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SIDONICITY IN COMPACT, ABELIAN HYPERGROUPS

BY

KATHRYN E. H A R E (WATERLOO, ONTARIO)

1. Introduction. Lacunarity has been extensively studied in a variety
of settings. In this paper we investigate Sidon-type sets in duals of com-
pact abelian hypergroups, and from our study derive new conclusions about
central Sidonicity in compact, non-abelian groups.

It is well known that every infinite subset of the dual of a compact,
abelian group contains an infinite Sidon set ([13]) but that there are com-
pact, abelian hypergroups (and compact, non-abelian groups) whose duals
contain no infinite (central) Sidon sets (cf. [14]). The main result of this
note is to show, in contrast, that p-Sidon sets, for p > 1, are plentiful. In
particular, we prove that every infinite subset of the dual of a compact group
contains an infinite central p-Sidon set for all p > 1. This extends results
previously established for all infinite, compact, connected groups [8], which
in turn extended work of [3].

Formally, we prove more. We introduce a generalization of Sidon sets
in duals of hypergroups, called (a, p)-Sidon sets, which arise by considering
classical Sidonicity with the Fourier transform weighted by (−2a)th powers
of the 2-norm of the characters; (1, p)-Sidon sets are p-Sidon sets, (1, 1)-Sidon
sets are the usual Sidon sets. By an essentially constructive method, we prove
that any infinite subset E of the dual of a compact, abelian hypergroup K
which satisfies

inf{‖χ‖2 : χ ∈ E} = 0,

contains an infinite set which is (a, p)-Sidon for all a < p. The condition on
the 2-norms of characters is a natural one, satisfied by many hypergroups.
If it is not satisfied and if, in addition, the dual, K̂, is also a hypergroup,
then it is known that E contains an infinite Sidon set [18]; the case when
the 2-norms are bounded away from zero and the dual is not a hypergroup
remains open.
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We also investigate (a, p)-Sidonicity properties of the entire dual object,
and again obtain new results for compact groups.

For definitions and basic facts about hypergroups we refer the reader
to [1] and [11]. References [10] and [13] are good resources for lacunarity
on groups. Lacunarity on hypergroups has been studied by a number of
authors, e.g. in [7], [12], [16] and [18].

2. Definition and basic properties. Throughout this paper K will
denote a compact, abelian hypergroup with dual K̂.

Notation. For E ⊆ K̂, 1 ≤ p <∞ and a ∈ R we define

la,p(E) ≡
{

(aχ)χ∈E : ‖(aχ)‖a,p ≡
(∑

|aχ|p‖χ‖−2a2

)1/p
<∞

}
and

la,∞(E) ≡ {(aχ)χ∈E : ‖(aχ)‖a,∞ ≡ sup
χ∈E
{|aχ|‖χ‖−2a2 } <∞}.

If a = 1 and p < ∞ or a = 0 and p = ∞ we will just write lp(E) for the
weighted lp space. Of course, if inf{‖χ‖2 : χ ∈ E} > 0 then the la,p(E)
spaces are identical for all a (and fixed p).

We let TrigE(K) denote the space of trigonometric polynomials on K
whose Fourier transform is supported on E. More generally, a subscript
on a function space X will denote the subspace of functions whose Fourier
transform is supported on E.

Motivated by [9] we make the following definition:

Definition 1. Let E ⊆ K̂, 1 ≤ p ≤ 2 and a ∈ R. We call E an
(a, p)-Sidon set if

sup
{
‖(f̂(χ))‖a,p : f =

∑
f̂(χ)χ‖χ‖−22 ∈ TrigE(K), ‖f‖∞ ≤ 1

}
<∞.

A (1, p)-Sidon set is customarily called a p-Sidon set and a (1, 1)-Sidon set
is the classical Sidon set .

Obviously, it is easier to be an (a, p)-Sidon set as p increases and a
decreases. More generally, la,p ⊆ laq/p,q if 1 ≤ p ≤ q ≤ 2, so that if E is
(a, p)-Sidon then E is (b, q)-Sidon for all q ≥ p and b ≤ aq/p.

As with Sidon sets there are a number of equivalent properties; we list
some below.

