# MODULE STRUCTURE <br> of integers in metacyclic extensions 

BY
JAMES E. CARTER (CHARLESTON, SOUTH CAROLINA)
0. Introduction. Let $L / k$ be a finite extension of algebraic number fields. Let $\mathfrak{O}_{L}$ and $\mathfrak{o}$ denote the rings of integers in $L$ and $k$, respectively. As an $\mathfrak{o}$-module, $\mathfrak{O}_{L}$ is completely determined by $[L: k]$ and its Steinitz class $C(L, k)$ (see [FT], Theorem 13). Now let $G$ be a finite group containing a normal subgroup $H$. Then we have an exact sequence of groups

$$
\Sigma: \quad 1 \rightarrow H \rightarrow G \rightarrow G / H \rightarrow 1 .
$$

With $k$ as above, fix a normal extension $E / k$ with Galois group $\operatorname{Gal}(E / k) \simeq$ $G / H$. Suppose $L / k$ is a normal extension such that $E \subseteq L$, and there exists an isomorphism $\phi_{L}: \operatorname{Gal}(L / k) \rightarrow G$. Furthermore, assume $E$ is the subfield of $L$ fixed by $\phi_{L}^{-1}(H)$. An extension $L / k$ as just described will be called a $G$-extension with respect to $E / k$ and $\Sigma$. As $L$ varies over all such extensions of $k, C(L, k)$ varies over a subset $R(E / k, \Sigma)$ of the class group $C(k)$ of $k$. If we consider only tamely ramified extensions then we denote this set by $R_{\mathrm{t}}(E / k, \Sigma)$.

Now let $p$ be an odd prime and assume $k$ contains the multiplicative group $\mu_{p}$ of $p$ th roots of unity. In [C1], $R_{\mathrm{t}}(E / k, \Sigma)$ is determined when $L / k$ is a certain type of nonabelian extension of degree $p^{3}$ with $[E: k]=p$. It is shown that if $\mathfrak{O}_{E}$ is free as an $\mathfrak{o}$-module, then $R_{\mathrm{t}}(E / k, \Sigma)$ is a subgroup of $C(k)$.

In the present paper we consider the following situation. Let $p$ and $q$ be distinct odd prime numbers and assume $\mu_{p q} \subseteq k$. Let $G$ be the metacyclic group of order $p q$ given in terms of generators and relations by

$$
\left\langle\sigma, \tau \mid \sigma^{p}=1, \tau^{q}=1, \tau \sigma \tau^{-1}=\sigma^{r}\right\rangle
$$

where $r$ is a primitive $q$ th root of unity $\bmod p($ and hence, $p \equiv 1(\bmod q))$. Let $s$ be the unique integer in $\{2,3, \ldots, p-1\}$ such that $s r \equiv 1(\bmod p)$. Then $s$ is also a primitive $q$ th root of unity $\bmod p$. Hence, $s^{q}=1+t p$ for some positive integer $t$.

[^0]The cyclic subgroup $\langle\sigma\rangle$ of $G$ generated by $\sigma$ is a normal subgroup of $G$ and we have an exact sequence of groups

$$
\Sigma: \quad 1 \rightarrow\langle\sigma\rangle \rightarrow G \rightarrow G /\langle\sigma\rangle \rightarrow 1
$$

Fix, once and for all, a tamely ramified normal extension $E / k$ with $\operatorname{Gal}(E / k) \simeq G /\langle\sigma\rangle$. Furthermore, assume $p$ and $q$ are such that $t \not \equiv 0$ $(\bmod p)$. Then it is possible to apply the method developed in [C1] to determine $R_{\mathrm{t}}(E / k, \Sigma)$ (Theorem 10). As in [C1], we will see that if $\mathfrak{O}_{E}$ is free as an $\mathfrak{o}$-module, then $R_{\mathrm{t}}(E / k, \Sigma)$ is a subgroup of $C(k)$ (Corollary 11).

