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0. Introduction. Let L/k be a finite extension of algebraic number
fields. Let O, and o denote the rings of integers in L and k, respectively. As
an o-module, Oy, is completely determined by [L : k| and its Steinitz class
C(L,k) (see [FT], Theorem 13). Now let G be a finite group containing a
normal subgroup H. Then we have an exact sequence of groups

Y: 1-H—-G—-G/H—1.

With k as above, fix a normal extension E/k with Galois group Gal(E/k) ~
G/H. Suppose L/Fk is a normal extension such that £ C L, and there exists
an isomorphism ¢y, : Gal(L/k) — G. Furthermore, assume E is the subfield
of L fixed by ¢7*(H). An extension L/k as just described will be called a
G-extension with respect to E/k and X. As L varies over all such extensions
of k, C(L, k) varies over a subset R(E/k,X) of the class group C(k) of k.
If we consider only tamely ramified extensions then we denote this set by
R(E/k,X).

Now let p be an odd prime and assume k contains the multiplicative
group p,, of pth roots of unity. In [C1], Ry(E/k,Y) is determined when L/k
is a certain type of nonabelian extension of degree p® with [E : k] = p. It is
shown that if O is free as an o-module, then Ry(E/k,Y) is a subgroup of
C (k).

In the present paper we consider the following situation. Let p and ¢ be
distinct odd prime numbers and assume p,, C k. Let G be the metacyclic
group of order pg given in terms of generators and relations by

(o,7|o? =1, 79=1, Tor7 ! =0")

where 7 is a primitive gth root of unity modp (and hence, p =1 (mod ¢q)).
Let s be the unique integer in {2,3,...,p — 1} such that sr = 1 (mod p).
Then s is also a primitive ¢th root of unity mod p. Hence, s¢ = 1 + tp for
some positive integer ¢.

1991 Mathematics Subject Classification: Primary 11R04; Secondary 12F10.

[191]



192 J. E. CARTER

The cyclic subgroup (o) of G generated by o is a normal subgroup of G
and we have an exact sequence of groups

Y: 1—={(0)—>G—G/{o)—1.

Fix, once and for all, a tamely ramified normal extension E/k with
Gal(E/k) ~ G/{(o). Furthermore, assume p and ¢ are such that ¢ #Z 0
(mod p). Then it is possible to apply the method developed in [C1] to de-
termine Ry (E/k,X) (Theorem 10). As in [C1], we will see that if O is free
as an o-module, then R(E/k, X)) is a subgroup of C(k) (Corollary 11).

1. Metacyclic groups as Galois groups. Let p,q,G, s, and t be as
described in the last three paragraphs of the previous section. For the mo-
ment, however, we do not require the condition ¢t # 0 (mod p). Let k be an
arbitrary field such that the characteristic of k is not equal to p or ¢, and
tpg C k. If K is any field and m is a positive integer then K* denotes the
multiplicative group of nonzero elements of K, and K™ is the multiplicative
group of mth powers of elements of K*. If K contains the field M, then
[K : M] is the dimension of K as a vector space over M. If A is a group
that acts on K and B is a subgroup of A then we write K? for the subfield
of K fixed by B.

In this section we will give a characterization of Galois extensions L/k
with Gal(L/k)=G (Theorems 4 and 6). Our immediate goal is to describe
generators for L/k and the action of o and 7 on these generators. To this end
let E=L{" and F=L{"). By Galois theory L/E is a Galois extension of de-
gree p with Galois group Gal(L/FE) = (o), and L/F is a Galois extension of
degree g with Galois group Gal(L/F) = (7). As [L : k] = pq we have [E : k]
= ¢, and [F': k] = p. From this it follows easily that ENF = k and EF = L.
Also, by Galois theory, E/k is a Galois extension. We have Gal(E/k) = (o)
where p is the restriction 7|E of 7 to E. By Kummer theory E = k(«) and
L = E(B) with a? = a and P = b for some a € k* and b € E* such that
(ak?) has order ¢ in k* /k?, and (bEP) has order p in E* /EP. Moreover, we
may assume « and £ chosen so that o(a) = (,a and o(8) = (0.

