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STANISIAW KASJAN (TORUN)

1. Introduction. Let k be an algebraically closed field and let R be the
path k-algebra of a finite quiver () modulo an admissible ideal. We assume
that R is triangular, that is, the quiver () does not have oriented cycles. By
a bipartite algebra we mean an algebra R together with a bipartition, that
is, a presentation in an upper triangular matrix form

(1.1) R= <61 A]\gf’>

where A and B are k-algebras, and 4Mp is an A-B-bimodule.

All R-modules considered are right finitely generated; the category of
finitely generated right R-modules is denoted by mod(R).

We shall use the terminology and notation on prinjective modules over
bipartite algebras introduced in [13].

Following [13], [24] an R-module X, viewed as a triple (X, X%, ¢ :
X'y ®a Mp — X%), is called 4 Mp-prinjective provided X/, is a projective
A-module and X is an injective B-module. By prin(R)% we denote the full
subcategory of mod(R) formed by 4 Mpg-prinjective modules. If the bipar-
tition (1.1) of the algebra R is fixed we shall often write prin(R) instead of
prin(R)4 and 4 Mp-prinjective modules will be called prinjective.

We say that a bipartite algebra R of the form (1.1) is of infinite prin-
jective type if the category prin(R) is of infinite representation type, that
is, there exists an infinite family of pairwise non-isomorphic indecomposable
prinjective R-modules.

We recall from [13, Section 2], [17, Section 5], [24] that prinjective mod-
ules over bipartite algebras enable us to give a useful module-theoretical
interpretation of bipartite bimodule matrix problems in the sense of Drozd
[4]. They also play an important role in the study of representation types
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of categories latt(A) of lattices over classical orders A (see [19], [22]) and in
constructing suitable functorial embeddings of module categories [20].

In a number of papers various criteria for finite representation type for
certain classes of matrix problems are given. For instance a criterion for
finite prinjective type of posets is obtained in [19]. Analogous criteria for
bipartite posets and for a class of right peak algebras are given in [7] and [25].
Each criterion includes a list of “critical configurations”, that is, minimal
problems of infinite representation type in a given class. One can observe
that the critical configurations are related to tame concealed algebras (this
was remarked by Weichert in [25]). One of our aims is to understand this
phenomenon for bipartite algebras. It seems that Theorem 3.10 below gives a
satisfactory explanation. We follow ideas of description of minimal algebras
of infinite representation type with a preprojective component and we obtain
results analogous to the well-known classifications of minimal algebras of
infinite representation type (see [15, 2.3]).

In Section 2 we collect basic facts about the category of prinjective mod-
ules over bipartite algebras which will be used later. Next in Section 3 we
investigate prin-critical bipartite algebras in the sense of Definition 3.1 be-
low. The prin-critical algebras are minimal of infinite prinjective type and
such that the Auslander—Reiten quiver of the category of prinjective modules
has a preprojective component. In other words, they are minimal of infinite
prinjective type and have a “prin-preprojective” component. We relate them
to critical algebras described by Bongartz [3] and Happel and Vossieck [5].
The main results of the paper are Theorems 3.10 and 3.12, which assert in
particular that a bipartite prin-critical algebra (up to simple exceptions) is
tame concealed and the Auslander—Reiten quivers of prin(R) and of mod(R)
coincide up to a finite number of vertices. In Corollary 3.13 we give a descrip-
tion of the Auslander—Reiten quiver of the category of prinjective modules
over a prin-critical algebra.

The author acknowledges Professor Daniel Simson’s many helpful re-
marks and suggestions concerning the paper.

2. Preliminaries. Throughout, R is a bipartite algebra with a fixed
bipartition (1.1).

2.1. LEMMA. (a) The subcategory prin(R) of mod(R) is closed under
taking direct summands and extensions, and it has the unique decomposition
property.

(b) Extn(X,Y) = 0 for any pair of prinjective modules X,Y and all
1> 2.

(c¢) prin(R) has enough relative projective objects and enough relative
injective objects.



MINIMAL BIPARTITE ALGEBRAS 297

Proof. See [13, Prop. 2.4], [17, Sec. 5]. m

It follows from the results of [13] that the category prin(R) has relative
Auslander-Reiten sequences. By Apg and I'(prin(R)) we shall denote the
Auslander—Reiten translate and the Auslander—Reiten quiver of prin(R),
respectively. As usual, 7g and I'r denote the Auslander—Reiten translate
and the Auslander—Reiten quiver of mod(R). (See [1], [18].)

Given a finite-dimensional k-algebra A and a A-module X let

px : Py(X)—= X and uyx:X — Ej(X)

be the A-projective cover and the A-injective envelope of X respectively.

Let e1,...,€, (resp. €,41,...,€ntm) be a complete set of primitive or-
thogonal idempotents of the algebra A (resp. B). Let S; = tope; R be the
simple R-module corresponding to e; and let P; = ;A = P4(S;) for i <n
and E; = Eg(S;) for n < j < n+m. An R-module X is called sincere
provided Xe; #0 fori=1,...,n+m.

For a prinjective module X = (X'y, X%, ¢), its coordinate vector cdn(X)
€ Z™™ is defined as follows. We fix unique decompositions

n n+m
! ti o __ t;
X\=@r xi= D E
=1 i=n-+1

and we set cdn(X) = (t1,...,tntm) (see [13]).

2.2. LEMMA [19, Lemma 2.2]. The homomorphism X — cdn(X) induces
an isomorphism of the Grothendieck group Ko(prin(R)) of prin(R) and the
free abelian group Z™"™. m

Fix the following notation:
a;j = dimy(ejAe;)  fori,j=1,...,n,
(2.3) ci; = dimg(e;Mej) fori=1,....n; j=n+1,...,n+m,
b;; = dimy(e;Be;) fori,j=n+1,...,n+m.
Following [13] we associate with the algebra R and the fixed set of idem-

potents €1, ..., €y1m the bilinear form (—, —)g : Z" ™ x Z"t™ — 7, defined
by
n n+m n  ntm
(2.4) (wydr= Y agey;+ Y buryy— Y D ciyry;.
ij=1 ij=n+1 i=1 j=n+1

prin

We also set (z,y)r = 3((z,y)r + (y,2)r) and diy " () = (z,2).

