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0. Introduction. Let L/k be a finite extension of algebraic number
fields. Let OL and o denote the rings of integers in L and k, respectively. As
an o-module, OL is completely determined by [L : k] and its Steinitz class
C(L, k) (see [FT], Theorem 13). Now let G be a finite group containing a
normal subgroup H. Then we have an exact sequence of groups

Σ : 1→ H → G→ G/H → 1.

With k as above, fix a normal extension E/k with Galois group Gal(E/k) '
G/H. Suppose L/k is a normal extension such that E ⊆ L, and there exists
an isomorphism φL : Gal(L/k)→ G. Furthermore, assume E is the subfield
of L fixed by φ−1L (H). An extension L/k as just described will be called a
G-extension with respect to E/k and Σ. As L varies over all such extensions
of k, C(L, k) varies over a subset R(E/k,Σ) of the class group C(k) of k.
If we consider only tamely ramified extensions then we denote this set by
Rt(E/k,Σ).

Now let p be an odd prime and assume k contains the multiplicative
group µp of pth roots of unity. In [C1], Rt(E/k,Σ) is determined when L/k
is a certain type of nonabelian extension of degree p3 with [E : k] = p. It is
shown that if OE is free as an o-module, then Rt(E/k,Σ) is a subgroup of
C(k).

In the present paper we consider the following situation. Let p and q be
distinct odd prime numbers and assume µpq ⊆ k. Let G be the metacyclic
group of order pq given in terms of generators and relations by

〈σ, τ | σp = 1, τ q = 1, τστ−1 = σr〉

where r is a primitive qth root of unity mod p (and hence, p ≡ 1 (mod q)).
Let s be the unique integer in {2, 3, . . . , p − 1} such that sr ≡ 1 (mod p).
Then s is also a primitive qth root of unity mod p. Hence, sq = 1 + tp for
some positive integer t.
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The cyclic subgroup 〈σ〉 of G generated by σ is a normal subgroup of G
and we have an exact sequence of groups

Σ : 1→ 〈σ〉 → G→ G/〈σ〉 → 1.

Fix, once and for all, a tamely ramified normal extension E/k with
Gal(E/k) ' G/〈σ〉. Furthermore, assume p and q are such that t 6≡ 0
(mod p). Then it is possible to apply the method developed in [C1] to de-
termine Rt(E/k,Σ) (Theorem 10). As in [C1], we will see that if OE is free
as an o-module, then Rt(E/k,Σ) is a subgroup of C(k) (Corollary 11).

1. Metacyclic groups as Galois groups. Let p, q,G, s, and t be as
described in the last three paragraphs of the previous section. For the mo-
ment, however, we do not require the condition t 6≡ 0 (mod p). Let k be an
arbitrary field such that the characteristic of k is not equal to p or q, and
µpq ⊆ k. If K is any field and m is a positive integer then K× denotes the
multiplicative group of nonzero elements of K, and Km is the multiplicative
group of mth powers of elements of K×. If K contains the field M , then
[K : M ] is the dimension of K as a vector space over M . If A is a group
that acts on K and B is a subgroup of A then we write KB for the subfield
of K fixed by B.

In this section we will give a characterization of Galois extensions L/k
with Gal(L/k)=G (Theorems 4 and 6). Our immediate goal is to describe
generators for L/k and the action of σ and τ on these generators. To this end
let E=L〈σ〉 and F =L〈τ〉. By Galois theory L/E is a Galois extension of de-
gree p with Galois group Gal(L/E) = 〈σ〉, and L/F is a Galois extension of
degree q with Galois group Gal(L/F ) = 〈τ〉. As [L : k] = pq we have [E : k]
= q, and [F : k] = p. From this it follows easily that E∩F = k and EF = L.
Also, by Galois theory, E/k is a Galois extension. We have Gal(E/k) = 〈%〉
where % is the restriction τ |E of τ to E. By Kummer theory E = k(α) and
L = E(β) with αq = a and βp = b for some a ∈ k× and b ∈ E× such that
〈akq〉 has order q in k×/kq, and 〈bEp〉 has order p in E×/Ep. Moreover, we
may assume α and β chosen so that %(α) = ζqα and σ(β) = ζpβ.