L =E(p)

(™
F
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Since L = k(«, ), the action of any element of Gal(L/k) on L is com-
pletely determined by its action on the elements v and 8. Thus far we know
o fixes o and o(B) =(pB. Also, 7(a) = (4. It remains to determine 7(f).
Let Z{p) be the group ring and denote the action of Z(p) on E by exponen-
tiation. Define 6 € Z(p) by

LEMMA 1. 00 = s — tp.
Proof. This follows from the fact that (s—p)f = s9—p? = 1+tp—1 = tp.
LEMMA 2. Z?:_ol 597171 =0 (mod p).

Proof. We have
q—1

(s — 1)qu_1_i =s1—1=tp.

=0

Since p does not divde s — 1 the result follows.

Now we prove

PROPOSITION 3. 7(3) = B%¢ for some e € EX. Consequently, bt = e=".

Proof. We will show that 7(3)/8* € L{°") = E. Then the first state-
ment follows from this since 7(/3) is nonzero. From (1) we have 0”7 = 70.
Hence,

a"(1(8)/8%) = (10)(B) /0" (8°) = 7((pB)/ (¢, 5%)
= 7(GB)/(GpB%) = 7(B)/5°.

Therefore, 7(8) = °e for some e € E*. By successively applying 7 to both
sides of this equation one obtains

0

B=71(8) =) e(e) )" 0" ()
Hence,
B = BlHtred — Bt — gptel
Therefore, bt = e 9.
We summarize the above results in the following

THEOREM 4. Suppose L/k is a Galois extension such that Gal(L/k) = G.
If E =L and F = L") then we have the following diagram of subfields
of L:
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L

AN

F = LM
E = [{9)

k

where ENF =k and L = EF, and there exist elements o« € E and 8 € L
such that E = k(o) and L = E(B), with (o) = (g and o(B) = (8. Then
a? =a and BP = b wherea € k* and b € E*. Furthermore, (ak?) is a cyclic
subgroup of k* /k? of order q, and (bEP) is a cyclic subgroup of E*/EP of
order p. Moreover, if o = T|E then Gal(E/k) = (o) and we define 6 € Z(p)
by 0 = Zg:_ol 597179t Then o and T act as k-automorphisms of L according
to the following table where e € E* and bt = e~ *:

Now assume that p and ¢ are such that ¢ Z 0 (mod p). Under this
condition we will construct a Galois extension L/k with Gal(L/k) ~ G.

Keeping the results of Theorem 4 in mind, let a € k* such that (ak?)
is a cyclic subgroup of k*/k? of order q. Let E = k(a) where a4 = a.
Then E/k is a Galois extension of degree ¢ with Gal(E/k) = (p), where
o(a) = (4a. By assumption we may choose r such that ¢ # 0 (mod p). Now
define 6 € Z(p) by 0 = 23:_01 597177t Suppose there exists an ¢ € EX
such that b = e=? (mod EP) for some b € EX of order p (mod EP). Since
t # 0 (mod p) there exists an integer u € {1,...,p — 1} such that ut = 1
(mod p). Hence, ut = 1+ mp for some nonnegative integer m. It follows
that b = e=0b=™P = ¢~ (mod EP). Let L = E(B) with 37 = b where
we may assume b = ¢~ %Y. Then L/E is a Galois extension of degree p with
Gal(L/E) = (o) where o(83) = (/3.

PROPOSITION 5. Let L/k be the extension described in the preceding
paragraph. Then L/k is a Galois extension.

Proof. Let (b) be the cyclic subgroup of E* generated by b. Let B =
(b) EP be the set of all products zy such that = € (b) and y € EP. Applying
Lemma 1 to obtain the following second equality we have o(b) = ¢~ %¢¢ =
g=ws0=tp) — c(—ud)scutp =ps (mod EP). It follows that o' (b)=b° (mod EP)
for each i € {0,1,...,q— 1}. Also, for each such i we have (b*')*" " =b%" =
b1+ = b (mod EP). Therefore, o'(B) = (0(b))EP = (b)EP = B for each



METACYCLIC EXTENSIONS 195

i€{0,1,...,9g—1}. Hence, by Lemma 5 of [C2], L/k is a normal extension.
Since L/k is a separable extension, it follows that L/k is a Galois extension.
In view of Proposition 5, we have the following exact sequence of groups:

1 — Gal(L/E) — Gal(L/k) — Gal(E/k) — 1

where the second arrow from the left is inclusion, and the third is restriction
to E. Hence, there exists 7 € Gal(L/k) such that 7|E = o. Let F = L{7).
By Galois theory L/F is a Galois extension and Gal(L/F) = (7). It is not
difficult to show that ENF =k and FF = L.