The quadratic form q%rin : Znt™ 5 7 is called the Tits prinjective
quadratic form of the bipartite algebra R. Note that since R is a triangular
algebra, we have a;; = bss =1 fori=1,...,n,s=n+1,...,n+m. Thus
g’z is a unit form in the sense of [15, 1.0].



298 S. KASJAN

The Cartan matrices of the algebras A and B are the following:

ai1 a2 . A1n
a1 Q422 ... Q2p

CA - ’
an1 [077%) e Apn
bn+1,n+1 bn+1,n+2 e bn+1,n+m
bn+2,n+1 bn+2,n+2 e bn+2,n+m

Cp = . ,
bm+n,n+1 bm+n,n+2 e bern,ner

where a;;, bs; are defined by formula (2.3). We set

_(Ca 0 A_(Ca 0
CR_<CM CB>’ CB_(O C}g)

where
Cin+1 C2n4+1 -+ Cpn+l
Cint+2 C2n4+2 .- Cpnit2
Cy =
Clin+m C2n+m -+ Cnnt+m

We denote by qr : Z™""™ — Z the usual Tits quadratic form of the
algebra R (see [2]) defined by qr(z) = 2Cp" z'r.
For any vector v € N the vector d% € N"*™ is defined by

(2.5) (d%)" = Cao'r.
2.6. LEMMA. For any prinjective R-module X,
dim(X) = d5™)
where dim(X) is the dimension vector of X.
Proof. See [8], [13], [21, Section 3|. m

Recall that the dimension vector dim(X) € Z" ™™ of an R-module X is
defined by dim(X) (i) = dimy Xe; fori=1,...,n+m.

)

2.7. LEMMA [12, Prop. 4.4]. For any prinjective R-modules X, Y,
(cdn(X),cdn(Y)) g = dimy Homp(X,Y) — dimy ExtR(X,Y). =
2.8. LEMMA. Assume that R is a bipartite triangular algebra of the form
(1.1) and let 5™, qgr, dgg) be as above. Then:

(a) The homomorphism v — d% is an automorphism of the group Z"™.
(b) For any v € Z™™ the equality g " (v) = qr(d%) holds.
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Proof. To prove (a) note that our assumptions imply that the deter-
minant of the matrix C4 equals 1 (compare with [21, Lemma 3.2]). In or-
der to show (b) observe that it is enough to prove the required equality for
v € N"*™_ But this follows from the fact that if v € N"*™ then cdn(X) = v
for some X in prin(R) and

%" (v) = dim Endg(X) — dim Extk(X, X) = qr(dim(X)) = qr(dy).

The first equality follows from Lemma 2.7, the second from [2] and the fact
that EX‘C%(X, X) = 0. The third is a consequence of Lemma 2.6. m

2.9. DEFINITION [13]. A prinjective module X is called prin-projective
(resp. prin-injective) provided Extp(X,Y) = 0 (resp. Exty(Y,X) = 0) for
any prinjective module Y. =

Recall from [15, 1.0] that an integral quadratic form q : Z! — 7Z is called
weakly positive if ¢(v) > 0 for any non-zero vector v with all coordinates
non-negative. In the following theorem we collect some facts concerning the

. prin
quadratic form q .

2.10. THEOREM. Let R be a bipartite algebra of the form (1.1) and let
q%ﬂn be the Tits prinjective quadratic form of R.

(1) If for any vector v there exist only finitely many isomorphism classes
of indecomposable prinjective R-modules X with cdn(X) = v then the form
q%ﬁn is weakly positive. In particular, q%rin is weakly positive provided R is
of finite prinjective type.

(2) Assume that P is a preprojective component in I'(prin(R)) (see [1],
[15], [18]). Then g™ (cdn(X)) =1 for any X in P.

(3) If there exists a preprojective component in I'(prin(R)) and the form
q%ﬂn is weakly positive then the algebra R is of finite prinjective type.

Proof. The statement (1) follows by algebraic geometry arguments.
This is proved essentially in [18, Theorem 10.1], although the theorem there
is formulated only for a special class of algebras (see also [8]).

For the proof of (2) repeat the well-known arguments (see e.g. [18, Corol-
lary 11.96]), whereas (3) follows from [13, Proposition 4.13]. =

Following [13] we describe the prin-projective and prin-injective inde-
composable modules. In order to do it given an R-module X = (X'y, X%, ®)
let us define two modules X and X by the formulae

~ ~

(2.11) X = (X4, Eg(X5),0), X = (Pa(X}h), X5, ),

where the homomorphism qu is the composition

pX/®idM

Pa(X') @4 M X @4 M-S X"
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and the homomorphism QAS is the composition
X' @4 M3 X" 22X Br(X”)

(compare [13, 2.1]).

There exist canonical R-homomorphisms
(2.11) ex X=X, uvx:X—X,
and £x is an epimorphism and vx is a monomorphism.

We use the following notation:

P® =R, Q% =35,=(eA,00) fori=1,...,n,

and

Py = S; = (0, E5(S;),0), QY = Eg(S;) forj=n+1,...n+m.

2.12. LEMMA [13, Proposition 2.4]. The modules Py ,... ,P,§>+m (resp.
Q?, e ,Q7<1>+m) form a complete set of indecomposable prin-projective (resp.
prin-injective) modules up to isomorphism. m

2.13. LEMMA. Let X = (X'y, X%, ¢) be an R-module. The following con-
ditions are equivalent:

(a) The homomorphism ¢ is an epimorphism.

(b) Homp(X,P¥) =0 for anyi=n+1,...,n+m.

If this is the case then the module X is indecomposable provided X is inde-
composable. Moreover, if R-modules X, Y satisfy (a) and (b) then X 2Y
implies X 2Y.

Proof. The equivalence of (a) and (b) is easy, we leave it to the reader.
To prove the remaining statements assume that X = Y ® Z and Y =
YA YR ), Z = (Z,Z,n). Since ¢ is an epimorphism, we have X% =
Im ¢ @ Imn and it follows by indecomposability of X that one of Y}, Z', say
Y}, is the zero module. But then also Y} is zero, because Im uxy pNY g5 ={0}
and Imuxy ¢ = Imuyy is an essential submodule of Ep(X7p).