L = E(β)

F

E = k(α)

k

〈σ〉

{{
{{
{{
{{
{{
{{

〈τ〉

CCCCC

{{
{{
{{
{{
{{
{{

〈%〉

CCCCC

Fig. 1
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Since L = k(α, β), the action of any element of Gal(L/k) on L is com-
pletely determined by its action on the elements α and β. Thus far we know
σ fixes α and σ(β) = ζpβ. Also, τ(α) = ζqα. It remains to determine τ(β).
Let Z〈%〉 be the group ring and denote the action of Z〈%〉 on E by exponen-
tiation. Define θ ∈ Z〈%〉 by

θ =

q−1∑
i=0

sq−1−i%i.

Lemma 1. %θ = sθ − tp.

P r o o f. This follows from the fact that (s−%)θ = sq−%q = 1+tp−1 = tp.

Lemma 2.
∑q−1
i=0 s

q−1−i ≡ 0 (mod p).

P r o o f. We have

(s− 1)

q−1∑
i=0

sq−1−i = sq − 1 = tp.

Since p does not divde s− 1 the result follows.

Now we prove

Proposition 3. τ(β) = βse for some e ∈ E×. Consequently , bt = e−θ.

P r o o f. We will show that τ(β)/βs ∈ L〈σr〉 = E. Then the first state-
ment follows from this since τ(β) is nonzero. From (1) we have σrτ = τσ.
Hence,

σr(τ(β)/βs) = (τσ)(β)/σr(βs) = τ(ζpβ)/(ζrsp β
s)

= τ(ζpβ)/(ζpβ
s) = τ(β)/βs.

Therefore, τ(β) = βse for some e ∈ E×. By successively applying τ to both
sides of this equation one obtains

β = τ q(β) = βs
q

%0(e)s
q−1

%(e)s
q−2

%2(e)s
q−3

. . . %q−1(e)s
0

.

Hence,

β = β1+tpeθ = ββtpeθ = βbteθ.

Therefore, bt = e−θ.

We summarize the above results in the following

Theorem 4. Suppose L/k is a Galois extension such that Gal(L/k) = G.
If E = L〈σ〉 and F = L〈τ〉 then we have the following diagram of subfields
of L:
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L

F = L〈τ〉

E = L〈σ〉

k
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where E ∩ F = k and L = EF , and there exist elements α ∈ E and β ∈ L
such that E = k(α) and L = E(β), with τ(α) = ζqα and σ(β) = ζpβ. Then
αq = a and βp = b where a ∈ k× and b ∈ E×. Furthermore, 〈akq〉 is a cyclic
subgroup of k×/kq of order q, and 〈bEp〉 is a cyclic subgroup of E×/Ep of
order p. Moreover , if % = τ |E then Gal(E/k) = 〈%〉 and we define θ ∈ Z〈%〉
by θ =

∑q−1
i=0 s

q−1−i%i. Then σ and τ act as k-automorphisms of L according
to the following table where e ∈ E× and bt = e−θ:

α β
σ α ζpβ
τ ζqα βse

Now assume that p and q are such that t 6≡ 0 (mod p). Under this
condition we will construct a Galois extension L/k with Gal(L/k) ' G.

Keeping the results of Theorem 4 in mind, let a ∈ k× such that 〈akq〉
is a cyclic subgroup of k×/kq of order q. Let E = k(α) where αq = a.
Then E/k is a Galois extension of degree q with Gal(E/k) = 〈%〉, where
%(α) = ζqα. By assumption we may choose r such that t 6≡ 0 (mod p). Now

define θ ∈ Z〈%〉 by θ =
∑q−1
i=0 s

q−1−i%i. Suppose there exists an ε ∈ E×

such that bt ≡ ε−θ (mod Ep) for some b ∈ E× of order p (mod Ep). Since
t 6≡ 0 (mod p) there exists an integer u ∈ {1, . . . , p − 1} such that ut ≡ 1
(mod p). Hence, ut = 1 + mp for some nonnegative integer m. It follows
that b ≡ ε−uθb−mp ≡ ε−uθ (mod Ep). Let L = E(β) with βp = b where
we may assume b = ε−uθ. Then L/E is a Galois extension of degree p with
Gal(L/E) = 〈σ〉 where σ(β) = ζpβ.

