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ON NORMAL NUMBERS MOD 2

BY

YOUNGHO AHN AND GEON H. CHOE (TAEJON)

It is proved that a real-valued function f(x) = exp(πiχI(x)), where I
is an interval contained in [0, 1), is not of the form f(x) = q(2x)q(x) with
|q(x)| = 1 a.e. if I has dyadic endpoints. A relation of this result to the
uniform distribution mod 2 is also shown.

1. Introduction Let (X,µ) be a probability measure space. A mea-
surable transformation T : X → X is said to be measure preserving if
µ(T−1E) = µ(E) for every measurable subset E. A measure preserving
transformation T on X is called ergodic if f(Tx) = f(x) holds only for
constant functions f on X. Throughout the paper all set equalities, set in-
clusions and function equalities are understood modulo measure zero sets,
and all subsets are measurable unless otherwise stated. For example, we say
that I is an interval if the Lebesgue measure of I △ [a, b] equals zero for
some a, b, where △ denotes symmetric difference.

Let χE be the characteristic function of a set E and consider the beha-
vior of the sequence

∑n−1
k=0 χE(T

kx) which counts the number of times the
points T kx visit E. The Birkhoff Ergodic Theorem applied to the ergodic
transformation T : x 7→ {2x} on [0, 1), where {t} is the fractional part of t,
gives the classical Borel Theorem on normal numbers:

lim
n→∞

1

n

n−1
∑

k=0

χ[1/2,1)(T
kx) =

1

2
.

This implies that a.e. x is normal, i.e., the relative frequency of the digit 1
in the binary expansion of x is 1/2 (see [7]).

In this paper we are interested in the uniform distribution of the sequence
yn ∈ {0, 1} defined by
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yn(x) ≡
n−1
∑

k=0

χE(T
kx) (mod 2),

where T : x 7→ {2x}. When E = [1/2, 1) it is shown that {yn(x)} is evenly
distributed in L2-sense [1]. If {yn(x)} is evenly distributed for a fixed set

E, that is, the limit of N−1
∑N

n=1 yn exists and equals 1/2, then we call x
a normal number mod 2 with respect to E. Contrary to our intuition, the
limit might not exist and even when it exists it may not be equal to 1/2.
This type of problem was first studied by Veech [6]. He considered the case
when the transformations are given by irrational rotations on the unit circle,
and obtained results which showed that the length of the interval E and the
rotation angle θ are closely related. For example, he proved that when the
irrational number θ has bounded partial quotients in its continued fraction
expansion, then the sequence {yn} is evenly distributed if the length of the
interval is not an integral multiple of θ modulo 1. For a related result, see [2].

We investigate the problem from the viewpoint of spectral theory. Let
(X,µ) be a probability space and T an ergodic transformation on X which is
not necessarily invertible. Consider the behavior of the sequence 2yn(x)−1=
exp(πiyn), and check whether the limit is zero in a suitable sense. Define an
isometry U on L2(X) by

(Uf)(x) = exp(πiχE(x))f(Tx).

Then for n ≥ 1 and the constant function 1,

(Un1)(x) = exp
(

πi

n−1
∑

k=0

χE(T
kx)

)

= exp(πiyn(x)),

and the problem is to study the existence of

(∗) lim
N→∞

1

N

N
∑

n=1

(Un1)(x).

Thus we ask whether the limit of (∗) equals 0. By the von Neumann Mean

Ergodic Theorem, the L2-limit of N−1
∑N

n=1 U
nf exists and equals Pf ,

where P is the orthogonal projection onto the U -invariant subspace.

We briefly summarize the related results of [1]. Recall that a function
f(x) is called a coboundary if f(x) = q(x)q(Tx) with |q(x)| = 1 a.e. on X.
Let M = {h ∈ L2(X) : Uh = h}. Then the dimension of M is 0 or 1.

If dimM = 0, then N−1
∑N

n=1 U
n1 → 0 in L2. If dimM = 1, then (i)

exp(πiχE) is a coboundary, (ii) there exists q such that q(x) = exp(πiχF (x))
for some F , exp(πiχE(x)) = q(x)q(Tx), E = F △ T−1F = F c

△ T−1F c,

and (iii) N−1
∑N

n=1 U
n1 → Cq in L2, where C =

T
X
q(x) dµ. In fact, the

convergence is better than L2 since the Birkhoff Ergodic Theorem implies
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that at a.e. x ∈ X,

1

N

N
∑

n=1

Un1 =
1

N

N
∑

n=1

q(x)q(Tnx) = q(x)
1

N

N
∑

n=1

q(Tnx) → q(x)
\
X

q(y) dµ(y).