Now assume that X = (X4, X%,¢), Y = (Y}, Y}, ¢) and there is an
isomorphism f : X — Y. Let f = (f',f”), where f' : X/, — Y} and
" Ep(X}) — Ep(Y]). Since the diagram

X'@aM L2 yrg, M
¢ ) 0
Es(Xp) > Es(Yh)
commutes we see that f” induces an isomorphism f"’ : Im¢ — Im. But

Im ¢ X%, Im ¢ = Y}/ and we get an isomorphism X =Y. =
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Dually we obtain the following lemma.

2.14. LEMMA. Let X = (X4, X%, ¢) be an R-module. The following con-
ditions are equivalent:

(a) The homomorphism ¢ adjoint to ¢ is a monomorphism.
(b) Homg(QY,X) =0 for anyi=1,...,n.

If this is the case then the module X is indecomposable provided X is inde-
composable. Moreover, if R-modules X, Y satisfy (a) and (b) then X =Y
implies X 2Y. m

2.15. LEMMA. Let X be an arbitrary R-module. Given any prinjective R-
modules Y, Z and R-module homomorphisms f:Y — X, g: X — Z there
exist R-module homomorphisms f, f, g, g making the following diagram
commutative:

y L x % 7

idy\l/ \l,EX \Lidz
vy L x % 2z
idy ) Jvx Jidz

y &4 ¥ & 7z

Proof. We put g = gex and f: vx f. To construct the f, let Y =
(Ya,YZ,¢)and f = (f', f"), where f' : Y} — X'y and f” : Y4 — X'}. Since
Y) is A-projective we can lift f’ to a homomorphism f’ : Y} — Pa(X%)
such that px f’ = f/, and we put f = (f’, f”). The homomorphism g is
constructed dually. m

In Lemma 2.16 below we shall use the following notation. Fori=1,...,n
we set p; = dim(C;), where

C; = Coker(ve, g : ;R — PP)
and for i =n+1,...,n+m we set g, = dim(K;), where
Ki = Ker(aER(Si) : Q? — ER(Sl))7

see (2.117).
2.16. LEMMA. (a) Let X be a prinjective R-module. Then
nt+m
dim(X)(i) + Y P;(j)edn(X)(j) if i <n,
dimy, Homp(PY, X)=¢ . =l
> bijedn(X)()) if i >n,
Jj=n+1

and
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Zajicdn(X)(j) if i <mn,
dim; Homp (X, QY) = =t n
dim(X)(@) + > _@(j)edn(X)(j) i i >n.

(b) There exist group automorphisms g,h : Z" ™ — Z"t™ such that

g(cdn(X)) = (dimy Homp(PyP, X),. .., dimy Homg(P2, ,,, X)),
h(cdn(X)) = (dimy Homp (X, Q?), ...,dimg Homp (X, Q,?er))

for any prinjective R-module X .
(¢) If X is a prinjective R-module and

Homp(PY,X) =0 or Hompg(X,Q7)=0
then cdn(X)(i) = 0.

Proof. (a) We only prove the first equality, the remaining one is dual.
Let X = (X4, X%,¢). Assume that ¢ < n and note that the canonical

homomorphism v, g : ;R — Pi<> induces a homomorphism

ViRt Homp (P, X) — Homp(e; R, X),

which is an epimorphism by Lemma 2.15. Moreover, we have Ker v} p =
Hompg(C;, X), where C; is the cokernel of ve,g. It is easy to check that

n+m
dimy, Homp(Cy, X) = Y Pi(j)edn(X)(j).
j=n+1
Since obviously dimy Hompg(e; R, X) = dim(X)(7), our formula holds for
1< n.
Now assume that ¢ > n and note that
Homp (P, X) = Homp(E5(S;), Xp)

n+m

@ HOIHB (EB (S,J), EB (Sj))Cdn(X)(])
Jj=n+1

n—+m

o @ (ejBei)Cd“(X)(j);

j=n+1

I

thus our formula follows by the definition (2.3) of the numbers b;;.
The assertions (b) and (c) are direct consequences of (a). m

2.17. LEMMA. Assume that

03X 5YSBZ-50
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is an Auslander—Reiten sequence in prin(R) and
(a) HomR(Z,PiO) =0 foranyi=n+1,...,n+m,
(b) Homg(QY,Y) =0 for anyi=1,...,n

Then e is an Auslander—Reiten sequence in mod(R).

Proof. Assume that a homomorphism f : U — Z in mod(R) is not a
splitting epimorphism. We shall prove that f factorizes through w.

Let U = (U',U",¢y) and Z = (Z’ 7", $7). Consider the module U =
(U, Eg(U"), ¢U) and let vy : U — U be the natural embedding (2 11’). By
Lemma 2.15 there exists a homomorphism f U — Z such that va = f.

Suppose that f is a splitting epimorphism and let r : Z — U be a
homomorphism such that fr =idy. If Imr C vy (U) then f is a splitting
epimorphism, a contradiction. Hence r induces a non-zero homomorphism
7:Z —=UJ/U=(0,Eg(U")/U",0) and there is a non-zero homomorphism
from Z to the module (0,Q,0), where Q = Eg(Ep(U"”)/U") is an injective
B-module, a contradiction with (a).

Consider the homomorphisms

v%0-L 7

where U = (PA(U’),EB(U”),@) and ep is the natural projection. The
module U is prinjective and ]/”\8(7 is not a splitting epimorphism because ]?
is not a splitting epimorphism. Since e is an Auslander-Reiten sequence
in prin(R), there is a map h : U — Y such that wh = feﬁ. Let K =
Kereg = (K',0,0). If h(K) # 0 then there exists a non-zero homomor-
phism from (P4(K"),0, 0) to Y, a contradiction with (b). Hence h induces
a homomorphism A : U — Y such that heU h. Note that whvy = f.
Indeed: wth = wh = er, but €5 is an epimorphism, thus wh = fand

whoy = va = f. Hence hvy is the required homomorphism from U to Y
and the lemma follows. m

Consider a subset I C {1,...,n+m} and an idempotent e; =) ., e;
Let & = Zie[,ign e; and gy = ey — &;. Let

AI M[
0 Bj

where A; = £1 A&, My = £ Mn; and By = nyBnr. We define the induction
functor

(2.18) TF : mod(Rr) — mod(R)

R[ = BIRBI = (



304 S. KASJAN

by the formula (compare [18, 11.85], [7, 2.2])
Ti, (Xh,, X5, 6) = (X' @4, &4, Homp, (Bnr, X), 6),

where
¢: X ®a, 1A ®4 M — Homp, (Bnr, X')

is the homomorphism adjoint to the composition of the natural isomorphism
X' @4, EA®A M@ By 2 X' ®4, My

with the homomorphism ¢. The functor Tg} is defined on homomorphisms in
a natural way. The following lemma is an analogue of [18, Proposition 11.84].