1. Metacyclic groups as Galois groups. Let $p, q, G, s$, and $t$ be as described in the last three paragraphs of the previous section. For the moment, however, we do not require the condition $t \not \equiv 0(\bmod p)$. Let $k$ be an arbitrary field such that the characteristic of $k$ is not equal to $p$ or $q$, and $\mu_{p q} \subseteq k$. If $K$ is any field and $m$ is a positive integer then $K^{\times}$denotes the multiplicative group of nonzero elements of $K$, and $K^{m}$ is the multiplicative group of $m$ th powers of elements of $K^{\times}$. If $K$ contains the field $M$, then [ $K: M]$ is the dimension of $K$ as a vector space over $M$. If $A$ is a group that acts on $K$ and $B$ is a subgroup of $A$ then we write $K^{B}$ for the subfield of $K$ fixed by $B$.

In this section we will give a characterization of Galois extensions $L / k$ with $\operatorname{Gal}(L / k)=G$ (Theorems 4 and 6 ). Our immediate goal is to describe generators for $L / k$ and the action of $\sigma$ and $\tau$ on these generators. To this end let $E=L^{\langle\sigma\rangle}$ and $F=L^{\langle\tau\rangle}$. By Galois theory $L / E$ is a Galois extension of degree $p$ with Galois group $\operatorname{Gal}(L / E)=\langle\sigma\rangle$, and $L / F$ is a Galois extension of degree $q$ with Galois group $\operatorname{Gal}(L / F)=\langle\tau\rangle$. As $[L: k]=p q$ we have $[E: k]$ $=q$, and $[F: k]=p$. From this it follows easily that $E \cap F=k$ and $E F=L$. Also, by Galois theory, $E / k$ is a Galois extension. We have $\operatorname{Gal}(E / k)=\langle\varrho\rangle$ where $\varrho$ is the restriction $\tau \mid E$ of $\tau$ to $E$. By Kummer theory $E=k(\alpha)$ and $L=E(\beta)$ with $\alpha^{q}=a$ and $\beta^{p}=b$ for some $a \in k^{\times}$and $b \in E^{\times}$such that $\left\langle a k^{q}\right\rangle$ has order $q$ in $k^{\times} / k^{q}$, and $\left\langle b E^{p}\right\rangle$ has order $p$ in $E^{\times} / E^{p}$. Moreover, we may assume $\alpha$ and $\beta$ chosen so that $\varrho(\alpha)=\zeta_{q} \alpha$ and $\sigma(\beta)=\zeta_{p} \beta$.


Fig. 1

Since $L=k(\alpha, \beta)$, the action of any element of $\operatorname{Gal}(L / k)$ on $L$ is completely determined by its action on the elements $\alpha$ and $\beta$. Thus far we know $\sigma$ fixes $\alpha$ and $\sigma(\beta)=\zeta_{p} \beta$. Also, $\tau(\alpha)=\zeta_{q} \alpha$. It remains to determine $\tau(\beta)$. Let $\mathbb{Z}\langle\varrho\rangle$ be the group ring and denote the action of $\mathbb{Z}\langle\varrho\rangle$ on $E$ by exponentiation. Define $\theta \in \mathbb{Z}\langle\varrho\rangle$ by

$$
\theta=\sum_{i=0}^{q-1} s^{q-1-i} \varrho^{i}
$$

Lemma 1. $\varrho \theta=s \theta-t p$.
Proof. This follows from the fact that $(s-\varrho) \theta=s^{q}-\varrho^{q}=1+t p-1=t p$.
Lemma 2. $\sum_{i=0}^{q-1} s^{q-1-i} \equiv 0(\bmod p)$.
Proof. We have

$$
(s-1) \sum_{i=0}^{q-1} s^{q-1-i}=s^{q}-1=t p
$$

Since $p$ does not divde $s-1$ the result follows.
Now we prove
Proposition 3. $\tau(\beta)=\beta^{s} e$ for some $e \in E^{\times}$. Consequently, $b^{t}=e^{-\theta}$.
Proof. We will show that $\tau(\beta) / \beta^{s} \in L^{\left\langle\sigma^{r}\right\rangle}=E$. Then the first statement follows from this since $\tau(\beta)$ is nonzero. From (1) we have $\sigma^{r} \tau=\tau \sigma$. Hence,

$$
\begin{aligned}
\sigma^{r}\left(\tau(\beta) / \beta^{s}\right) & =(\tau \sigma)(\beta) / \sigma^{r}\left(\beta^{s}\right)=\tau\left(\zeta_{p} \beta\right) /\left(\zeta_{p}^{r s} \beta^{s}\right) \\
& =\tau\left(\zeta_{p} \beta\right) /\left(\zeta_{p} \beta^{s}\right)=\tau(\beta) / \beta^{s}
\end{aligned}
$$