Proposition 2. Let E ⊆ K̂, 1 ≤ p ≤ 2 and a ∈ R. Let 1/p + 1/p′ = 1
and let b = p′(1 − a/p) if p 6= 1 or b = 1 − a if p = 1. The following are
equivalent :

(1) E is an (a, p)-Sidon set ;

(2) there is a constant c such that ‖f̂‖a,p ≤ c‖f‖∞ for all f ∈ L∞E (K);
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(3) there is a constant c such that whenever φ ∈ lb,p′(E) then there is

a measure µ on K such that µ̂(χ) = φ(χ) for all χ ∈ E and ‖µ‖M(K) ≤
c‖φ‖b,p′ .

The proofs are similar to those found in [10] §37.2 or [5] for compact
groups.

Example 3. An important example of a compact, abelian hypergroup,
whose dual is also a hypergroup under pointwise operations, is the space
GI of conjugacy classes of a compact group G [11]. A function f on G
which is constant on the conjugacy classes may be viewed as defined on the
hypergroup GI and we will denote this function by f#. It is known that

ĜI = {(Trχ)#/degχ : χ ∈ Ĝ}.

Given P ⊆ Ĝ, we will denote by P# the corresponding subset of ĜI . It is
easy to see that P is central Sidon if and only if P# is a Sidon set in ĜI . A
subset E of Ĝ is called a central (b, p)-Sidon set in [9] if there is a constant
c such that whenever f =

∑
χ∈E dχaχ Trχ ∈ TrigE(G) then

‖f‖∞ ≥ c
(∑

db+1
χ |aχ|p

)1/p
.

Since ‖Trχ/degχ‖−22 = d2χ, it follows that if f is as above, then

‖f̂#‖a,p =
(∑

d2aχ |aχ|p
)1/p

,

and consequently P# is (a, p)-Sidon if and only if P is central (2a − 1, p)-
Sidon in the sense of [9]. It is due to this relationship that the main results
of the present paper apply to give new results for central (a, p)-Sidon sets
in duals of compact groups.

The work of Pisier shows the important connection in compact groups
between Sidonicity and the Λ property. These (a, p)-Sidon sets satisfy similar
Λ-like properties. It is an open problem if such conditions are sufficient in
any sense.

Proposition 4. If E is an (a, p)-Sidon set then there is a constant c
such that for all s ≥ 1 and for all f ∈ L2s

E (K),

‖f‖2s ≤ c
√
s‖f̂‖b,q

where 1/q = 1/p′ + 1/2 and b = (4p− 2a)/(3p− 2).

The proof is similar to the analogous results for Sidon sets in groups and
hypergroups (see [2] and [16]) and is omitted.

Remark 1. Notice that a difference between this proposition and the
corresponding result for the group case is that when p = a = 1 we obtain
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the inequality

‖f‖2s ≤ c
√
s‖f̂‖b,2

with b = 2, rather than b = 1. The necessity of this choice of b can be seen
in [15]. There, in Example 1, Rider constructs a compact group G and a
central Sidon set {χn} consisting of representations of degree 2n which have

the property that if f = Trχn, then ‖f‖2s = 2n(1−1/s) and ‖f̂‖b,2 = 2n(b−1).

Obviously, we cannot have the inequality ‖f‖2s ≤ c
√
s‖f̂‖b,2 satisfied for all

s ≥ 1 and n ∈ N with any choice of b < 2.

3. Existence of (a, p)-Sidon sets. The main purpose of this paper is
to demonstrate the plentifulness of (a, p)-Sidon sets when a < p. The key
tool for showing this is the following theorem.

Theorem 5. Suppose K is a compact , abelian hypergroup and {χn}⊆K̂
satisfies inf ‖χn‖2 = 0. Let 0 < εn<1/3, n=1, 2, . . . There is a subsequence
{χnk

} such that if

f =
∑

akχnk
‖χnk

‖−22 ∈ Trig(K)

with ‖f‖∞ ≤ 1, then |ak| ≤ ‖χnk
‖2(1−εk)2 .

