \le \min\{2a, 1\}$,

$$h_0(r) = \frac{m(F \cap [0, r])}{r} < 1.$$

But $h_0(r) = d_F^+(0) = 1$. This is a contradiction. Thus F contains an interval of the form [0, r], r > 0. The other case is similarly proved.

REMARK. If a, b and F satisfy the conditions of Lemma 1, then similar results also hold for $d_F^-(1)$ and $g_1(r)$:

- (i) $g_1(r/2^n) = g_1(r)$ for all $n \in \mathbb{N}$ and all $0 < r \le 1 b/2$.
- (ii) If $d_F^-(1)$ exists, then $d_F^-(1) = g_1(r) = 0$ or 1.
- (iii) If $d_F^-(1) = 1$, then F contains an interval of the form [s,1], s < 1, and if $d_F^-(1) = 1$, then F^c contains such an interval.

Hence we investigate the existence of $d_F^+(0)$ in Lemmas 2 and 3. The existence of $d_F^-(1)$ is similarly proved.

LEMMA 2. Let $a=[a_1,\ldots,a_p],\ b=[b_1,\ldots,b_q]$ and F satisfy the conditions of Lemma 1. Put $r_0=1/2^k$, where $k=\max\{p,q\}$. Then for $t=[c_1,\ldots,c_l],\ h_t(r/2^n)=h_t(r)$ and either $h_t=h_0$ or $h_t=1-h_0$ for $n\in\mathbb{N}$ and $0< r\le r_0/2^l$. Hence the right metric density of F exists at 0 if and only if it exists at every dyadic point t; in that case either $d_F^+(t)=d_F^+(0)$ or $d_F^+(t)=1-d_F^+(0)$.

Proof. Step 1. We consider the case of l = 1. Put E = [a, b]. Then $h_0(r) = h_0(r/2^n)$ for $n \in \mathbb{N}$ and $0 < r \le r_0$ by Lemma 1, and either $E \cap [1/2, 1/2 + r_0/2] = \emptyset$ or $E \cap [1/2, 1/2 + r_0/2] = [1/2, 1/2 + r_0/2]$.

CASE 1. If $E \cap [1/2, 1/2 + r_0/2] = \emptyset$, then $m(E \cap [1/2, 1/2 + r]) = 0$ for $0 < r \le r_0/2$. Since $E = F \triangle T^{-1}F$, it follows that $m(F \cap [1/2, 1/2 + r]) = m(T^{-1}F \cap [1/2, 1/2 + r]) = m(T^{-1}F \cap [0, r]) = \frac{1}{2}m(F \cap [0, 2r])$. Thus

$$h_{1/2}(r) = h_0(2r) = h_0(r).$$

Furthermore,

$$h_{1/2}(r/2^n) = h_0(r/2^n) = h_0(r) = h_{1/2}(r)$$

for all n and $0 < r \le r_0/2$.

CASE 2. If $E \cap [1/2, 1/2 + r_0/2] = [1/2, 1/2 + r_0/2]$, then $m(E \cap [1/2, 1/2+r]) = r$ for $0 < r \le r_0/2$. So $m(F \cap [1/2, 1/2+r]) = r - m(T^{-1}F \cap [1/2, 1/2+r])$

$$1/2+r$$
) = $r - m(T^{-1}F \cap [0,r]) = r - \frac{1}{2}m(F \cap [0,2r])$. Thus $h_{1/2}(r) = 1 - h_0(2r) = 1 - h_0(r)$

and

$$h_{1/2}(r/2^n) = 1 - h_0(r/2^n) = 1 - h_0(r) = h_{1/2}(r)$$

for $n \in \mathbb{N}$ and $0 < r \le r_0/2$.

Hence

$$h_{1/2}(r/2^n) = h_{1/2}(r) = h_0(r)$$
 or $1 - h_0(r)$

for $n \in \mathbb{N}$ and $0 < r \le r_0/2$.

Step 2. By induction assume that if $s = [s_1, \ldots, s_{l-1}]$ then $h_s(r/2^n) = h_s(r)$ and $h_s = h_0$ or $1 - h_0$ for all $0 < r \le r_0/2^{l-1}$.