2.19. LEMMA. (a) The functor T}?I s full and faithful.
(b) The functor (2.18) induces a functor

T prin(Rr) — prin(R),

and cdn(TF (X)) = t;(cdn(X)) for any prinjective Rr-module X, where
tr : Z' — Z"t™ s the natural embedding. Moreover, a prinjective R-module
X belongs to the image of TF, if and only if cdn(X) € t;(Z").

(c) If the category prin(Ry) is of infinite representation type then so is
the category prin(R).

The proof is routine.

3. Prin-critical algebras. From now on we assume that R is a bipartite
prin-critical algebra in the sense of the following definition.

3.1. DEFINITION. A bipartite algebra R of the form (1.1) is called prin-
critical provided:

(a) the category prin(R) is of infinite representation type, but for any
proper subset I C {1,...,n + m} the category prin(R;) is of finite repre-
sentation type, where R is the bipartite algebra ey Re; with ey = Ziel €i,

(b) the Auslander—Reiten quiver I'(prin(R)) of prin(R) contains a pre-
projective component (see [1], [18] for definition). m

Examples of prin-critical algebras are incidence algebras of critical posets
(see [19]) and critical bipartite posets (see [7]).
The name “prin-critical” is justified by the following result (compare

[15, 4.3(6)]).

3.2. LEMMA. Assume that R is a bipartite algebra of the form (1.1) with
a complete set ey, ...,en1m of primitive orthogonal idempotents. If R is
of infinite prinjective type and the quiver I'(prin(R)) has a preprojective
component then there exists a set I C {1,...,n+ m} such that the algebra
R; = ejRej is prin-critical.
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Proof. Let J be the set of elements ¢ such that the prin-projective
module Pi<> lies in a preprojective component. It follows from Lemma 2.16
that for each preprojective module X in prin(R) the equality cdn(X)(i) =0
holds for ¢ ¢ J. All components of I'(prin(R)) are infinite (see [1], [18,
Corollary 11.54]), hence the algebra R; is of infinite prinjective type by
Lemma 2.19(c).

Let I be a minimal subset of J such that the bipartite algebra R is of
infinite prinjective type. We claim that R; is prin-critical. To prove this it is
enough to show that the quiver I'(prin(R;)) has a preprojective component.

We follow an idea of [15, 4.3(6)]. Recall that given a Krull-Schmidt
category K the sequence K_1,Kq,Kq,... is defined inductively as follows:
K_1 = {0} and for d > 0 an object X belongs to K  if and only if any
object Y of K such that rad(Y, X) # 0 belongs to K4_1. By rad we denote
the Jacobson radical of the category K (see [1], [18]). We define K to be
the union of all g4, d € N.

We shall prove that each prin-projective R;-module is in prin(R;)so. It
will follow that I'(prin(R;)) has a preprojective component.

First consider prin-projective modules of the form Y = (0, Eg, (5;),0).
We keep the notation from Lemma 2.19, that is, we set Ry = ey Rey and

Ar M;
R = ( 0 BI>

where Ay = {1 A&, By = nyBny, My = & Mn; and e; = &5 + 7. Note that
TE(Y) =(0,E5(S:),0) = P? is preprojective in I'(prin(R)) because i € J,
and hence belongs to prin(R)... One can prove by induction on d that if
T (Y) belongs to prin(R)y then Y belongs to prin(R;)g. It follows that
Y belongs to prin(R;)s. Let dy be a number such that any prin-projective
Rr-module of the form (0, E'g, (S;),0) belongs to prin(Ry)4,-

Now we prove by induction on d that given an R;-module Y = (Y, Y" ¢)
if the module Y = (Y, Ep, (Y”),(}S\) is an indecomposable prinjective R;-
module then Y belongs to prin(Ry)q4,+d+1 provided the module (Y ®g,e; R)"
belongs to prin(R),. We write (U)" for U in case U is a long expression.

The statement is clear for d = —1. Assume now that d > 0.

If there is a non-zero homomorphism from Y to a module of the form
(0, Ep,(S;),0) then Y belongs to prin(Ry)q, and the claim follows. Thus
we can assume by Lemma 2.13 that the homomorphism 5 Y @ My —
Ep,(Y") is an epimorphism. It follows that Y = Y and ¢ is an epimorphism.
This means that Y is a quotient of the projective R;-module Pg,(Y) =
(YY" ®a, Mr,idy g, 0,) by a submodule Z of the form Z = (0,2",0).
The sequence

0—-Z—=Pr(Y)=Y =0
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induces an exact sequence
Z®R1 erR — PR;(Y) QR etR—Y QR; etR—0

and Pg,(Y) ®g, e;R is a projective R-module and Z ®p, e;R = (0, 2" ®p,
nrB,0). It follows that if we write Y ® g, ey R in the form (U’,U"”,4) then U’
is a projective A-module and v is an epimorphism. Hence by Lemma 2.13
the prinjective module (Y ®pg, ey R)" is indecomposable.

Let (Y ®g, e R)" belong to prin(R); and assume that X is an indecom-
posable prinjective module and f : X — Y is a non-zero non-isomorphism.
If there is a non-zero homomorphism from X to a module of the form
(0, Ep(S;),0) then X is in prin(R)4,. Now assume that this is not the case.