Therefore, $\tau(\beta)=\beta^{s} e$ for some $e \in E^{\times}$. By successively applying $\tau$ to both sides of this equation one obtains

$$
\beta=\tau^{q}(\beta)=\beta^{s^{q}} \varrho^{0}(e)^{s^{q-1}} \varrho(e)^{s^{q-2}} \varrho^{2}(e)^{s^{q-3}} \ldots \varrho^{q-1}(e)^{s^{0}} .
$$

Hence,

$$
\beta=\beta^{1+t p} e^{\theta}=\beta \beta^{t p} e^{\theta}=\beta b^{t} e^{\theta}
$$

Therefore, $b^{t}=e^{-\theta}$.
We summarize the above results in the following
Theorem 4. Suppose $L / k$ is a Galois extension such that $\operatorname{Gal}(L / k)=G$. If $E=L^{\langle\sigma\rangle}$ and $F=L^{\langle\tau\rangle}$ then we have the following diagram of subfields of $L$ :

where $E \cap F=k$ and $L=E F$, and there exist elements $\alpha \in E$ and $\beta \in L$ such that $E=k(\alpha)$ and $L=E(\beta)$, with $\tau(\alpha)=\zeta_{q} \alpha$ and $\sigma(\beta)=\zeta_{p} \beta$. Then $\alpha^{q}=a$ and $\beta^{p}=b$ where $a \in k^{\times}$and $b \in E^{\times}$. Furthermore, $\left\langle a k^{q}\right\rangle$ is a cyclic subgroup of $k^{\times} / k^{q}$ of order $q$, and $\left\langle b E^{p}\right\rangle$ is a cyclic subgroup of $E^{\times} / E^{p}$ of order $p$. Moreover, if $\varrho=\tau \mid E$ then $\operatorname{Gal}(E / k)=\langle\varrho\rangle$ and we define $\theta \in \mathbb{Z}\langle\varrho\rangle$ by $\theta=\sum_{i=0}^{q-1} s^{q-1-i} \varrho^{i}$. Then $\sigma$ and $\tau$ act as $k$-automorphisms of $L$ according to the following table where $e \in E^{\times}$and $b^{t}=e^{-\theta}$ :

|  | $\alpha$ | $\beta$ |
| :---: | :---: | :---: |
| $\sigma$ | $\alpha$ | $\zeta_{p} \beta$ |
| $\tau$ | $\zeta_{q} \alpha$ | $\beta^{s} e$ |

Now assume that $p$ and $q$ are such that $t \not \equiv 0(\bmod p)$. Under this condition we will construct a Galois extension $L / k$ with $\operatorname{Gal}(L / k) \simeq G$.

Keeping the results of Theorem 4 in mind, let $a \in k^{\times}$such that $\left\langle a k^{q}\right\rangle$ is a cyclic subgroup of $k^{\times} / k^{q}$ of order $q$. Let $E=k(\alpha)$ where $\alpha^{q}=a$. Then $E / k$ is a Galois extension of degree $q$ with $\operatorname{Gal}(E / k)=\langle\varrho\rangle$, where $\varrho(\alpha)=\zeta_{q} \alpha$. By assumption we may choose $r$ such that $t \not \equiv 0(\bmod p)$. Now define $\theta \in \mathbb{Z}\langle\varrho\rangle$ by $\theta=\sum_{i=0}^{q-1} s^{q-1-i} \varrho^{i}$. Suppose there exists an $\varepsilon \in E^{\times}$ such that $b^{t} \equiv \varepsilon^{-\theta}\left(\bmod E^{p}\right)$ for some $b \in E^{\times}$of order $p\left(\bmod E^{p}\right)$. Since $t \not \equiv 0(\bmod p)$ there exists an integer $u \in\{1, \ldots, p-1\}$ such that $u t \equiv 1$ $(\bmod p)$. Hence, $u t=1+m p$ for some nonnegative integer $m$. It follows that $b \equiv \varepsilon^{-u \theta} b^{-m p} \equiv \varepsilon^{-u \theta}\left(\bmod E^{p}\right)$. Let $L=E(\beta)$ with $\beta^{p}=b$ where we may assume $b=\varepsilon^{-u \theta}$. Then $L / E$ is a Galois extension of degree $p$ with $\operatorname{Gal}(L / E)=\langle\sigma\rangle$ where $\sigma(\beta)=\zeta_{p} \beta$.