Let $t = [c_1, \ldots, c_l]$ and $s = [c_2, \ldots, c_l]$. Then either $t = [0, c_2, \ldots, c_l]$ or $t = [1, c_2, \ldots, c_l]$. If $t = [0, c_2, \ldots, c_l]$ then $t = \frac{1}{2}s$, and if $t = [1, c_2, \ldots, c_l]$ then $t = \frac{1}{2}s + \frac{1}{2}$. Note that either $E \cap [t, t + r_0/2^l] = \emptyset$ or $E \cap [t, t + r_0/2^l] = [t, t + r_0/2^l]$.

CASE 1. If $E \cap [t, t + r_0/2^l] = \emptyset$, then $m(E \cap [t, t + r]) = 0$ for $0 < r \le r_0/2^l$. Since $E = F \triangle T^{-1}F$, it follows that $m(F \cap [t, t + r]) = m(T^{-1}F \cap [t, t + r]) = \frac{1}{2}m(F \cap [s, s + 2r])$. Thus $h_t(r) = h_s(2r) = h_s(r) = h_0(r)$ or $1 - h_0(r)$ and $h_t(r/2^n) = h_s(r/2^n) = h_s(r) = h_t(r)$ for $n \in \mathbb{N}$ and $0 < r \le r_0/2^l$.

CASE 2. If $E \cap [t, t + r_0/2^l] = [t, t + r_0/2^l]$, then $m(E \cap [t, t + r]) = r$ for $0 < r \le r_0/2^l$. Since $m(F \cap [t, t + r]) = r - m(T^{-1}F \cap [t, t + r]) = r - \frac{1}{2}m(F \cap [s, s + 2r])$ we have $h_t(r) = 1 - h_s(2r) = 1 - h_s(r) = h_0(r)$ or $1 - h_0(r)$ and $h_t(r/2^n) = 1 - h_s(r/2^n) = 1 - h_s(r) = h_t(r)$ for $n \in \mathbb{N}$ and $0 < r \le r_0/2^l$.

Hence for $t = [c_1, \ldots, c_l]$ we have

$$h_t(r/2^n) = h_t(r) = h_0(r)$$
 or $1 - h_0(r)$

for $n \in \mathbb{N}$ and $0 < r \le r_0/2^l$. From this the second assertion follows.

Lemma 3. If a, b and F satisfy the conditions of Lemma 1, then the right metric density of F exists at every dyadic point.

Proof. By Lemma 2 it is sufficient to show that the right metric density of F exists at 0. Assume that $\lim_{r\to 0+}h_0(r)$ does not exist. Let E=[a,b] with $a=[a_1,\ldots,a_p],\,b=[b_1,\ldots,b_q]$ and r_0 be as in Lemma 2. From Lemma 2 we see that for $t=[c_1,\ldots,c_l],\,h_t(r/2^n)=h_t(r)=h_0(r)$ or $1-h_0(r)$ for $n\in\mathbb{N}$ and $0< r\le r_0/2^l$.

Take a Lebesgue point ξ of χ_F with $d_F(\xi) = 1$, and put $r_n = r_0/2^n$. For every n choose $\xi_n \in \{[c_1, \ldots, c_m] : m \leq n\}$ so that the sequence ξ_n converges to ξ and $[\xi_n, \xi_n + r_n] \subset (\xi - 1/2^{n-1}, \xi + 1/2^{n-1})$. Since $m([\xi_n, \xi_n + r_n])/2^{n-2} = r_0/4$, the subsets $[\xi_n, \xi_n + r_n]$ shrink to ξ nicely. For fixed r_0 , there exists

 $\varepsilon > 0$ such that $\varepsilon < h_0(r_0) < 1 - \varepsilon$. If not, the metric density at 0 must exist. Hence

$$\frac{m(F \cap [\xi_n, \xi_n + r_n])}{r_n} = h_{\xi_n}(r_n) = h_0(r_n) \quad \text{or} \quad 1 - h_0(r_n) < 1 - \varepsilon$$

for all n. Since the metric density of F at ξ is 1, this is a contradiction.