Proposition 5. Let L/k be the extension described in the preceding
paragraph. Then L/k is a Galois extension.

P r o o f. Let 〈b〉 be the cyclic subgroup of E× generated by b. Let B =
〈b〉Ep be the set of all products xy such that x ∈ 〈b〉 and y ∈ Ep. Applying
Lemma 1 to obtain the following second equality we have %(b) = ε−u%θ =

ε−u(sθ−tp) =ε(−uθ)sεutp≡bs (mod Ep). It follows that %i(b)≡bsi (mod Ep)

for each i ∈ {0, 1, . . . , q− 1}. Also, for each such i we have (bs
i

)s
q−i

= bs
q

=
b1+tp ≡ b (mod Ep). Therefore, %i(B) = 〈%i(b)〉Ep = 〈b〉Ep = B for each
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i ∈ {0, 1, . . . , q−1}. Hence, by Lemma 5 of [C2], L/k is a normal extension.
Since L/k is a separable extension, it follows that L/k is a Galois extension.

In view of Proposition 5, we have the following exact sequence of groups:

1→ Gal(L/E)→ Gal(L/k)→ Gal(E/k)→ 1

where the second arrow from the left is inclusion, and the third is restriction
to E. Hence, there exists τ ∈ Gal(L/k) such that τ |E = %. Let F = L〈τ〉.
By Galois theory L/F is a Galois extension and Gal(L/F ) = 〈τ〉. It is not
difficult to show that E ∩ F = k and EF = L.

L = E(β)

F

E = k(α)

k

〈σ〉

{{
{{
{{
{{
{{
{{

〈τ〉

CCCCC

{{
{{
{{
{{
{{
{{

〈%〉

CCCCC

Fig. 2

From the latter fact it follows that the surjective homomorphism

Gal(L/F )→ Gal(E/k)

defined by restriction to E is also injective. Therefore, the order |〈τ〉| of 〈τ〉 is
q. Hence, 〈σ〉∩〈τ〉 = {1}. Since 〈σ〉 is a normal subgroup of Gal(L/k), 〈σ〉〈τ〉
is a subgroup of Gal(L/k). Furthermore, |〈σ〉〈τ〉| = |〈σ〉||〈τ〉|/|〈σ〉 ∩ 〈τ〉| =
pq. Therefore, Gal(L/k) = 〈σ〉〈τ〉.
Theorem 6. Let L/k be the extension shown in Figure 2. Then L/k is

a Galois extension with Gal(L/k) ' G. Moreover , the action of Gal(L/k)
on L is given by the following table where e ∈ E× and bt = e−θ:

α β
σ α ζpβ
τ ζqα βse

P r o o f. It remains to prove that Gal(L/k) acts on L as stated, and
Gal(L/k) ' G.

By definition we have σ(α) = α, and σ(β) = ζpβ. Also, since τ |E = %,
we get τ(α) = %(α) = ζqα. Applying Lemma 1 to obtain the following fifth
equality we have τ(β)p = τ(b) = %(b) = %(ε−uθ) = ε−u%θ = ε−u(sθ−tp) =
ε(−uθ)sεutp. Therefore, τ(β) = βsζvpε

ut for some integer v. Let e = ζvpε
ut.

Then e ∈ E× and, applying Lemma 2 to obtain the following second equality,
we have e−θ = (ζvpε

ut)−θ = (εut)−θ = (ε−uθ)t = bt.
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We have already shown that Gal(L/k) = 〈σ, τ〉 where σp = 1 and τ q = 1.
Hence, to complete the proof we need to show that τστ−1 = σr. We have
(τσ)(α) = τ(α) = ζqα, and (σrτ)(α) = σr(ζqα) = ζqα. Also, (τσ)(β) =
τ(ζpβ) = ζpβ

se, and (σrτ)(β) = σr(βse) = (ζrpβ)se = ζpβ
se. It follows that

τσ = σrτ . Therefore, τστ−1 = σr.