Proposition 5. Let $L / k$ be the extension described in the preceding paragraph. Then $L / k$ is a Galois extension.

Proof. Let $\langle b\rangle$ be the cyclic subgroup of $E^{\times}$generated by $b$. Let $B=$ $\langle b\rangle E^{p}$ be the set of all products $x y$ such that $x \in\langle b\rangle$ and $y \in E^{p}$. Applying Lemma 1 to obtain the following second equality we have $\varrho(b)=\varepsilon^{-u \varrho \theta}=$ $\varepsilon^{-u(s \theta-t p)}=\varepsilon^{(-u \theta) s} \varepsilon^{u t p} \equiv b^{s}\left(\bmod E^{p}\right)$. It follows that $\varrho^{i}(b) \equiv b^{s^{i}}\left(\bmod E^{p}\right)$ for each $i \in\{0,1, \ldots, q-1\}$. Also, for each such $i$ we have $\left(b^{s^{i}}\right)^{s^{q-i}}=b^{s^{q}}=$ $b^{1+t p} \equiv b\left(\bmod E^{p}\right)$. Therefore, $\varrho^{i}(B)=\left\langle\varrho^{i}(b)\right\rangle E^{p}=\langle b\rangle E^{p}=B$ for each
$i \in\{0,1, \ldots, q-1\}$. Hence, by Lemma 5 of [C2], $L / k$ is a normal extension. Since $L / k$ is a separable extension, it follows that $L / k$ is a Galois extension.

In view of Proposition 5, we have the following exact sequence of groups:

$$
1 \rightarrow \operatorname{Gal}(L / E) \rightarrow \operatorname{Gal}(L / k) \rightarrow \operatorname{Gal}(E / k) \rightarrow 1
$$

where the second arrow from the left is inclusion, and the third is restriction to $E$. Hence, there exists $\tau \in \operatorname{Gal}(L / k)$ such that $\tau \mid E=\varrho$. Let $F=L^{\langle\tau\rangle}$. By Galois theory $L / F$ is a Galois extension and $\operatorname{Gal}(L / F)=\langle\tau\rangle$. It is not difficult to show that $E \cap F=k$ and $E F=L$.


Fig. 2
From the latter fact it follows that the surjective homomorphism

$$
\operatorname{Gal}(L / F) \rightarrow \operatorname{Gal}(E / k)
$$

defined by restriction to $E$ is also injective. Therefore, the order $|\langle\tau\rangle|$ of $\langle\tau\rangle$ is $q$. Hence, $\langle\sigma\rangle \cap\langle\tau\rangle=\{1\}$. Since $\langle\sigma\rangle$ is a normal subgroup of $\operatorname{Gal}(L / k),\langle\sigma\rangle\langle\tau\rangle$ is a subgroup of $\operatorname{Gal}(L / k)$. Furthermore, $|\langle\sigma\rangle\langle\tau\rangle|=|\langle\sigma\rangle||\langle\tau\rangle| /|\langle\sigma\rangle \cap\langle\tau\rangle|=$ $p q$. Therefore, $\operatorname{Gal}(L / k)=\langle\sigma\rangle\langle\tau\rangle$.