LEMMA 4. If $[0,b] = F \triangle T^{-1}F$ with $b = [b_1, \ldots, b_q]$ a dyadic number, then

- (i) $h_0(r/2^{2n}) = h_0(r)$ and $h_0(r/2^{2n-1}) = 1 h_0(r)$ for all $n \in \mathbb{N}$ and $0 < r \le \min\{2b, 1\}$.
- (ii) Put $r_0 = 1/2^q$. Then for $t = [c_1, \ldots, c_l]$, $h_t(r/2^{2n}) = h_t(r)$, $h_t(r/2^{2n-1}) = 1 h_t(r)$ and $h_t = h_0$ or $1 h_0$ for all $n \in \mathbb{N}$ and $0 < r \le r_0/2^l$.
 - (iii) $[0,b] \neq F \land T^{-1}F$ for every measurable set F.

Proof. (i) Take r with $0 < r \le \min\{2b, 1\}$. Since $(F \triangle T^{-1}F) \cap [0, r/2] = [0, r/2]$, we have $m(F \cap [0, r/2]) = r/2 - m(T^{-1}F \cap [0, r/2]) = r/2 - m(\frac{1}{2}F \cap [0, r/2]) = r/2 - \frac{1}{2}m(F \cap [0, r])$ and $h_0(r/2) = 1 - h_0(r)$. Hence $h_0(r/2^{2n}) = 1 - h_0(r/2^{2n-1}) = \ldots = h_0(r)$.

- (ii) Put E = [0, b]. Then $h_0(r/2^{2n}) = h_0(r)$ and $h_0(r/2^{2n-1}) = 1 h_0(r)$ for $n \in \mathbb{N}$ and $0 < r \le r_0$ by (i) and $E \cap [1/2, 1/2 + r_0/2] = \emptyset$ or $E \cap [1/2, 1/2 + r_0/2] = [1/2, 1/2 + r_0/2]$. Now proceed as in Lemma 2.
 - (iii) Take ξ , r_0 , r_n and ξ_n as in the proof of Lemma 3. Then

$$d_F(\xi) = \lim_{n \to \infty} h_{\xi_n}(r_n) = \lim_{n \to \infty} h_0(r_n)$$
 or $1 - h_0(r_n) = 1 - h_0(r_0)$ or $h_0(r_0)$

by (ii). If $d_F(\xi) = 1 - h_0(r_0)$, then $h_0(r_0) = 0$ and $[0, b] \neq F \triangle T^{-1}F$ for this F. The other cases are similarly proved. \blacksquare

REMARK. For the case $[a,1] = F \triangle T^{-1}F$ with $a = [a_1, \ldots, a_p]$ a dyadic number, we consider the left metric density for F and $g_t(r)$. Then we have the same conclusion as in Lemma 4. For example, put $r_0 = 1/2^p$. Then for $t = [c_1, \ldots, c_l], g_t(r/2^{2n}) = g_t(r), g_t(r/2^{2n-1}) = 1 - g_t(r)$ and either $g_t = g_1$ or $1 - g_1$ for all $n \in \mathbb{N}$ and $0 < r \le r_0/2^l$. Hence we may assume that if $[a,b] = F \triangle T^{-1}F$ for some F with a,b dyadic, then either F or F^c contains an interval of the form [0,r] or [r,1] for some 0 < r < 1.

3. Main result. We say that $[\alpha, \beta]$ is the *optimal bounding interval* for F if $F \subset [\alpha, \beta]$ modulo measure zero sets and α is the infimum of points at which F has a positive metric density, while β is the supremum of points at which F has a positive right metric density. From now on, if K is connected and m(S) = 0, then we regard $K \setminus S$ as being connected, and if E is an interval, then we regard $E \setminus S$ as an interval.

THEOREM 1. Let T be the transformation defined by $x \mapsto 2x \pmod{1}$ on [0,1). Let a and b be dyadic numbers. Then $\exp(\pi i \chi_{[a,b]})$ is a coboundary if and only if a = 1/4 and b = 3/4.