L =E(p)

F

Fig. 2

From the latter fact it follows that the surjective homomorphism
Gal(L/F) — Gal(E/k)

defined by restriction to E is also injective. Therefore, the order |(7)| of (7) i
q. Hence, (o)N(7) = {1}. Since (o) is a normal subgroup of Gal(L/k), (o)(T
is a subgroup of Gal(L/k). Furthermore, [(o)(T)| = [(o)||{(T)|/|{o) N (T)]|
pq. Therefore, Gal(L/k) = (o) (7).

THEOREM 6. Let L/k be the extension shown in Figure 2. Then L/k is

a Galois extension with Gal(L/k) ~ G. Moreover, the action of Gal(L/k)

on L is given by the following table where e € E* and bt = e~ Y:

~

Proof. It remains to prove that Gal(L/k) acts on L as stated, and
Gal(L/k) ~ G.

By definition we have o(a) = «, and o(8) = (,[. Also, since 7|E = p,
we get T(a) = o(a) = ;. Applying Lemma 1 to obtain the following fifth
equality we have 7(8)P = 7(b) = o(b) = o(e"0) = g uel = c—uls0—tp) —
g(=ud)scutp - Therefore, 7(8) = B¢yt for some integer v. Let e = (e
Then e € E* and, applying Lemma 2 to obtain the following second equality,
we have e= = ((fe") =0 = (e*) =% = (e7#)! = b'.
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We have already shown that Gal(L/k) = (o, 7) where o? = 1 and 77 = 1.
Hence, to complete the proof we need to show that o7~ = ¢”. We have
(to)(a) = 7(a) = (a, and (0"7)(@) = 0" ((ga) = (g Also, (T0)(B) =
7((pB) = (B, and (o' 7)(B) = 0" (B%) = ((,8)°e = (pB%e. It follows that

70 = o"1. Therefore, Tor™1 = 0"

REMARK. For p and ¢ such that t£0 (mod p), Theorem 4 together with
Theorem 6 provide a complete characterizaton of Galois extensions L/k with
Gal(L/k) ~ G, provided such extensions of k exist.

For the remainder of the paper, we assume the notation and assumptions
introduced in the last three paragraphs of Section 0.

2. Arithmetic considerations. Suppose L/k is a tamely ramified G-
extension with respect to F/k and Y. In this section we will determine
the discriminant ideal dy,,p of L/E. Standard facts from algebraic number
theory used in this and the remaining sections can be found in [FT], [J],
or [L].

Let Gal(E/k) = (o). Let Z({p) be the group ring and define § € Z(p)
by 6 = 3;01 s97171g". Denote the action of Z{p) on E by exponentiation.
By Theorem 4 there exist elements b and e in E* such that L = E(f)
where 8P = b with b' = e¢™?. Since t Z0 (mod p) there is an integer u €
{1,...,p — 1} such that ut = 1 + np for some nonnegative integer n. Then
b= e =", By Kummer theory E(8) = E(3;) where 37 = e~“?. Hence,
for the purpose of determining dy, /g, we may assume b = e~ "0, Furthermore,
we have the following lemma.

LEMMA 7. We may assume e € O and b = e“?.

Proof. If e; is any element of O then (ee?) 0 = =40 (7 )P, Also,
(eP~1)u0 = e=uf(eu9)P The lemma follows from these facts and Kummer
theory.

If O is an arbitrary ring of algebraic integers containing the element x
let (x) denote the principal ideal in O generated by x. In view of Lemma 7
above and Theorem 117 of [H] we have

© = (TI% )
=1

where the 3; are distinct prime ideals in E which split completely in E/k,
and such that B; N o # PB; N o whenever ¢ # j; A is an ideal in E which
is divisible only by prime ideals in E which either remain prime or totally
ramify in E/k; and the A; are elements of Z{p) with nonnegative coefficients.

Let £ be a prime factor of 2. Then £4¢ = €45 where § = Y%7 54717,
Since (s — 1)S = s? — 1 = tp and p does not divide s — 1, it follows that
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S =0 (mod p). Hence,
(1) (") = (T wen) "

where B is an ideal in E. B
Let N =Y 17007, Also, for A= Y17 a;07 € Z(o), let A= 31"]a;s’.

LEMMA 8. Suppose A = Z?;é aj0’ € Z(o). Then A§ = Af (mod p).