P r o o f. As in [17], let {Dα} be a bounded, approximate identity in
Trig(K) with ‖Dα‖1 = 1. Set φ1 = χn1

‖χn1
‖−12 , where ‖χn1

‖−ε12 ≥ 16.
We now proceed to construct the subsequence {χnk

} inductively. Assume
φi = χni‖χni‖−12 for i = 1, . . . , j − 1 have been chosen, and for each such i
select Di ∈ {Dα} satisfying ‖φi ∗Di‖∞ ≥ 3

4‖φi‖∞. Since inf ‖χn‖2 = 0 we

may choose φj = χnj‖χnj‖−12 with the following properties:

(1) ‖φj‖
εj
∞ ≥ 2(j + 1);

(2) ‖φj‖
εj
∞ ≥ min{‖φi‖∞, ‖Di‖∞ : i = 1, . . . , j − 1};

(3) ‖φj‖
1−2εj
∞ ≥ 4(j+1)j.

For each i choose xi ∈ K so that |φi ∗Di(xi)| ≥ 2
3‖φi ∗Di‖∞.

Now assume that

f =

N∑
k=1

akχnk
‖χnk

‖−22

with ‖f‖∞ ≤ 1. For convenience we write f =
∑N
k=1 bkφk with bk =

ak‖χnk
‖−12 . Observe that as {φk} is orthonormal, |bk| ≤ ‖f‖2 ≤ 1.

We begin by evaluating the convolution of DN with f at xN :

f ∗DN (xN ) = bN (φN ∗DN (xN )) +

N−1∑
j=1

bj(φj ∗DN (xN )),
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to obtain the bound

|bN | |φN ∗DN (xN )| ≤ ‖f ∗DN‖∞ +

N−1∑
j=1

|bj | ‖φj ∗DN‖∞.

Since |φN ∗DN (xN )| ≥ 1
2‖φN‖∞ and ‖φj ∗DN‖∞ ≤ ‖φj‖∞‖DN‖1 ≤ ‖φj‖∞,

this gives the estimate

|bN | ≤
2

‖φN‖∞

(
1 +

N−1∑
j=1

‖φj‖∞
)
,

which by properties (1) and (2) yields

|bN | ≤
2N

‖φN‖1−εN∞
.

For j = 1, . . . , N − 1 we similarly have

f ∗DN−j(xN−j) = bN−j(φN−j ∗DN−j(xN−j))

+

N−j−1∑
k=1

bk(φk ∗DN−j(xN−j))

+

j−1∑
k=0

bN−k(φN−k ∗DN−j(xN−j))

and hence

|bN−j | ≤
2

‖φN−j‖∞

(
1 +

N−j−1∑
k=1

‖φk‖∞ +

j−1∑
k=0

|bN−k| ‖φN−k‖1‖DN−j‖∞
)
.

If k ≤ j−1 then N−k > N−j, so by (2) we have ‖DN−j‖∞ ≤ ‖φN−k‖
εN−k
∞ .

Thus if we let

Sj−1 =

j−1∑
k=0

|bN−k| ‖φN−k‖εN−k
∞ ,

we can write

|bN−j | ≤
2

‖φN−j‖∞
(1 + (N − j − 1)‖φN−j‖εN−j

∞ + Sj−1).

Upon noting that ‖φN−j‖
εN−j
∞ ≥ 1 this can be simplified to

|bN−j | ≤
2

‖φN−j‖∞
(Sj−1 + (N − j)‖φN−j‖εN−j

∞ ).

Of course, Sj = Sj−1 + |bN−j | ‖φN−j‖
εN−j
∞ so our previous estimates, to-
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gether with the fact that ‖φN−j‖
1−εN−j
∞ ≥ 2, show that

Sj ≤ 2Sj−1 +
2(N − j)

‖φN−j‖
1−2εN−j
∞

.

Iterating, this gives

Sj ≤ 2jS0 +

j∑
k=1

2j−k+1(N − k)

‖φN−k‖
1−2εN−k
∞

.

Since S0 = |bN | ‖φN‖εN∞ , our bound for |bN | established earlier in the
proof gives

Sj ≤
j∑

k=0

2j−k+1(N − k)

‖φN−k‖
1−2εN−k
∞

.

By property (3) it follows that Sj ≤
∑j
k=0 2k−N−1 and this is bounded by

1 since j ≤ N − 1. Thus

|bN−j | ≤
2

‖φN−j‖∞
+

2(N − j)
‖φN−j‖

1−εN−j
∞

≤ 1

‖φN−j‖
1−2εN−j
∞

by (1). Hence

|ak| = |bk| ‖χnk
‖2 ≤ ‖χnk

‖2(1−εk)2

as claimed.