The properties of the functor (—) ®g, e;R : mod(R;) — mod(R) (see
e.g. [18, Theorem 17.46]) imply that f ® ide, g : X Qr, e1R — Y ®g, e1R
is a non-zero non-isomorphism and the modules X ®g, efR and Y ®g,
erR are indecomposable. By applying the above arguments to X we see
that also (X ®g, erR)" is indecomposable and there exists a non-zero non-
isomorphism (f®ide, )" : (X ®g,erR)" = (Y ®g, ey R)" by Lemmata 2.13
and 2.15. It follows that (X ®g, ey R)" belongs to prin(R)4—1 and hence X
belongs to prin(Ry)g,+4 by the induction hypothesis.

We have shown that if f : X — Y belongs to the radical of prin(R;)
then X belongs to prin(R;)q4,+q- Hence Y is in prin(R;)d,+d+1-

In order to finish the proof of the lemma observe that if Y is a prin-
projective Ry-module of the form e; R; then (e;R; ®p, efR)" = e;R is a
prin-projective R-module because i € J, thus it belongs to prin(R).,. Hence
67}?1 belongs to prin(R;)s and the lemma follows. m

Recall that a vector v € Z! is sincere if it has all the coordinates positive.
The quadratic form ¢ is called critical if any vector v # 0 with only non-
negative coordinates such that ¢(v) = 0 is sincere [15, 1.0].

3.3. LEMMA. Assume that R is a bipartite prin-critical algebra (1.1).

(a) There exists a unique preprojective component P(prin(R)) of the
quiver I'(prin(R)) containing all indecomposable prin-projective modules and
no prin-injective modules. Moreover, for all but a finite number of modules
X in P(prin(R)) the vector cdn(X) is sincere.

(b) The Tits prinjective form q%rin is a critical form.

Proof. (a) Let P be a preprojective component in I'(prin(R)) and let
I’ be the set of all indices ¢ = 1,...,n + m such that the prin-projective
module Pl-<> does not lie in P or the corresponding prin-injective module Q?
belongs to P. Assume that I’ is not empty and put I = {1,...,n+m}\ I’
and ey = ), ¢€;. It follows from Lemma 2.16 that cdn(X)(i) = 0 holds
for i € I' and all but a finite number of modules in P. Since P is an
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infinite component the algebra R; = ey Rej is of infinite prinjective type by
Lemma 2.19, a contradiction. This shows in particular that P is the unique
preprojective component of I'(prin(R)); we shall denote it by P(prin(R)).
If there exist infinitely many modules X in P(prin(R)) with cdn(X)(i) =0
for some i then the algebra (1 — e;)R(1 — e;) is of infinite prinjective type;
again a contradiction.

(b) Since prin(R) is of infinite representation type and I'(prin(R)) has
a preprojective component, it follows from Theorem 2.10(3) that q%rin is
not weakly positive. Any quadratic form ¢; defined by ¢;(x1,. .., Zptm—1) =
q’;{in(:vl, cesTi—1,0,m4, . ., Tpym—1) is the Tits prinjective form of the bi-
partite algebra (1 —e;)R(1 —e;), which is of finite prinjective type, and thus
by Theorem 2.10(1), ¢; is weakly positive and hence q%rin is critical. m

Throughout this paper we shall use the generalized Kronecker algebra

(3.4) A, = <’g ’2)

r > 2, where k" is viewed as a k-k-bimodule in a natural way (see [20]).

3.5. COROLLARY. Assume that R is a bipartite prin-critical algebra (1.1)
and let n and m be the ranks of the Grothendieck groups Ko(A) and Ko(B)
respectively. Then one of the following conditions holds:

() n=m=1 and R= A, for some r > 2.

(2) n+m > 3 and 5™ is non-negative, that is, g "(v) > 0 for any
v e Zt™,

Proof. Clearly, n,mm > 1. If n = m = 1 then R is of the form A, and
r > 2, since prin(R) is of infinite representation type. If n +m > 3 then
prin

by the results of Ovsienko in [10] (see also [15, 1.0]) the criticality of qf
implies (2). m

3.6. LEMMA. Assume that R = A, (cf. (3.4)).

(a) prin(R) = mod(R) and the quivers I'(prin(R)) and I'r are isomor-
phic as translation quivers.

(b) R is of tame prinjective type if and only if r = 2, otherwise it is of
fully wild prinjective type (see [9] for definitions).

Proof. The lemma follows from the well-known representation theory
of the hereditary algebra A, (see [1]). m

3.7. LEMMA. Assume R is a bipartite prin-critical algebra, P(prin(R)) is
the unique preprojective component in I'(prin(R)) and X is an indecompos-
able module in P(prin(R)) such that its translate ArX is not a predecessor
of a prin-projective module in I'(prin(R)). Then pdrX <1 and idrX <1,
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where pdr X and idrX are the projective and the injective dimension of X
respectively.

Proof. Observe first that any finitely generated injective R-module is
an epimorphic image of a prin-injective R-module. Indeed, consider an in-
decomposable injective R-module Fg(S;). In case i > n+ 1 it is a quotient

of Q? = FEr(S;). If i < n it is enough to take the canonical projection of
(Pa(EA(S:)),0,0) onto (E(S;),0,0) = Er(S;). Similarly, any projective
R-module is a submodule of a prin-projective one.

Secondly it follows by Lemma 2.17 that Agp X = 7 X and AR X = 7, X
Since for any prin-injective module Q¢ we have Hompz(Q?,7pX) = 0 it
follows that Homp(Q,7rX) = 0 for any injective R-module @ and then
pdpX <1 by [15, 2.4]. Similarly we obtain idgX < 1. m

Following the construction in [15, 4.2(3)] we shall construct in P(prin(R))
a “relative slice”, that is, a set & of pairwise non-isomorphic prinjective
indecomposable R-modules in P(prin(R)) such that:

(a) If Xg — X7 — ... = X is a sequence of non-isomorphisms between
indecomposable prinjective R-modules and Xy, X; € S then X; € § for
j=1,...,1.

(b) If X is indecomposable and not prin-projective, then at most one of
the modules X, ArX belongs to S.

(¢c) If X,Y are indecomposable, f : X — Y is an irreducible homo-
morphism in the category prin(R) and Y € S then X € S or X is not
prin-injective and AL X € S (see [15, 4.2]).

Without loss of generality we can assume that any X € S is not a
prin-projective module and ArX is not a predecessor of a prin-projective

module. This can always be achieved by a suitable shift of S. Note that S
intersects each Ap-orbit in P(prin(R)) in one module.