Hence the convergence is pointwise, which was not indicated in [1].

Suppose λq(2x)q(x) = ±1 for some |q| = 1. Then 1 = λ2q2(2x)q2(x)
and λ2q2(x) = q2(2x). Since 1 is the only eigenvalue of x 7→ {2x}, we see
that λ2 = 1 and q2 is constant. Thus λ = ±1.

Let F be a Lebesgue measurable subset of R and m be the Lebesgue
measure on R. For a point x ∈ R the metric density of F at x is defined to
be

dF (x) ≡ lim
r→0+

m(F ∩ (x− r, x+ r))

2r

provided that this limit exists. The metric density of F equals 1 and 0 at
a.e. point of F and F c, respectively. If (x− r, x+ r) and 2r are replaced by
[x, x+r) and r respectively in the above limit, then we call the corresponding
limit d+F (x) the right metric density of F at x. Recall that for f ∈ L1(R), a
point x ∈ R is called a Lebesgue point of f if

lim
r→0+

1

2r

\
(x−r,x+r)

|f(y)− f(x)| dm(y) = 0.

We know that for f ∈ L1(R) almost every x ∈ R is a Lebesgue point of f . If
x is a Lebesgue point of χF , then dF (x) = d+F (x). Similarly the left metric
density d−F (x) is defined.

The metric density of F at a specific point may not be well defined.
Then the point is not a Lebesgue point of χF [3]: Given κ and η, 0 ≤
κ ≤ η ≤ 1, there exists F ⊂ R so that the upper and lower limits of
m(F ∩ (−δ, δ))/(2δ) are η and κ, respectively, as δ → 0. Recall that for a
point x a sequence A1, A2, . . . of measurable sets is said to shrink to x nicely

if there is a constant c > 0 for which there is a sequence of positive numbers
r1, r2, . . . with lim rn = 0 such that An ⊂ (x− rn, x+ rn) and m(An) ≥ crn.
If a sequence {An}n shrinks to x nicely and x is a Lebesgue point of χF ,
then

dF (x) = lim
n→∞

m(F ∩An)

m(An)

(see p. 140 of [5]).

Throughout the paper a rational number of the form
∑k

i=1 ai 2
−i, ai ∈

{0, 1} for 1 ≤ i ≤ k with ak = 1, is called a dyadic number and de-
noted by [a1, . . . , ak]. By convention, 0 and 1 are also regarded as dyadic
numbers.
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Note that for the set E = [1/6, 5/6], exp(πiχE) is a coboundary since
E = F △ T−1F for F = [1/3, 2/3]. The numbers 1/6, 5/6 are not dyadic

and the sequence N−1
∑N

n=1 yn(x) converges to f(x), where f(x) = 1/3 if
x ∈ F and f(x) = 2/3 if x 6∈ F almost everywhere. In this paper, we
will show that exp(πiχ[a,b]) with a, b dyadic is a coboundary if and only if
a= 1/4 and b= 3/4. The interval E= [1/4, 3/4] satisfies the condition since
E = F △ T−1F for F = [0, 1/2]. But

T
exp(πiχF ) dµ = 0, so the sequence

converges to 0, hence we see that Borel’s theorem mod 2 holds for every
interval with dyadic endpoints.

2. Lemmas on metric density. Note that T−1F ∩ [0, r] = 1
2F ∩ [0, r]

for 0 < r ≤ 1/2, and T−1F ∩ [r, 1] =
(

1
2
F + 1

2

)

∩ [r, 1) for 1/2 ≤ r < 1.
For a fixed set F and real 0 ≤ t < 1 define a continuous function hF,t(r)

on (0, 1 − t) by

hF,t(r) ≡ ht(r) =
m(F ∩ [t, t+ r])

r
.

Similarly for real 0 < t ≤ 1 define a function gF,t(r) on (0, t) by

gF,t(r) ≡ gt(r) =
m(F ∩ [t− r, t])

r
.

Note that d+F (t) = limr→0+ hF,t(r) and d−F (t) = limr→0+ gF,t(r).

Lemma 1. If two dyadic numbers 0 < a < b < 1 satisfy [a, b] = F△T−1F
for some set F , then:

(i) h0(r/2
n) = h0(r) for all n ∈ N and all 0 < r ≤ min{2a, 1}.