Theorem 6. Let $L / k$ be the extension shown in Figure 2. Then $L / k$ is a Galois extension with $\operatorname{Gal}(L / k) \simeq G$. Moreover, the action of $\operatorname{Gal}(L / k)$ on $L$ is given by the following table where $e \in E^{\times}$and $b^{t}=e^{-\theta}$ :

$$
\begin{array}{c|cc} 
& \alpha & \beta \\
\hline \sigma & \alpha & \zeta_{p} \beta \\
\tau & \zeta_{q} \alpha & \beta^{s} e
\end{array}
$$

Proof. It remains to prove that $\operatorname{Gal}(L / k)$ acts on $L$ as stated, and $\operatorname{Gal}(L / k) \simeq G$.

By definition we have $\sigma(\alpha)=\alpha$, and $\sigma(\beta)=\zeta_{p} \beta$. Also, since $\tau \mid E=\varrho$, we get $\tau(\alpha)=\varrho(\alpha)=\zeta_{q} \alpha$. Applying Lemma 1 to obtain the following fifth equality we have $\tau(\beta)^{p}=\tau(b)=\varrho(b)=\varrho\left(\varepsilon^{-u \theta}\right)=\varepsilon^{-u \varrho \theta}=\varepsilon^{-u(s \theta-t p)}=$ $\varepsilon^{(-u \theta) s} \varepsilon^{u t p}$. Therefore, $\tau(\beta)=\beta^{s} \zeta_{p}^{v} \varepsilon^{u t}$ for some integer $v$. Let $e=\zeta_{p}^{v} \varepsilon^{u t}$. Then $e \in E^{\times}$and, applying Lemma 2 to obtain the following second equality, we have $e^{-\theta}=\left(\zeta_{p}^{v} \varepsilon^{u t}\right)^{-\theta}=\left(\varepsilon^{u t}\right)^{-\theta}=\left(\varepsilon^{-u \theta}\right)^{t}=b^{t}$.

We have already shown that $\operatorname{Gal}(L / k)=\langle\sigma, \tau\rangle$ where $\sigma^{p}=1$ and $\tau^{q}=1$. Hence, to complete the proof we need to show that $\tau \sigma \tau^{-1}=\sigma^{r}$. We have $(\tau \sigma)(\alpha)=\tau(\alpha)=\zeta_{q} \alpha$, and $\left(\sigma^{r} \tau\right)(\alpha)=\sigma^{r}\left(\zeta_{q} \alpha\right)=\zeta_{q} \alpha$. Also, $(\tau \sigma)(\beta)=$ $\tau\left(\zeta_{p} \beta\right)=\zeta_{p} \beta^{s} e$, and $\left(\sigma^{r} \tau\right)(\beta)=\sigma^{r}\left(\beta^{s} e\right)=\left(\zeta_{p}^{r} \beta\right)^{s} e=\zeta_{p} \beta^{s} e$. It follows that $\tau \sigma=\sigma^{r} \tau$. Therefore, $\tau \sigma \tau^{-1}=\sigma^{r}$.

Remark. For $p$ and $q$ such that $t \not \equiv 0(\bmod p)$, Theorem 4 together with Theorem 6 provide a complete characterizaton of Galois extensions $L / k$ with $\operatorname{Gal}(L / k) \simeq G$, provided such extensions of $k$ exist.

For the remainder of the paper, we assume the notation and assumptions introduced in the last three paragraphs of Section 0.
2. Arithmetic considerations. Suppose $L / k$ is a tamely ramified $G$ extension with respect to $E / k$ and $\Sigma$. In this section we will determine the discriminant ideal $d_{L / E}$ of $L / E$. Standard facts from algebraic number theory used in this and the remaining sections can be found in $[\mathrm{FT}],[\mathrm{J}]$, or [L].

Let $\operatorname{Gal}(E / k)=\langle\varrho\rangle$. Let $\mathbb{Z}\langle\varrho\rangle$ be the group ring and define $\theta \in \mathbb{Z}\langle\varrho\rangle$ by $\theta=\sum_{i=0}^{q-1} s^{q-1-i} \varrho^{i}$. Denote the action of $\mathbb{Z}\langle\varrho\rangle$ on $E$ by exponentiation. By Theorem 4 there exist elements $b$ and $e$ in $E^{\times}$such that $L=E(\beta)$ where $\beta^{p}=b$ with $b^{t}=e^{-\theta}$. Since $t \not \equiv 0(\bmod p)$ there is an integer $u \in$ $\{1, \ldots, p-1\}$ such that $u t=1+n p$ for some nonnegative integer $n$. Then $b=e^{-u \theta} b^{-n p}$. By Kummer theory $E(\beta)=E\left(\beta_{1}\right)$ where $\beta_{1}^{p}=e^{-u \theta}$. Hence, for the purpose of determining $d_{L / E}$, we may assume $b=e^{-u \theta}$. Furthermore, we have the following lemma.