Remark. For p and q such that t 6≡0 (mod p), Theorem 4 together with
Theorem 6 provide a complete characterizaton of Galois extensions L/k with
Gal(L/k) ' G, provided such extensions of k exist.

For the remainder of the paper, we assume the notation and assumptions
introduced in the last three paragraphs of Section 0.

2. Arithmetic considerations. Suppose L/k is a tamely ramified G-
extension with respect to E/k and Σ. In this section we will determine
the discriminant ideal dL/E of L/E. Standard facts from algebraic number
theory used in this and the remaining sections can be found in [FT], [J],
or [L].

Let Gal(E/k) = 〈%〉. Let Z〈%〉 be the group ring and define θ ∈ Z〈%〉
by θ =

∑q−1
i=0 s

q−1−i%i. Denote the action of Z〈%〉 on E by exponentiation.
By Theorem 4 there exist elements b and e in E× such that L = E(β)
where βp = b with bt = e−θ. Since t 6≡ 0 (mod p) there is an integer u ∈
{1, . . . , p− 1} such that ut = 1 + np for some nonnegative integer n. Then
b = e−uθb−np. By Kummer theory E(β) = E(β1) where βp1 = e−uθ. Hence,
for the purpose of determining dL/E , we may assume b = e−uθ. Furthermore,
we have the following lemma.

Lemma 7. We may assume e ∈ OE and b = euθ.

P r o o f. If e1 is any element of OE then (eep1)−uθ = e−uθ(e−uθ1 )p. Also,
(ep−1)uθ = e−uθ(euθ)p. The lemma follows from these facts and Kummer
theory.

If O is an arbitrary ring of algebraic integers containing the element x
let 〈x〉 denote the principal ideal in O generated by x. In view of Lemma 7
above and Theorem 117 of [H] we have

〈e〉 =
( n∏
i=1

PAi
i

)
A

where the Pi are distinct prime ideals in E which split completely in E/k,
and such that Pi ∩ o 6= Pj ∩ o whenever i 6= j; A is an ideal in E which
is divisible only by prime ideals in E which either remain prime or totally
ramify in E/k; and the Ai are elements of Z〈%〉 with nonnegative coefficients.

Let L be a prime factor of A. Then Luθ = LuS where S =
∑q−1
i=0 s

q−1−i.
Since (s − 1)S = sq − 1 = tp and p does not divide s − 1, it follows that
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S ≡ 0 (mod p). Hence,

(1) 〈euθ〉 =
( n∏
i=1

PuAiθ
i

)
Bp

where B is an ideal in E.
Let N =

∑q−1
j=0 %

j . Also, for A =
∑q−1
j=0 aj%

j ∈ Z〈%〉, let A =
∑q−1
j=0 ajs

j .

Lemma 8. Suppose A =
∑q−1
j=0 aj%

j ∈ Z〈%〉. Then Aθ ≡ Aθ (mod p).

P r o o f. Since (s− %)θ = sq − %q = 1 + tp− 1 = tp we have %θ = sθ− tp.
Suppose 2 ≤ j ≤ q. By successively applying % to both sides of the last
equation j − 1 times we obtain %jθ = sjθ − tp

∑j−1
k=0 s

j−1−k%k. It follows

that %jθ ≡ sjθ (mod p) for 0 ≤ j ≤ q−1. Hence,
∑q−1
j=0 aj%

jθ ≡
∑q−1
j=0 ajs

jθ
(mod p).

If I is any ideal in E and P is a prime ideal in E, let vP(I) denote the
exact power to which P divides I.