(ii) If d+F (0) exists, then d+F (0) = h0(r) = 0 or 1.
(iii) If d+F (0) = 1, then F contains an interval of the form [0, r], r > 0,

and if d+F (0) = 0, then F c contains such an interval.

P r o o f. (i) Take r with 0<r ≤ min{2a, 1}. Since (F △T−1F )∩[0, r/2]=
∅, we have F ∩ [0, r/2] = T−1F ∩ [0, r/2]. Thus m(F ∩ [0, r/2]) = m(T−1F ∩
[0, r/2]) = m

(

1
2F ∩ [0, r/2]

)

= 1
2m(F ∩ [0, r]) and h0(r/2) = h0(r). Hence

h0(r/2
n) = h0(r/2

n−1) = . . . = h0(r).
(ii) Put c = min{2a, 1}. Since h0(r/2

n) = h0(r) for all n ∈ N and
0 ≤ r < c by (i), we have

d+F (0) = lim
s→0+

m(F ∩ [0, s])

s
= lim

n→∞

h0

(

r

2n

)

= h0(r).

Assume that d+F (0) = α, 0 < α < 1. Since for every 0 ≤ r < c, there
exists a sufficiently small δ(r) > 0 such that 0 ≤ r+ε < c for all 0 < ε < δ(r),
i.e.,

m(F ∩ [0, r + ε])

r + ε
= α,
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we havem(F∩[r, r+ε]) = m(F∩[0, r+ε])−m(F∩[0, r]) = α(r+ε)−αr = αε.
Hence m(F ∩ [r, r + ε])/ε = α so F has right metric density α at r, for all
0 ≤ r < c. Since 0 < α < 1, this contradicts the fact that almost everywhere
the metric density is 0 or 1.

(iii) Assume that d+F (0) = 1 and F does not contain any interval. Then
for every 0 < r ≤ min{2a, 1},

h0(r) =
m(F ∩ [0, r])

r
< 1.

But h0(r) = d+F (0) = 1. This is a contradiction. Thus F contains an interval
of the form [0, r], r > 0. The other case is similarly proved.

Remark. If a, b and F satisfy the conditions of Lemma 1, then similar
results also hold for d−F (1) and g1(r):

(i) g1(r/2
n) = g1(r) for all n ∈ N and all 0 < r ≤ 1− b/2.

(ii) If d−F (1) exists, then d−F (1) = g1(r) = 0 or 1.

(iii) If d−F (1) = 1, then F contains an interval of the form [s, 1], s < 1,
and if d−F (1) = 1, then F c contains such an interval.

Hence we investigate the existence of d+F (0) in Lemmas 2 and 3. The
existence of d−F (1) is similarly proved.

Lemma 2. Let a = [a1, . . . , ap], b = [b1, . . . , bq] and F satisfy the con-

ditions of Lemma 1. Put r0 = 1/2k, where k = max{p, q}. Then for t =
[c1, . . . , cl], ht(r/2

n) = ht(r) and either ht = h0 or ht = 1 − h0 for n ∈ N

and 0 < r ≤ r0/2
l. Hence the right metric density of F exists at 0 if and

only if it exists at every dyadic point t; in that case either d+F (t) = d+F (0) or
d+F (t) = 1− d+F (0).

P r o o f. Step 1. We consider the case of l = 1. Put E = [a, b]. Then
h0(r) = h0(r/2

n) for n ∈ N and 0 < r ≤ r0 by Lemma 1, and either
E ∩ [1/2, 1/2 + r0/2] = ∅ or E ∩ [1/2, 1/2 + r0/2] = [1/2, 1/2 + r0/2].

Case 1. If E ∩ [1/2, 1/2 + r0/2] = ∅, then m(E ∩ [1/2, 1/2 + r]) = 0 for
0 < r ≤ r0/2. Since E = F △ T−1F , it follows that m(F ∩ [1/2, 1/2 + r]) =
m(T−1F ∩ [1/2, 1/2 + r]) = m(T−1F ∩ [0, r]) = 1

2m(F ∩ [0, 2r]). Thus

h1/2(r) = h0(2r) = h0(r).

Furthermore,

h1/2(r/2
n) = h0(r/2

n) = h0(r) = h1/2(r)

for all n and 0 < r ≤ r0/2.