Proof. Since (s — )0 = s7—p? = 1+1tp—1 = tp we have pf = s — tp.
Suppose 2 < j < g. By successively applying o to both sides of the last
equation j — 1 times we obtain ¢’0 = s/0 — tp Ei;é sI17k ok Tt follows
that 0’0 = s76 (mod p) for 0 < j < g—1. Hence, Z?;é aj0’0 = Z?;é ajs’f
(mod p).

If 3 is any ideal in E and B is a prime ideal in E, let vy (J) denote the
exact power to which 3 divides 7.

PROPOSITION 9. Suppose L/k is a tamely ramified G-extension with re-
spect to E/k and X. Then

@ = (%)

as described in the paragraph following the proof of Lemma 7 and we have

dr/p = ( ﬁ‘p?i]v>p1
i=1

where n; € {0,1}. Moreover, n; = 1 if and only if A; 20 (mod p).

Proof. Suppose B is a prime ideal in £ which ramifies in L/E. Then
the ramification index of B in L/E is p. Since L/FE is tamely ramified 8 is
not a divisor of (p) and

(2) vp(dryp) =p—1.

Since L = E(B) where 8P = e“?, the proposition follows easily from (1),
Lemma 8, the proof of Theorem 118 of [H|, and (2).

3. Realizable classes. If [ is an odd prime let d(I)=(l—1)/2. Then by
Section 2 of [Lo] we have C(E, k)=c¥® for some c€C(k). Let Wg/;, be the
subgroup of C'(k) generated by the classes in C'(k) which contain at least one
prime ideal in k which splits completely in E'/k. If H is a multiplicative group
and m is a positive integer, let H™ denote the subgroup of H consisting of
mth powers of elements of H. In this section we will prove the following
theorem.
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THEOREM 10. R(E/k, X)) = cpd(Q)WgC}(kp).

As an immediate consequence we obtain

CoRroLLARY 11. If C(E, k) =1 then Ry(E/k, 2) = Wi

Theorem 10 follows from the following two propositions.

PROPOSITION 12. Ry (E/k, %) C de(q)ng(kp).

Proof. Let L/k be a G-extension with respect to F/k and . By Propo-

sition 9,

m p—1

dr/g = (HiBiV )

i=1
where m < n, with n and the B; as indicated in the statement of Propo-
sition 9 (the latter after a possible relabelling of subscripts). Now, by an
argument similar to that which produced (6) of [C1], we obtain the stated
result.

For a modulus m of an algebraic number field F, let C'p(m) denote the
ray class group modulo m (see [J]).

PROPOSITION 13. Ry (E/k,X) D cpd(q>Wg‘j(kp).

Proof. Let ¢; € Wgy, and choose an odd integer v > 3 such that
¢/ = ¢1. As in the proof of Proposition 5 of [C1], choose positive integers b;,
1 <i < v, such that (b;,p) =1 for each i and Y _,_, b; = pv. Let m be the
modulus (1 — §p>p2 of k. By Lemma 4 of [C1], ¢; contains infinitely many
prime ideals which split completely in E. Since C'g(m) is finite, there exists
a class ¢, € Cg(m) containing infinitely many prime ideals 8 which split
completely in E/k, and such that 8Nk is a prime ideal in ¢;. Choose prime
ideals 1, ..., Py € ¢ such that

(i) each PB; splits completely in E/k;
(ii) for each i, P; Nk € ¢y;
(ili) ¢ # j implies PB; is not conjugate to P;.

Let 9 be a prime ideal in ¢;*. Then

(e) = (ﬁm?f)am

where ¢ € EX and € = 1 (mod m). Since m is a modulus of k, it follows
that e % = 1 (mod m). Let b = ¢~“%. Tt is easily verified that b is not a
pth power in E. Let L = E(f) where P = b. Then by Theorem 6, L/k is
a Galois extension with Gal(L/k) ~ G. Furthermore, by Theorem 119 of
[H], it follows that L/E is tamely ramified. Hence, L/k is a tamely ramified
G-extension with respect to E/k and X.
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We now show that C'(L, k) = cpd(q)c?d(p). By the proof of Lemma 7 we
may replace the element € with e; = e?~!. Then

e = (T )
i=1

where ¢; = b;(p — 1). Therefore, by Proposition 9,

dr /g = (ﬁ‘m\[)
=1

Now, computing C(L, k) as in the proof of Proposition 12 gives the result.

p—1
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