Proof. Recall that there exists a measurable set F such that neither F nor its complement contain any interval of positive length [5]. But if E is an interval with dyadic endpoints, then F or F^c contains an interval of the form [0,r] or [s,1], r>0, s<1, and $E=F^c \triangle T^{-1}F^c$. Hence we may assume that F^c contains an interval of the form [0,r] or [s,1], r>0, s<1. For this F, the optimal bounding interval $[\alpha,\beta]$ has either $\alpha>0$ or $\beta<1$.

CASE 1. Assume that $F \subset [\alpha, \beta]$, $0 \le \alpha < \beta < 1/2$ and $[\alpha, \beta]$ is the optimal bounding interval for F.

Then $m(F \cap [\beta/2, \beta]) > 0$, $m(T^{-1}F \cap [\beta/2, \beta]) = 0$ and

$$m\left(T^{-1}F\cap\left[\frac{1+\alpha}{2},\frac{1+\beta}{2}\right]\right)>0, \quad m\left(F\cap\left[\frac{1+\alpha}{2},\frac{1+\beta}{2}\right]\right)=0.$$

But in $E = F \triangle T^{-1}F$, $m(E \cap [\beta/2, \beta]) > 0$, $m(E \cap [\beta, 1/2]) = 0$, and $m(E \cap [1/2, (1+\beta)/2]) > 0$. So this reduces to the assumption that E is an interval. If $F \triangle T^{-1}F$ is an interval, then $\alpha = 0$, $\beta = 1/2$ and F = [0, 1/2]. In this case E = [1/4, 3/4].

Case 2. If $F \subset [\alpha, \beta]$ where $1/2 < \alpha < \beta \le 1$, and $[\alpha, \beta]$ is the optimal bounding interval for F, then as in Case 1, if $F \triangle T^{-1}F$ is an interval, then $\alpha = 1/2$, $\beta = 1$ and F = [1/2, 1]. In this case E = [1/4, 3/4].

CASE 3. If $F \subset [\alpha, \beta]$ where $0 < \alpha < 1/2 < \beta < 1$, and $[\alpha, \beta]$ is the optimal bounding interval for F, then there are three possibilities.

If $\beta/2 < \alpha$, then $F \cap \frac{1}{2}F = \emptyset$, $m(T^{-1}F \cap [\alpha/2, \beta/2]) > 0$, $m(T^{-1}F \cap [\beta/2, \alpha]) = 0$, $m(F \cap [\beta/2, \alpha]) = 0$, and $m(F \cap [\alpha, 1/2]) > 0$. This contradicts the fact that $E = F \triangle T^{-1}F$ is an interval.

If $\beta/2 = \alpha$ then $m\left(F \cap \frac{1}{2}F\right) = 0$, $m(T^{-1}F \cap [\alpha/2, \beta/2]) > 0$, $m(F \cap [\alpha, 1/2]) > 0$, $m(F \cap [\beta, 1 + \beta/2]) = 0$ and $m(T^{-1}F \cap [\beta, (1 + \beta)/2]) = 0$. Thus for E to be an interval, F must contain the interval $[\alpha, 2\alpha]$. This is due to the fact that the measure of $\frac{1}{2}F$ is half that of F. Since $2\alpha = \beta$ and $[\alpha, \beta]$ is the optimal bounding interval for F by assumption, $F = [\alpha, \beta]$. Furthermore, $(1 + \alpha)/2 = \beta$. If not, we have a contradiction to the fact that E is an interval. Thus $F = [\alpha, \beta] = [1/3, 2/3]$. In this case $F \triangle T^{-1}F = E = [1/6, 5/6]$. But this is not an interval with dyadic endpoints.