Case 2. If E ∩ [1/2, 1/2 + r0/2] = [1/2, 1/2 + r0/2], then m(E ∩ [1/2,
1/2+r]) = r for 0 < r ≤ r0/2. So m(F ∩ [1/2, 1/2+r]) = r−m(T−1F ∩ [1/2,
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1/2 + r]) = r −m(T−1F ∩ [0, r]) = r − 1
2m(F ∩ [0, 2r]). Thus

h1/2(r) = 1− h0(2r) = 1− h0(r)

and

h1/2(r/2
n) = 1− h0(r/2

n) = 1− h0(r) = h1/2(r)

for n ∈ N and 0 < r ≤ r0/2.
Hence

h1/2(r/2
n) = h1/2(r) = h0(r) or 1− h0(r)

for n ∈ N and 0 < r ≤ r0/2.

Step 2 . By induction assume that if s = [s1, . . . , sl−1] then hs(r/2
n) =

hs(r) and hs = h0 or 1− h0 for all 0 < r ≤ r0/2
l−1.

Let t = [c1, . . . , cl] and s = [c2, . . . , cl]. Then either t = [0, c2, . . . , cl] or
t = [1, c2, . . . , cl]. If t = [0, c2, . . . , cl] then t = 1

2s, and if t = [1, c2, . . . , cl]

then t = 1
2s+

1
2 . Note that either E ∩ [t, t+ r0/2

l] = ∅ or E ∩ [t, t+ r0/2
l] =

[t, t+ r0/2
l].

Case 1. If E ∩ [t, t + r0/2
l] = ∅, then m(E ∩ [t, t + r]) = 0 for 0 < r ≤

r0/2
l. Since E = F △ T−1F , it follows that m(F ∩ [t, t + r]) = m(T−1F ∩

[t, t + r]) = 1
2m(F ∩ [s, s + 2r]). Thus ht(r) = hs(2r) = hs(r) = h0(r)

or 1 − h0(r) and ht(r/2
n) = hs(r/2

n) = hs(r) = ht(r) for n ∈ N and
0 < r ≤ r0/2

l.

Case 2. If E ∩ [t, t + r0/2
l] = [t, t + r0/2

l], then m(E ∩ [t, t + r]) = r
for 0 < r ≤ r0/2

l. Since m(F ∩ [t, t + r]) = r − m(T−1F ∩ [t, t + r]) =
r − 1

2m(F ∩ [s, s + 2r]) we have ht(r) = 1 − hs(2r) = 1 − hs(r) = h0(r) or
1 − h0(r) and ht(r/2

n) = 1 − hs(r/2
n) = 1 − hs(r) = ht(r) for n ∈ N and

0 < r ≤ r0/2
l.

Hence for t = [c1, . . . , cl] we have

ht(r/2
n) = ht(r) = h0(r) or 1− h0(r)

for n ∈ N and 0 < r ≤ r0/2
l. From this the second assertion follows.

Lemma 3. If a, b and F satisfy the conditions of Lemma 1, then the right

metric density of F exists at every dyadic point.

P r o o f. By Lemma 2 it is sufficient to show that the right metric density
of F exists at 0. Assume that limr→0+ h0(r) does not exist. Let E = [a, b]
with a = [a1, . . . , ap], b = [b1, . . . , bq ] and r0 be as in Lemma 2. From Lemma
2 we see that for t = [c1, . . . , cl], ht(r/2

n) = ht(r) = h0(r) or 1 − h0(r) for
n ∈ N and 0 < r ≤ r0/2

l.
Take a Lebesgue point ξ of χF with dF (ξ) = 1, and put rn = r0/2

n. For
every n choose ξn ∈ {[c1, . . . , cm] : m ≤ n} so that the sequence ξn converges
to ξ and [ξn, ξn+rn] ⊂ (ξ−1/2n−1, ξ+1/2n−1). Since m([ξn, ξn + rn])/2

n−2

= r0/4, the subsets [ξn, ξn + rn] shrink to ξ nicely. For fixed r0, there exists
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ε > 0 such that ε < h0(r0) < 1 − ε. If not, the metric density at 0 must
exist. Hence

m(F ∩ [ξn, ξn + rn])

rn
= hξn(rn) = h0(rn) or 1− h0(rn) < 1− ε

for all n. Since the metric density of F at ξ is 1, this is a contradiction.

Lemma 4. If [0, b] = F △ T−1F with b = [b1, . . . , bq] a dyadic number ,
then

(i) h0(r/2
2n) = h0(r) and h0(r/2

2n−1) = 1 − h0(r) for all n ∈ N and

0 < r ≤ min{2b, 1}.
(ii) Put r0 = 1/2q . Then for t = [c1, . . . , cl], ht(r/2

2n) = ht(r),
ht(r/2

2n−1) = 1 − ht(r) and ht = h0 or 1 − h0 for all n ∈ N and 0 <
r ≤ r0/2

l.