An important corollary of this result is

Corollary 6. Suppose 1 ≤ p ≤ 2 and E is an infinite subset of K̂
satisfying

(∗) inf{‖χ‖2 : χ ∈ E} = 0.

Then E contains an infinite subset which is (a, p)-Sidon for all a < p.

P r o o f. Choose a sequence ak ↗ p and pick 0 < εk < 1/3 so that
δk ≡ 2(p(1 − εk) − ak) > 0. Let {χk} be a subset of E with decreasing
2-norms satisfying ‖χk‖δk2 < 2−k. We apply the theorem to {χk} to choose
a subsequence {χnk

} = E′′ with the property described in the statement of
the theorem.

Given a < p, select N such that ak ≥ a for all k ≥ N and assume

f =
∑

bkχnk
‖χnk

‖−22 ∈ TrigE′′(K)

with ‖f‖∞ ≤ 1. From the theorem we see that
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‖f̂‖pa,p =

N−1∑
k=1

|bk|p‖χnk
‖−2a2 +

∞∑
k=N

|bk|p‖χnk
‖−2a2

≤ C +

∞∑
k=N

‖χnk
‖2(p(1−εk)−a)2

where C is a constant independent of f . Since ak ≥ a for all k ≥ N it
follows that

‖f̂‖pa,p ≤ C +

∞∑
k=N

‖χnk
‖δk2 ≤ C + 1.

Thus E′′ is an infinite (a, p)-Sidon set for all a < p.

Remark 2. Suppose E satisfies (∗). Let f(x) = χ(x)‖χ‖−22 be an E
function. Then

‖f‖∞ = ‖f̂‖p+ε,p‖χ‖2ε/p2 ,

and hence if ε > 0 then E is not a (p+ε, p)-Sidon set. It is an open problem
if E may contain infinite (p, p)-Sidon sets.

Corollary 7. If K is an infinite, compact , abelian hypergroup, whose
dual is a hypergroup, then every infinite subset of the dual of K contains
an infinite (a, p)-Sidon for all a < p. In particular , it contains an infinite
(a, 1)-Sidon set for all a < 1 and infinite p-Sidon sets for all p > 1.

P r o o f. Let E be an infinite subset of K̂. If supχ∈E ‖χ‖2 > 0 then E
contains an infinite Sidon set [18], and hence an infinite (a, p)-Sidon set for
all a ≤ p. Otherwise the corollary above applies.

Perhaps the most important consequence of the theorem is the following
corollary which was previously obtained for compact connected groups by
using the representation theory and structure theory of Lie groups [8].

Corollary 8. If G is any infinite, compact group then every infinite
subset of the dual contains an infinite central (a, p)-Sidon set for all a <
2p− 1.

P r o o f. We just need to recall that E ⊆ Ĝ is central (2a − 1, p)-Sidon

if and only if E# ⊆ ĜI is an (a, p)-Sidon set in the hypergroup sense, and

that ĜI is a hypergroup.

Example 9. In [12], Lasser constructs a family of hypergroups K(α, β)
whose characters are the Jacobi polynomials associated with α and β. When
these polynomials are the Legendre polynomials or the Chebyshev polyno-
mials of the second kind, no infinite subset of the dual of K(α, β) is Sidon.
But since every infinite subset of the dual satisfies (∗), each such set contains
an infinite (a, p)-Sidon set for all a < p.
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The same is true for the countable, compact hypergroups introduced by
Dunkl and Ramirez (see [4] and [16]).

4. Sidon properties of K̂. Since ‖f‖∞ ≥ ‖f‖2 = ‖f̂‖1,2, the entire

dual K̂ is obviously (1, 2)-Sidon. The final result of our paper will show that
this cannot in general be improved for compact, abelian hypergroups if we
assume, in addition, that K̂ is a hypergroup under pointwise operations.
First we require a preliminary result on multipliers.

Terminology. (i) We will say (eχ) ∈ M(C(K), lp(K̂)) (the space of

multipliers from C(K) to lp(K̂)) if (eχaχ) ∈ lp(K̂) whenever f =∑
aχχ‖χ‖−22 is a continuous function.