Proposition 9. Suppose L/k is a tamely ramified G-extension with re-
spect to E/k and Σ. Then

〈e〉 =
( n∏
i=1

PAi
i

)
A

as described in the paragraph following the proof of Lemma 7 and we have

dL/E =
( n∏
i=1

PniN
i

)p−1
where ni ∈ {0, 1}. Moreover , ni = 1 if and only if Ai 6≡ 0 (mod p).

P r o o f. Suppose P is a prime ideal in E which ramifies in L/E. Then
the ramification index of P in L/E is p. Since L/E is tamely ramified P is
not a divisor of 〈p〉 and

(2) vP(dL/E) = p− 1.

Since L = E(β) where βp = euθ, the proposition follows easily from (1),
Lemma 8, the proof of Theorem 118 of [H], and (2).

3. Realizable classes. If l is an odd prime let d(l)=(l−1)/2. Then by
Section 2 of [Lo] we have C(E, k)=cd(q) for some c∈C(k). Let WE/k be the
subgroup of C(k) generated by the classes in C(k) which contain at least one
prime ideal in k which splits completely inE/k. IfH is a multiplicative group
and m is a positive integer, let Hm denote the subgroup of H consisting of
mth powers of elements of H. In this section we will prove the following
theorem.
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Theorem 10. Rt(E/k,Σ) = cpd(q)W
qd(p)
E/k .

As an immediate consequence we obtain

Corollary 11. If C(E, k) = 1 then Rt(E/k,Σ) = W
qd(p)
E/k .

Theorem 10 follows from the following two propositions.

Proposition 12. Rt(E/k,Σ) ⊆ cpd(q)W
qd(p)
E/k .

P r o o f. Let L/k be aG-extension with respect to E/k andΣ. By Propo-
sition 9,

dL/E =
( m∏
i=1

PN
i

)p−1
where m ≤ n, with n and the Pi as indicated in the statement of Propo-
sition 9 (the latter after a possible relabelling of subscripts). Now, by an
argument similar to that which produced (6) of [C1], we obtain the stated
result.

For a modulus m of an algebraic number field F , let CF (m) denote the
ray class group modulo m (see [J]).

Proposition 13. Rt(E/k,Σ) ⊇ cpd(q)W
qd(p)
E/k .

P r o o f. Let c1 ∈ WE/k and choose an odd integer v > 3 such that
cv1 = c1. As in the proof of Proposition 5 of [C1], choose positive integers bi,
1 ≤ i ≤ v, such that (bi, p) = 1 for each i and

∑v
i=1 bi = pv. Let m be the

modulus 〈1 − ζp〉p
2

of k. By Lemma 4 of [C1], c1 contains infinitely many
prime ideals which split completely in E. Since CE(m) is finite, there exists
a class cm ∈ CE(m) containing infinitely many prime ideals P which split
completely in E/k, and such that P∩k is a prime ideal in c1. Choose prime
ideals P1, . . . ,Pv ∈ cm such that

(i) each Pi splits completely in E/k;
(ii) for each i, Pi ∩ k ∈ c1;

(iii) i 6= j implies Pi is not conjugate to Pj .

Let Q be a prime ideal in c−1m . Then

〈ε〉 =
( v∏
i=1

Pbi
i

)
Qpv

where ε ∈ E× and ε ≡ 1 (mod m). Since m is a modulus of k, it follows
that ε−uθ ≡ 1 (mod m). Let b = ε−uθ. It is easily verified that b is not a
pth power in E. Let L = E(β) where βp = b. Then by Theorem 6, L/k is
a Galois extension with Gal(L/k) ' G. Furthermore, by Theorem 119 of
[H], it follows that L/E is tamely ramified. Hence, L/k is a tamely ramified
G-extension with respect to E/k and Σ.
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We now show that C(L, k) = cpd(q)c
qd(p)
1 . By the proof of Lemma 7 we

may replace the element ε with ε1 = εp−1. Then

〈ε1〉 =
( v∏
i=1

Pci
i

)
Qp(p−1)v

where ci = bi(p− 1). Therefore, by Proposition 9,

dL/E =
( v∏
i=1

PN
i

)p−1
.

Now, computing C(L, k) as in the proof of Proposition 12 gives the result.
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