(iii) [0, b] 6= F △ T−1F for every measurable set F .

P r o o f. (i) Take r with 0<r≤min{2b, 1}. Since (F △ T−1F )∩[0, r/2]=
[0, r/2], we have m(F ∩ [0, r/2]) = r/2−m(T−1F ∩ [0, r/2]) = r/2−m

(

1
2F ∩

[0, r/2]
)

= r/2− 1
2m(F ∩ [0, r]) and h0(r/2) = 1−h0(r). Hence h0(r/2

2n) =
1 − h0(r/2

2n−1) = . . . = h0(r) and h0(r/2
2n−1) = 1 − h0(r/2

2n−2) = . . . =
h0(r).

(ii) Put E = [0, b]. Then h0(r/2
2n) = h0(r) and h0(r/2

2n−1) = 1−h0(r)
for n ∈ N and 0 < r ≤ r0 by (i) and E ∩ [1/2, 1/2 + r0/2] = ∅ or E ∩
[1/2, 1/2 + r0/2] = [1/2, 1/2 + r0/2]. Now proceed as in Lemma 2.

(iii) Take ξ, r0, rn and ξn as in the proof of Lemma 3. Then

dF (ξ) = lim
n→∞

hξn(rn) = lim
n→∞

h0(rn) or 1−h0(rn) = 1−h0(r0) or h0(r0)

by (ii). If dF (ξ) = 1 − h0(r0), then h0(r0) = 0 and [0, b] 6= F △ T−1F for
this F . The other cases are similarly proved.

Remark. For the case [a, 1] = F △ T−1F with a = [a1, . . . , ap] a dyadic
number, we consider the left metric density for F and gt(r). Then we have
the same conclusion as in Lemma 4. For example, put r0 = 1/2p. Then for
t = [c1, . . . , cl], gt(r/2

2n) = gt(r), gt(r/2
2n−1) = 1− gt(r) and either gt = g1

or 1 − g1 for all n ∈ N and 0 < r ≤ r0/2
l. Hence we may assume that if

[a, b] = F △T−1F for some F with a, b dyadic, then either F or F c contains
an interval of the form [0, r] or [r, 1] for some 0 < r < 1.

3. Main result. We say that [α, β] is the optimal bounding interval for
F if F ⊂ [α, β] modulo measure zero sets and α is the infimum of points at
which F has a positive metric density, while β is the supremum of points at
which F has a positive right metric density. From now on, if K is connected
and m(S) = 0, then we regard K\S as being connected, and if E is an
interval, then we regard E\S as an interval.
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Theorem 1. Let T be the transformation defined by x 7→ 2x (mod 1) on
[0, 1). Let a and b be dyadic numbers. Then exp(πiχ[a,b]) is a coboundary if

and only if a = 1/4 and b = 3/4.

P r o o f. Recall that there exists a measurable set F such that neither
F nor its complement contain any interval of positive length [5]. But if E
is an interval with dyadic endpoints, then F or F c contains an interval of
the form [0, r] or [s, 1], r > 0, s < 1, and E = F c

△ T−1F c. Hence we may
assume that F c contains an interval of the form [0, r] or [s, 1], r > 0, s < 1.
For this F , the optimal bounding interval [α, β] has either α > 0 or β < 1.

Case 1. Assume that F ⊂ [α, β], 0 ≤ α < β < 1/2 and [α, β] is the
optimal bounding interval for F .

F | [/// ///] | |

0 α β 1
2

1

T−1F | [/// ///] | [/// ///] |

0 α
2

β
2

1
2

1+α
2

1+β
2

1

Then m(F ∩ [β/2, β]) > 0, m(T−1F ∩ [β/2, β]) = 0 and

m

(

T−1F ∩

[

1 + α

2
,
1 + β

2

])

> 0, m

(

F ∩

[

1 + α

2
,
1 + β

2

])

= 0.

But in E = F △ T−1F , m(E ∩ [β/2, β]) > 0, m(E ∩ [β, 1/2]) = 0, and
m(E ∩ [1/2, (1 + β)/2]) > 0. So this reduces to the assumption that E is an
interval. If F △ T−1F is an interval, then α = 0, β = 1/2 and F = [0, 1/2].
In this case E = [1/4, 3/4].