3.8. PROPOSITION. Let S be as above and assume S = {X1,..., Xpntm}-
Let Qs be the full subquiver of P(prin(R)) with the set S of vertices.

(a) The module X = @"" X; is a tilting and cotilting R-module (see
15, 4.1)).

(b) The algebra H = Endgr(X) = k(QZF’) is hereditary. Consequently, R
is a tilted algebra and Ko(mod(H)) = Ko (prin(R)) = Z"+™.

(c) Assume that R is a bipartite prin-critical algebra not isomorphic to
Ay r >3 (cf. (3.4)). Then the quiver Qs is an extended Dynkin diagram,
that is, H is a tame algebra in the sense of [18, Section 14.4].

Proof. (a) (Compare [15, 4.2(3)].) By Lemma 3.7, pdp(X) < 1 and
idpX < 1. By standard arguments we show that X has no selfextensions
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(one can use the relative Auslander—Reiten formula [13, 3.15(a)]). Moreover,
X has n + m indecomposable direct summands and (a) follows.

For the proof of (b) repeat the arguments from [15, 4.2(3)] (note that by
Lemma 2.17 the translates Ar and 7z coincide on S).

In the proof of (c) we follow [6, 3.1], [11, 3.2.2]. The statement is obvious
if R = Ay;. From now on we assume that this is not the case. Let X be
a successor of S in P(prin(R)), that is, a successor of a module in S. We
shall approximate the growth of dimy AI_%ZX , where Apg is the Auslander—
Reiten translation in prin(R). In order to do it for any i = 1,...,n +m
consider the difference |dimy, Hompg (P, A X)—dimy, Homg (P, X)|. Non-
zero homomorphisms from Pi<> to X do not factorize through prin-injective
modules, because X belongs to the preprojective component containing no
prin-injective modules. Thus dimy Hom(PY, X) = dimy Exth(AzX, PP)
by [13, Proposition 3.15(a)]. Note that Homz (X, PP) = 0 and Exth (P, X)
= 0. Thus by Lemma 2.7,

|dimy, Hompg (PP, Az X) — dimy, Hom (P, X)|

= 2|(cdn(F;),cdn(ALX))r|.
By Theorem 2.10(2) the vectors p = cdn(P?) and z = cdn(ALX) are

positive roots of q%rin, that is, q%ﬁn (p) = q%ﬁn (x) = 1; hence

2(p,2)r = dy M (p+ ) — d " (p) — dy P(x) > 2
and
—2(p,x)p =dRp "(p—x) —di "(p) —dp " (z) > -2

prin

by the non-negativity of g5 . Hence |(p, ) g|<l (compare [13, Lemma 4.14])
and

|dimy, Homg (PP, Az X) — dimy, Hompz(P, X)| < 2
for any i = 1,...,n 4+ m. Now it follows by Lemma 2.16(b) and Lemma 2.6

that the difference |dimy (AL X) — dimy(X)| is bounded by a constant inde-
pendent of X, hence

" [ dim (AR X)

r—00 o"

=0

for any o > 1.

Let s € Ko(H) = Z"t™ (see (b) above) be the vector defined by s(i) =
dimy(X;). We assume that the ith standard basis vector of the group Ko (H)
corresponds to the vertex X; of the quiver Qgs. It is easy to see dimk(A]_%lX,;)
= (s®%,)(i) forl >0and i = 1,...,n+m (comp. [6, 3.1]). Here @5 denotes
the Coxeter transformation of H (see [15, 2.4]). The set {s®%;};>0 consists
of vectors with non-negative coordinates, thus by [6, Lemma 3.2] and its
proof the condition (*) implies that the quiver Qg is an extended Dynkin
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diagram. We remark that in the statement of Lemma 3.2 in [6] it is assumed
that the quiver Qg is a tree. But by [12, Theorem 3.5] this assumption is
not necessary. m

3.9. PROPOSITION. Let R be a bipartite prin-critical algebra not isomor-
phic to A, r >3 (cf. (3.4)). Then

(a) R is a tame concealed algebra (see [15, 4.3]).

(b) I'(prin(R)) has a unique preinjective component Q(prin(R)) contain-
ing all prin-injective indecomposable objects. Moreover, the modules from
P(prin(R)) (resp. Q(prin(R))) are preprojective (resp. preinjective) in I'g.

(c) There exists a sincere vector v € N*™™ such that qr(dy,) = 0, where
dy, is defined in (2.5) and qg is the Tits quadratic form of the algebra R.
Moreover, if the largest common divisor of the coordinates v; of v equals 1
then Ker qp = ZdY%, where Kerqr = {u € Z""™ : qr(u) = 0}.

Proof. (a) We know from Proposition 3.8 that R is a tilted algebra of
extended Dynkin type. It is enough to show that the direct summands of a
tilting module T' = Ty such that R = Endg (T") are all preprojective or all
preinjective (comp. [11, 3.2.2]). Since the algebra R is of infinite representa-
tion type it follows by [15, 4.2(8)] that T" does not have both preprojective
and preinjective direct summands. Now it is enough to show that T' does not
have regular direct summands. Let T' = @?:fn T;, T; indecomposable, and
let e; be the idempotent of R corresponding to the summand 7;. Assume
that T} is a regular H-module.

Given a number d € N for all but a finite number of indecomposable H-
modules M of dimension d we have Hom g (Th, M) = Exth (T, M) = 0. Tt
follows that for d € N all but a finite number of indecomposable R-modules
of dimension d are annihilated by e; (see [15, 4.2(8)]).

Since the form g™ is not weakly positive it follows by Theorem 2.10(1)
that there exists a vector v € N and an infinite family { X} of pairwise
non-isomorphic indecomposable prinjective R-modules such that cdn(X})
= v for any A. The algebra R is prin-critical so v is sincere. Hence the
R-modules X, are not annihilated by e;, a contradiction.

(b) For all but a finite number of modules X in P(prin(R)) the translates
AR X and 75 X coincide by Lemma 2.17. It follows that for those modules
X the module 7,™X is defined for all m > 0 and X is not 7p-periodic.
Thus all modules in P(prin(R)) lie in the preprojective component P of the
Auslander-Reiten quiver I'g of mod(R). The modules X, constructed in
the proof of (a) above are regular. Take an arbitrary indecomposable prin-
injective R-module Q. Since cdn(X}) is a sincere vector for any index A we
get Homp (X, Q¥) # 0 (see Lemma 2.16). Thus Q¢ lies in the preinjective
component Q of the quiver I'g.