(ii) We will say (eχ) ∈ M(lq(K̂),M(K)) if
∑
eχaχχ‖χ‖−22 ∈ M(K)

whenever (aχ) ∈ lq(K̂).

Lemma 10. If K is a compact , abelian hypergroup whose dual is a hy-
pergroup, then

M(C(K), lp(K̂)) '
{
l2p/2−p(K̂) if 1 ≤ p < 2,

l∞(K̂) if p = 2.

P r o o f. Standard arguments show that if q ≥ 2 and 1/s = 1/2 − 1/q
then

M(lq(K̂), l2(K̂)) = ls(K̂).

Obviously, M(lq(K̂), l2(K̂)) ⊆M(lq(K̂),M(K)).

Let E = (eχ) ∈ M(lq(K̂),M(K)) and let (bχ) ∈ lq(K̂). Only countably

many bχ 6= 0, so without loss of generality we may assume K̂ is countable.
Consider uniformly bounded, independent random variables {ξχ} on a

probability space Ω, with variance one and mean zero. Clearly, {ξχ(ω)bχ} ∈
lq(K̂) for a.e. ω and hence∑

eχξχ(ω)bχχ‖χ‖−22 ∈M(K) for a.e. ω.

By Thm. 4.8 of [6], ∑
eχbχχ‖χ‖−22 ∈ L2(K),

i.e. {eχbχ} ∈ l2(K̂). Thus E is a multiplier from lq(K̂) to l2(K̂) and so

belongs to ls(K̂). Consequently, M(lq(K̂),M(K)) ' ls(K̂) and by duality

M(C(K), lq′(K̂)) ' ls(K̂). If p = q′ then s = 2p/(2 − p), which completes
the proof.

Theorem 11. Suppose K is a compact , abelian hypergroup whose dual
is a hypergroup. If 1 ≤ p < 2 and a ≥ p/2 then K̂ is not an (a, p)-Sidon

set. If inf ‖χ‖2 = 0 and a > 1, then K̂ is not an (a, 2)-Sidon set.
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P r o o f. The proof is similar to [9], (1.11). Assume K̂ is (a, p)-Sidon and
f and h are trigonometric polynomials on K. If c is the (a, p)-Sidon constant

of K̂ then

‖h‖1‖f‖∞ ≥ ‖h ∗ f‖∞ ≥ c
(∑

|ĥ(χ)|p|f̂(χ)|p‖χ‖−2a2

)1/p
.

Define a trigonometric polynomial H by Ĥ(χ) = ĥ(χ)‖χ‖2(1−a)/p2 . Then

‖Ĥ ∗ f‖p = ‖ĥ ∗ f‖a,p ≤ (1/c)‖h‖1‖f‖∞.

Hence H is a multiplier from C(K) to lp(K̂) with operator norm at most

(1/c)‖h‖1. Applying the lemma, we see that Ĥ ∈ ls(K̂) for s = 2p/(2− p),
with operator norm comparable to ‖Ĥ‖s.

Now take for h a bounded approximate identity {hα} ⊆ Trig(K), with
‖hα‖1 = 1. By the previous remarks it follows that there is a constant C
such that

C = C‖hα‖1 ≤ ‖Ĥα‖s =

{
(
∑
χ | ̂hα(χ)|s‖χ‖(2(1−a)s/p)−22 )1/s if p 6= 2,

supχ | ̂hα(χ)| ‖χ‖1−a2 if p = 2.

As ̂hα(χ)→ 1, the previous inequalities imply that

(i)
∑
χ

‖χ‖4(1−a)/(2−p)−22 <∞ if p 6= 2

and

(ii) sup
χ
‖χ‖1−a2 <∞ if p = 2.

As ‖χ‖2 ≤ 1, (i) clearly fails if 4(1− a) ≤ 2(2− p), i.e. p ≤ 2a, and (ii) fails
when a > 1 and inf ‖χ‖2 = 0.

The analogous result is already known for central (a, p)-Sidon sets in
duals of compact, connected groups [9]. By our usual arguments this can
now be improved to

Corollary 12. If G is an infinite, compact group then Ĝ is not central
(p − 1, p)-Sidon for any 1 ≤ p < 2. If the degrees of the irreducible repre-

sentations of G are unbounded , then Ĝ is not central (a, 2)-Sidon for any
a > 1.
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