If $\beta/2 > \alpha$, then $m(F \cap [\alpha/2, \alpha]) = 0$, $m(F \cap [\beta, (1+\beta)/2]) = 0$ and $m(\frac{1}{2}F \cap [\alpha/2, \alpha]) > 0$, $m((\frac{1}{2}F + \frac{1}{2}) \cap [\beta, (1+\beta)/2]) > 0$. Hence for E to be an interval, F must contain the intervals $[\alpha, 2\alpha]$ and $[2\beta - 1, \beta]$. Since $m((F \triangle T^{-1}F) \cap [\alpha/2, \alpha]) > 0$ and $m((F \triangle T^{-1}F) \cap [\beta, (1+\beta)/2]) > 0$ since F contains the interval $[\alpha, 2\alpha]$, and since $[\alpha, \beta]$ is the optimal bounding interval for F, for $F \triangle T^{-1}F$ to be connected, we must have $m(F \cap$ $[2\alpha, 4\alpha]$) = 0. By similar reasons, F must contain the interval $[4\alpha, 8\alpha]$. By induction we see that F contains the interval $[2^{2(n-1)}\alpha, 2^{2n}\alpha]$ for n such that $2^{2n}\alpha < 1$, and does not contain the interval $[2^{2n}\alpha, 2^{2(n+1)}\alpha]$ for n such that $2^{2(n+1)}\alpha < 1$. Furthermore, $m(T^{-1}F \cap [\beta/2, (1+\alpha)/2]) = 0$. For $F \triangle T^{-1}F$ to be connected, F must contain the interval $[\beta/2, (1+\alpha)/2]$ and $T^{-1}F \cap [(1+\alpha)/2, 1/2 + \alpha] = [(1+\alpha)/2, 1/2 + \alpha]$. Thus we obtain the following equalities: $2^n \alpha = \beta - 1/2$, $2^{n+1} \alpha = \beta/2$, $2^{n+2} \alpha = (1+\alpha)/2$, and $2^{n+3}\alpha = \alpha + 1/2$ for some n. Hence $2^{n+3}\alpha = 1 + \alpha = \alpha + 1/2$, which is a contradiction. So if F is bounded by the pair (α, β) then $E = F \triangle T^{-1}F$ cannot be connected.

Case 4. If $F \subset [\alpha,1]$ where $0 < \alpha < 1/2$, and $[\alpha,1]$ is the optimal bounding interval for F, then we know that F is a disjoint union of $[\alpha_i,\beta_i]$, i.e., $F = \bigcup_{i=1}^n [\alpha_i,\beta_i]$ with $\alpha_1 = \alpha$, and $\beta_n = 1$ as in Case 3. Let $\alpha_n = \beta$. If $\beta \leq 1/2$ then $F^c \subset [0,\beta]$. This is the situation of Case 1. So we assume that $\beta > 1/2$. In other words, $F = \bigcup_{i=1}^{n-1} [\alpha_i,\beta_i] \cup [\beta,1]$. Then by a similar argument to Case 3, we see that there is no F such that $F \triangle T^{-1}F$ is an interval.

Case 5. If $F \subset [0, \beta]$ with $1/2 < \beta < 1$, and $[0, \beta]$ is the optimal bounding interval for F, then by a similar argument to Case 4, there is no F for which $F \triangle T^{-1}F$ is an interval.

REFERENCES

- [1] G. H. Choe, Spectral types of uniform distribution, Proc. Amer. Math. Soc. 120 (1994), 715–722.
- [2] —, Ergodicity and irrational rotations, Proc. Roy. Irish Acad. 93A (1993), 193–202.
- [3] R. B. Kirk, Sets which split families of measurable sets, Amer. Math. Monthly 79 (1972), 884–886.
- [4] K. Petersen, Ergodic Theory, Cambridge Univ. Press, 1983.
- [5] W. Rudin, Real and Complex Analysis, McGraw-Hill, 1986.
- [6] W. A. Veech, Strict ergodicity in zero dimensional dynamical systems and the Kronecker-Weyl theorem mod 2, Trans. Amer. Math. Soc. 140 (1969), 1-33.
- [7] P. Walters, An Introduction to Ergodic Theory, Springer, New York, 1982.

Korea Advanced Institute of Science and Technology Taejon 305-701 $\,$

Korea

E-mail: choe@euclid.kaist.ac.kr

Received 28 September 1994; revised 11 July 1995 and 26 February 1998