MINIMAL BIPARTITE ALGEBRAS 311

Let Q? be the prin-injective indecomposable module having no prin-
injective predecessors in I'g. It follows from Lemma 2.17 that A RQ;> =
TRQ?; the same can be said about all the predecessors of Q? in Q. It follows
that all but a finite number of modules in Q are prinjective. It is easy to
check that those modules form a unique preinjective component Q(prin(R))
of I'(prin(R)).

(¢) Put v = c¢dn(X,), where the modules X, form the infinite fam-
ily constructed in the proof of (a). Clearly, the modules X are regular
and qr(dim(X,)) = 0 by [15, 4.3(8)]. But dim(X,) = d% and g™ (v) =
qr(d}) by Lemmata 2.6 and 2.8. Since the form q%rin is critical the vector v
is sincere and (c) follows. The remaining statement is a consequence of the
results of [10]. m

Note that it follows from the above proposition that if R is a bipartite
prin-critical algebra then a prinjective R-module X is preprojective (resp.
preinjective) in I'(prin(R)) if and only if X is preprojective (resp. preinjec-
tive) in I'g.

3.10. THEOREM. Let R be a bipartite algebra of the form R = (‘g g)
(see (1.1)) and let n,m be the numbers of the isomorphism classes of simple
modules in mod(A) and mod(B) respectively. The algebra R is prin-critical
if and only if one of the following conditions is satisfied:

(1) R= A, (see (3.4)) for some r > 2.

(2) n+m >3 and R is tame concealed and there ezists a sincere vector
v € Nt such that the largest common divisor of the coordinates v; of v
equals 1 and qr(d%) = 0.

If this is the case then Kerqr = ZdY%, where Kerqp = {u € Z2"t™ :
qr(u) = 0}.

Proof. When n+ m = 2 the statement follows by Corollary 3.5. If n +
m > 3 then if R is prin-critical the condition (2) follows from Proposition 3.9.
To prove the converse implication we show first that the algebra satisfying
(2) is of infinite prinjective type. By Lemma 2.8(b) and our assumption
2™ (v) = qr(dy) = 0. Thus the form g™ is not weakly positive and
therefore by Theorem 2.10(1), prin(R) is of infinite representation type.

Now we prove that the quiver I'(prin(R)) has a preprojective component.
Since q%ﬁn is not weakly positive we conclude by Theorem 2.10 that there
is an infinite family of pairwise non-isomorphic indecomposable prinjective
R-modules { X} having the same coordinate vector v'. It follows that all
modules X are regular R-modules and then qgr(dim(X))) = qR(d}’é) =0.
The form qp is critical, hence, by Ovsienko’s Theorem [10], the vectors

d% and d}’;é are linearly dependent. Since the homomorphism v — df is
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invertible by Lemma 2.8(a) the vector v’ is a multiple of v and hence v’ is
a sincere vector in Z"*™. Using Lemma 2.16 one can prove that all prin-
projective indecomposable modules lie in the preprojective component P of
I'r. Tt follows that I'(prin(R)) has a preprojective component.

By Lemma 3.2 there exists a subset I C {1,...,n + m} such that the
bipartite algebra R; is prin-critical. It follows that there exists a vector
v € NI C N"*™ such that g% ™(v') = 0. Thus qr(dy) = 0 and as above
we conclude that o' is sincere and I = {1,...,n+m}. Hence the algebra
R = Ry is prin-critical =

Note that condition (2) of Theorem 3.10 together with the list of all the
tame concealed algebras provides a description of all prin-critical algebras.
In particular, we prove the following lemma.

3.11. LEMMA. If R = ( 0 g[) s a bipartite prin-critical algebra which is

tame concealed of type A then R is isomorphic to the path algebra kA
where

a ao at—1 Gt

S VA VIR VN )

Ay b1 bo .. bi—_1 by
T

and A = keq, X keg, X ... X keq,, B = kep, X kep, X ... % key,. If this is the
case then mod(R) = prin(R) and the Auslander—Reiten quivers I'(prin(R))
and I'r coincide.

Proof. It follows from the classification of tame concealed algebras ([5],
[15]) that R is the path algebra of the quiver @ of type A,. Let A =kQu
and B = kQ@pg, where Q4 and () are subquivers of (). There is no ori-
ented path from Qp to Q4. By Theorem 3.10 there exists a sincere vector
v € N*™ guch that qr(d%) = 0. Under our assumptions on R it follows
that d% (i) = ¢ for a constant ¢ and all i € Qy. Then v(i) = ¢ if and only if ¢
is a source in Q4 or a sink in @ p, and v(i) = 0 otherwise. Since v is sincere
the first part of the lemma follows. In order to finish the proof it is enough
to note that each kA* module is prinjective if the bipartition of KA} is as
above. m

3.12. THEOREM. If R is a bipartite prin-critical algebra then all but a fi-
nite number of indecomposable R-modules are prinjective and the Auslander—
Reiten quiver I'(prin(R)) is obtained from I'g by deleting a finite number of
preprojective and preinjective vertices.

Proof. It follows easily by Lemma 2.17 and Proposition 3.9(b) that
all but finitely many of preprojective and preinjective indecomposable R-
modules are prinjective. We shall prove that all regular R-modules are prin-
jective. Let X = (X', X%, ¢) be an indecomposable regular R-module and
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¢ the homomorphism adjoint to ¢. There exist infinitely many indecom-
posable preprojective R-modules Y and infinitely many indecomposable
preinjective R-modules Z such that Hompg(Y, X) # 0 # Hompg(X, Z). We
can assume that all Y’s and Z’s are prinjective. Since all prin-projective
(resp. prin-injective) modules lie in the preprojective (resp. preinjective)
component it follows by Lemma 2.13 that the module X is indecomposable
and by Lemma 2.15, Hompg(Y, X) # 0 # Hompg(X, Z) for infinitely many
preprojective modules X and infinitely many preinjective modules Z. Hence
X is regular. Note that the natural projection ex : X — X is a monomor-
phism, for otherwise there is a non-zero map (K,0,0) = Kerex — X and
consequently a non-zero homomorphism from a prin-injective module to X ,
which is impossible. Hence X = X. Analogously we prove that X = X and
X is prinjective.
The rest of the statement follows from Lemma 2.17. m

3.13. COROLLARY. Assume that R is a bipartite prin-critical algebra not
isomorphic to A,., r > 3.

(a) The Auslander—Reiten quiver I'(prin(R)) of prin(R) consists of the
preprojective component P(prin(R)), the preinjective component Q(prin) and
a 1-parametric standard stable tubular family T separating P(prin(R)) from
Q(prin) (see [15]).