Lemma 7. We may assume $e \in \mathfrak{O}_{E}$ and $b=e^{u \theta}$.
Proof. If $e_{1}$ is any element of $\mathfrak{O}_{E}$ then $\left(e e_{1}^{p}\right)^{-u \theta}=e^{-u \theta}\left(e_{1}^{-u \theta}\right)^{p}$. Also, $\left(e^{p-1}\right)^{u \theta}=e^{-u \theta}\left(e^{u \theta}\right)^{p}$. The lemma follows from these facts and Kummer theory.

If $\mathfrak{O}$ is an arbitrary ring of algebraic integers containing the element $x$ let $\langle x\rangle$ denote the principal ideal in $\mathfrak{O}$ generated by $x$. In view of Lemma 7 above and Theorem 117 of $[\mathrm{H}]$ we have

$$
\langle e\rangle=\left(\prod_{i=1}^{n} \mathfrak{P}_{i}^{A_{i}}\right) \mathfrak{A}
$$

where the $\mathfrak{P}_{i}$ are distinct prime ideals in $E$ which split completely in $E / k$, and such that $\mathfrak{P}_{i} \cap \mathfrak{o} \neq \mathfrak{P}_{j} \cap \mathfrak{o}$ whenever $i \neq j ; \mathfrak{A}$ is an ideal in $E$ which is divisible only by prime ideals in $E$ which either remain prime or totally ramify in $E / k$; and the $A_{i}$ are elements of $\mathbb{Z}\langle\varrho\rangle$ with nonnegative coefficients.

Let $\mathfrak{L}$ be a prime factor of $\mathfrak{A}$. Then $\mathfrak{L}^{u \theta}=\mathfrak{L}^{u S}$ where $S=\sum_{i=0}^{q-1} s^{q-1-i}$. Since $(s-1) S=s^{q}-1=t p$ and $p$ does not divide $s-1$, it follows that
$S \equiv 0(\bmod p)$. Hence,

$$
\begin{equation*}
\left\langle e^{u \theta}\right\rangle=\left(\prod_{i=1}^{n} \mathfrak{P}_{i}^{u A_{i} \theta}\right) \mathfrak{B}^{p} \tag{1}
\end{equation*}
$$

where $\mathfrak{B}$ is an ideal in $E$.
Let $N=\sum_{j=0}^{q-1} \varrho^{j}$. Also, for $A=\sum_{j=0}^{q-1} a_{j} \varrho^{j} \in \mathbb{Z}\langle\varrho\rangle$, let $\bar{A}=\sum_{j=0}^{q-1} a_{j} s^{j}$.
Lemma 8. Suppose $A=\sum_{j=0}^{q-1} a_{j} \varrho^{j} \in \mathbb{Z}\langle\varrho\rangle$. Then $A \theta \equiv \bar{A} \theta(\bmod p)$.
Proof. Since $(s-\varrho) \theta=s^{q}-\varrho^{q}=1+t p-1=t p$ we have $\varrho \theta=s \theta-t p$. Suppose $2 \leq j \leq q$. By successively applying $\varrho$ to both sides of the last equation $j-1$ times we obtain $\varrho^{j} \theta=s^{j} \theta-t p \sum_{k=0}^{j-1} s^{j-1-k} \varrho^{k}$. It follows that $\varrho^{j} \theta \equiv s^{j} \theta(\bmod p)$ for $0 \leq j \leq q-1$. Hence, $\sum_{j=0}^{q-1} a_{j} \varrho^{j} \theta \equiv \sum_{j=0}^{q-1} a_{j} s^{j} \theta$ $(\bmod p)$.