Case 2. If F ⊂ [α, β] where 1/2 < α < β ≤ 1, and [α, β] is the optimal
bounding interval for F , then as in Case 1, if F △ T−1F is an interval, then
α = 1/2, β = 1 and F = [1/2, 1]. In this case E = [1/4, 3/4].

Case 3. If F ⊂ [α, β] where 0 < α < 1/2 < β < 1, and [α, β] is the
optimal bounding interval for F , then there are three possibilities.

F | [/// | ///] |

0 α 1
2 β 1

T−1F | [/// ///] | [/// ///] |

0 α
2

β
2

1
2

1+α
2

1+β
2 1
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If β/2 < α, then F ∩ 1
2F = ∅, m(T−1F ∩ [α/2, β/2]) > 0, m(T−1F ∩

[β/2, α]) = 0, m(F ∩ [β/2, α]) = 0, and m(F ∩ [α, 1/2]) > 0. This contradicts
the fact that E = F △ T−1F is an interval.

If β/2 = α then m
(

F ∩ 1
2
F
)

= 0, m(T−1F ∩ [α/2, β/2]) > 0, m(F ∩
[α, 1/2]) > 0, m(F ∩ [β, 1 + β/2]) = 0 and m(T−1F ∩ [β, (1 + β)/2]) = 0.
Thus for E to be an interval, F must contain the interval [α, 2α]. This is
due to the fact that the measure of 1

2F is half that of F . Since 2α = β
and [α, β] is the optimal bounding interval for F by assumption, F = [α, β].
Furthermore, (1 + α)/2 = β. If not, we have a contradiction to the fact that
E is an interval. Thus F =[α, β]= [1/3, 2/3]. In this case F △ T−1F = E=
[1/6, 5/6]. But this is not an interval with dyadic endpoints.

If β/2 > α, then m(F ∩ [α/2, α]) = 0, m(F ∩ [β, (1 + β)/2]) = 0 and
m
(

1
2
F ∩ [α/2, α]

)

> 0, m
((

1
2
F + 1

2

)

∩ [β, (1 + β)/2]
)

> 0. Hence for E to
be an interval, F must contain the intervals [α, 2α] and [2β − 1, β]. Since
m((F △ T−1F ) ∩ [α/2, α]) > 0 and m((F △ T−1F ) ∩ [β, (1 + β)/2]) > 0
since F contains the interval [α, 2α], and since [α, β] is the optimal bound-
ing interval for F , for F △ T−1F to be connected, we must have m(F ∩
[2α, 4α]) = 0. By similar reasons, F must contain the interval [4α, 8α]. By
induction we see that F contains the interval [22(n−1)α, 22nα] for n such
that 22nα < 1, and does not contain the interval [22nα, 22(n+1)α] for n
such that 22(n+1)α < 1. Furthermore, m(T−1F ∩ [β/2, (1 + α)/2]) = 0. For
F △ T−1F to be connected, F must contain the interval [β/2, (1 + α)/2]
and T−1F ∩ [(1 + α)/2, 1/2 +α] = [(1 + α)/2, 1/2 +α]. Thus we obtain the
following equalities: 2nα = β − 1/2, 2n+1α = β/2, 2n+2α = (1 + α)/2, and
2n+3α = α + 1/2 for some n. Hence 2n+3α = 1 + α = α + 1/2, which is a
contradiction. So if F is bounded by the pair (α, β) then E = F △ T−1F
cannot be connected.

Case 4. If F ⊂ [α, 1] where 0 < α < 1/2, and [α, 1] is the optimal
bounding interval for F , then we know that F is a disjoint union of [αi, βi],
i.e., F =

⋃n
i=1[αi, βi] with α1 = α, and βn = 1 as in Case 3. Let αn = β.

If β ≤ 1/2 then F c ⊂ [0, β]. This is the situation of Case 1. So we assume

that β > 1/2. In other words, F =
⋃n−1

i=1 [αi, βi] ∪ [β, 1]. Then by a similar
argument to Case 3, we see that there is no F such that F △ T−1F is an
interval.

F | [/// | ///]

0 α 1
2

1

T−1F | [/// ///] [/// ///]

0 α
2

1
2

1+α
2 1
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Case 5. If F ⊂ [0, β] with 1/2 < β < 1, and [0, β] is the optimal bounding
interval for F , then by a similar argument to Case 4, there is no F for which
F △ T−1F is an interval.
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