(b) The category prin(R) is of tame representation type and domestic. m

3.14. REMARK. It is easy to observe that under the assumptions of Corol-
lary 3.13 all components of the quiver I'(prin(R)) are generalized standard
in the sense of [23], that is, given two indecomposable modules X, Y in the
same component we have rad™ (X,Y’) = 0, where rad™ is the infinite radical
of the category mod(R) (see [1], [23]). Moreover, if we denote by rad;, the
infinite radical of the category prin(R) then rad™(X,Y) = rad; (X,Y)
for arbitrary prinjective modules X, Y. It would be interesting to know the
relation between rad;, and the restriction of rad™ to the category prin(R)
in the case of an arbitrary bipartite algebra R. m

The next corollary follows by the arguments used in the proof of Theorem

3.12 and Lemmata 2.13, 2.14.

3.15. COROLLARY. Assume that R is a bipartite prin-critical algebra.
All but a finite number of preprojective and preinjective indecomposable R-
modules belong to prin(R) Nmod;.(R)3 N mod” (R)A Nadj(R)3. (For the
definitions of the above categories we refer to [13]). m

We finish the paper with the following simple observation.

3.16. LEMMA. Let R be a bipartite prin-critical algebra not isomorphic
to A, (see (3.4)) for r > 3. Let X be a preprojective (resp. preinjective)
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R-module. Then

- cdn(AR°X)  pr (
lim g = resp.
3% Jedn(A5 X)| Il

. cdn(A% X) IR
im =
s=oo [edn(ARX)|  |prl

where pur € N s a non-zero vector such that q%rin(,uR) =0, and for a
vector v we denote by |v| the sum of its coordinates.

Proof. Let X be a module in the preprojective component P(prin(R)).
Then it is clear that
slg](r)lo lcdn(AR°X)| = oc.
Moreover, g™ (cdn(A%z*X)) = 1 for any s > 0 by Theorem 2.10(2). We

shall prove that any subsequence of the sequence cdn(A3*X)/|cdn(AR°X)|
has a subsequence convergent to pgr/|ur| and hence

cdn(AR°X)  pr
11m = .
oo ledn(AR°X)[ |ir|

The vectors vy = cdn(AZ°X)/|cdn(AZ°X)| belong to the compact set
{veR"™™: |y =1, v(l),...,09(n+m) > 0}. Let a subsequence (vs,); of
the sequence (vs)s converge to vg. Then

prin prin . qI}){rin(Cdn(A;}jStX)) _

qdp (vo) = tllfrolo ap  (vs,) = tllglo ledn(AZ* X)) "

thus since the quadratic form q%ﬂn is critical and by the results of [10] the
vector v is a multiple of ug, but |vg| = 1, hence vg = pur/|1r|.
In the case when X is a preinjective module the proof is analogous. =

3.17. COROLLARY. Let R be a bipartite prin-critical algebra of tame prin-
jective type. Let | : Ko(prin(R)) & Z"t™ — Z be a Z-linear function
such that l(ur) > 0. Then for any number M there exists an indecom-
posable preprojective (resp. preinjective) prinjective R-module Y such that

[(cdn(Y)) > M.

Proof. We prove the existence of a prepojective module satisfying the
conditions of the corollary; the existence of a preinjective one follows
analogously. Let X be an arbitrary indecomposable module in the prepro-
jective component of I'(prin(R)). Then it follows from Lemma 3.16 that
im0 [(cdn(A% X)) = co. We put Y = AL X for s large enough. =

3.18. REMARK. The above corollary gives a simplification of the proof
of one of the main results in [9], namely that hypercritical posets are of fully
wild prinjective type. Indeed, it is enough to put [ = lAa defined in (3.9) in
the proof of Lemma 3.8 in [9] and M = 3.
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For example, let R be the incidence algebra of the poset

P
I

3 5

{ v

4 6 7 8
U VI
9 10

that is, R is the path algebra of the above quiver divided by the com-
mutativity relation. We consider R with a bipartition (1.1) such that B =
(eg+e10)R(eg+e10), where e; denotes the standard idempotent correspond-
ing to the vertex i. It follows from [19] that R is a prin-critical algebra and
it is easy to check that this is a concealed algebra of type Es.

Let up = (1,1,1,2,3,1,2,4,4) € 71210} Then pp generates the ker-
nel of the Tits prinjective quadratic form of R. Consider the linear function
1 : 7128 5 7 given by I(v) = v(9) — v(2) — v(3) — v(4). Observe that
I(ur) > 0. By Corollary 3.17 there exists an indecomposable module X in
the preprojective component of I'(prin(R)) such that /(cdn(X)) > 3.

Now consider the one-point extension R of R by a prin-projective R-
module P2<> associated with the vertex 2; that is, R is the path algebra of
the quiver

1

I

2

I

3 5

I '

4 6 7 8
A VY
9 10

modulo the commutativity relation. We consider R together with a bipartion
such that Ry = Rif I = {2,...,10}. It follows by results of [9] that if we put
U= QY and V = TF(X) then the prinjective R-modules U and V satisfy
the following conditions:
(i) Bnds(U) = Bnd (V) = K,

(ii) Homz(U,V) = Hom(V,U) = 0,

(iii) dimg (BExt5(U,V)) > 3.
It follows from Lemmata 1.5 and 8.6 in [14] that this implies the existence

of a full faithful exact functor Ty y : mod(As) — mod(R), where As is
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defined in (3.4), such that Im Ty C prin(R). Thus prin(R) is of fully wild
representation type in the sense of [9].
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