If $\mathfrak{I}$ is any ideal in $E$ and $\mathfrak{P}$ is a prime ideal in $E$, let $v_{\mathfrak{P}}(\mathfrak{I})$ denote the exact power to which $\mathfrak{P}$ divides $\mathfrak{I}$.

Proposition 9. Suppose $L / k$ is a tamely ramified $G$-extension with respect to $E / k$ and $\Sigma$. Then

$$
\langle e\rangle=\left(\prod_{i=1}^{n} \mathfrak{P}_{i}^{A_{i}}\right) \mathfrak{A}
$$

as described in the paragraph following the proof of Lemma 7 and we have

$$
d_{L / E}=\left(\prod_{i=1}^{n} \mathfrak{P}_{i}^{n_{i} N}\right)^{p-1}
$$

where $n_{i} \in\{0,1\}$. Moreover, $n_{i}=1$ if and only if $\bar{A}_{i} \not \equiv 0(\bmod p)$.
Proof. Suppose $\mathfrak{P}$ is a prime ideal in $E$ which ramifies in $L / E$. Then the ramification index of $\mathfrak{P}$ in $L / E$ is $p$. Since $L / E$ is tamely ramified $\mathfrak{P}$ is not a divisor of $\langle p\rangle$ and

$$
\begin{equation*}
v_{\mathfrak{P}}\left(d_{L / E}\right)=p-1 \tag{2}
\end{equation*}
$$

Since $L=E(\beta)$ where $\beta^{p}=e^{u \theta}$, the proposition follows easily from (1), Lemma 8, the proof of Theorem 118 of $[\mathrm{H}]$, and (2).
3. Realizable classes. If $l$ is an odd prime let $d(l)=(l-1) / 2$. Then by Section 2 of [Lo] we have $C(E, k)=\mathfrak{c}^{d(q)}$ for some $\mathfrak{c} \in C(k)$. Let $W_{E / k}$ be the subgroup of $C(k)$ generated by the classes in $C(k)$ which contain at least one prime ideal in $k$ which splits completely in $E / k$. If $H$ is a multiplicative group and $m$ is a positive integer, let $H^{m}$ denote the subgroup of $H$ consisting of $m$ th powers of elements of $H$. In this section we will prove the following theorem.

THEOREM 10. $R_{\mathrm{t}}(E / k, \Sigma)=\mathfrak{c}^{p d(q)} W_{E / k}^{q d(p)}$.
As an immediate consequence we obtain
Corollary 11. If $C(E, k)=1$ then $R_{\mathrm{t}}(E / k, \Sigma)=W_{E / k}^{q d(p)}$.
Theorem 10 follows from the following two propositions.
Proposition 12. $R_{\mathrm{t}}(E / k, \Sigma) \subseteq \mathfrak{c}^{p d(q)} W_{E / k}^{q d(p)}$.
Proof. Let $L / k$ be a $G$-extension with respect to $E / k$ and $\Sigma$. By Proposition 9 ,

$$
d_{L / E}=\left(\prod_{i=1}^{m} \mathfrak{P}_{i}^{N}\right)^{p-1}
$$

where $m \leq n$, with $n$ and the $\mathfrak{P}_{i}$ as indicated in the statement of Proposition 9 (the latter after a possible relabelling of subscripts). Now, by an argument similar to that which produced (6) of [C1], we obtain the stated result.

For a modulus $\mathfrak{m}$ of an algebraic number field $F$, let $C_{F}(\mathfrak{m})$ denote the ray class group modulo $\mathfrak{m}$ (see [J]).

Proposition 13. $R_{\mathrm{t}}(E / k, \Sigma) \supseteq \mathfrak{c}^{p d(q)} W_{E / k}^{q d(p)}$.
Proof. Let $\mathfrak{c}_{1} \in W_{E / k}$ and choose an odd integer $v>3$ such that $\mathfrak{c}_{1}^{v}=\mathfrak{c}_{1}$. As in the proof of Proposition 5 of [C1], choose positive integers $b_{i}$, $1 \leq i \leq v$, such that $\left(b_{i}, p\right)=1$ for each $i$ and $\sum_{i=1}^{v} b_{i}=p v$. Let $\mathfrak{m}$ be the modulus $\left.\left\langle 1-\zeta_{p}\right\rangle\right\rangle^{2}$ of $k$. By Lemma 4 of [C1], $\mathfrak{c}_{1}$ contains infinitely many prime ideals which split completely in $E$. Since $C_{E}(\mathfrak{m})$ is finite, there exists a class $\mathfrak{c}_{\mathfrak{m}} \in C_{E}(\mathfrak{m})$ containing infinitely many prime ideals $\mathfrak{P}$ which split completely in $E / k$, and such that $\mathfrak{P} \cap k$ is a prime ideal in $\mathfrak{c}_{1}$. Choose prime ideals $\mathfrak{P}_{1}, \ldots, \mathfrak{P}_{v} \in \mathfrak{c}_{\mathfrak{m}}$ such that
(i) each $\mathfrak{P}_{i}$ splits completely in $E / k$;
(ii) for each $i, \mathfrak{P}_{i} \cap k \in \mathfrak{c}_{1}$;
(iii) $i \neq j$ implies $\mathfrak{P}_{i}$ is not conjugate to $\mathfrak{P}_{j}$.

Let $\mathfrak{Q}$ be a prime ideal in $\mathfrak{c}_{\mathfrak{m}}^{-1}$. Then

$$
\langle\varepsilon\rangle=\left(\prod_{i=1}^{v} \mathfrak{P}_{i}^{b_{i}}\right) \mathfrak{Q}^{p v}
$$

where $\varepsilon \in E^{\times}$and $\varepsilon \equiv 1(\bmod \mathfrak{m})$. Since $\mathfrak{m}$ is a modulus of $k$, it follows that $\varepsilon^{-u \theta} \equiv 1(\bmod \mathfrak{m})$. Let $b=\varepsilon^{-u \theta}$. It is easily verified that $b$ is not a $p$ th power in $E$. Let $L=E(\beta)$ where $\beta^{p}=b$. Then by Theorem $6, L / k$ is a Galois extension with $\operatorname{Gal}(L / k) \simeq G$. Furthermore, by Theorem 119 of $[\mathrm{H}]$, it follows that $L / E$ is tamely ramified. Hence, $L / k$ is a tamely ramified $G$-extension with respect to $E / k$ and $\Sigma$.

We now show that $C(L, k)=\mathfrak{c}^{p d(q)} \mathfrak{c}_{1}^{q d(p)}$. By the proof of Lemma 7 we may replace the element $\varepsilon$ with $\varepsilon_{1}=\varepsilon^{p-1}$. Then

$$
\left\langle\varepsilon_{1}\right\rangle=\left(\prod_{i=1}^{v} \mathfrak{P}_{i}^{c_{i}}\right) \mathfrak{Q}^{p(p-1) v}
$$

where $c_{i}=b_{i}(p-1)$. Therefore, by Proposition 9,

$$
d_{L / E}=\left(\prod_{i=1}^{v} \mathfrak{P}_{i}^{N}\right)^{p-1}
$$

Now, computing $C(L, k)$ as in the proof of Proposition 12 gives the result.

## REFERENCES

[C1] J. E. Carter, Steinitz classes of a nonabelian extension of degree p ${ }^{3}$, Colloq. Math. 71 (1996), 297-303.
[C2] -, Characterizations of Galois extensions of prime cubed degree, Bull. Austral. Math. Soc. 55 (1997), 99-112.
[FT] A. Fröhlich and M. J. Taylor, Algebraic Number Theory, Cambridge Univ. Press, 1991.
[H] E. Hecke, Lectures on the Theory of Algebraic Numbers, Springer, 1981.
[J] G. J. Janusz, Algebraic Number Fields, Academic Press, 1973.
[L] S. Lang, Algebraic Number Theory, Springer, 1986.
[Lo] R. L. Long, Steinitz classes of cyclic extensions of prime degree, J. Reine Angew. Math. 250 (1971), 87-98.

Department of Mathematics
College of Charleston
66 George Street
Charleston, South Carolina 29424-0001
U.S.A.

E-mail: carter@math.cofc.edu


[^0]:    1991 Mathematics Subject Classification: Primary 11R04; Secondary 12F10.

