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FURTHER PROPERTIES OF AN EXTREMAL SET OF UNIQUENESS

BY

DAVID E. GROW anp MATT INSALL (ROLLA, MISSOURI)

Let T denote the group [0,1) with addition modulo one. In [4] we pre-
sented an elementary construction of a countable, compact subset S of T
which could not be expressed as the union of two H-sets, and conjectured
that S is not expressible as the union of finitely many H-sets. Here we use a
descriptive set theory result of S. Kahane [6] to help show that S cannot be
expressed as the union of finitely many Dirichlet sets. For the connection of
this problem with that of characterizing sets of uniqueness for trigonometric
series on T, see [7] and [4].

Let Z denote the integers and N the nonnegative integers. If z and y
are real numbers then by x = y we shall mean x — y € 7Z, and in this case
we identify z and y with a single point in T. A subset E of T is a set of
uniqueness if the only trigonometric series Y2 ¢(n)e*™™* on T which
converges to zero for all x outside E is the zero series: ¢(n) =0 for all n. A
compact subset E of T is an H-set if there exists a nonempty open interval
I in T such that

N(E;I)={neZ:nx &¢I for all x € E}

is infinite; F is a Dirichlet set if N(E;(e,1—¢)) is infinite for all ¢ > 0. The
families of all H-sets and Dirichlet sets in T will be denoted by H and D,
respectively. Every finite subset of T is a Dirichlet set [3], every Dirichlet set
is clearly an H-set, and every H-set is a set of uniqueness [8]. Indeed, any
countable union of (compact) H-sets is a set of uniqueness [1].

A family B of compact subsets of T is hereditary if £ € B implies all
compact subsets of E are also in B. It is clear from the definitions that H, D,
and the class F', consisting of all finite subsets of T, are each hereditary
families of compact subsets of T. If B is any hereditary family of compact
sets in T and F is any compact subset of T, let the B-derivate of E, dp(E) =
d(Bl) (E), consist of those points = in F such that, for every open interval I
containing x, the closure of £ NI does not belong to the family B.
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For n > 1, let the nth B-derivate of E be defined inductively by dgl) (E)
= dB(dg_l)(E)); to obtain future economy of expression, we adopt the
convention dg) (E) = E. If there exists a positive integer n such that dgl) (E)
is empty, then we say that F has finite B-rank; in this case, the least such
integer n is called the B-rank of E. For the family F' of finite sets, observe
that dp(E) denotes the set of limit points of F, and that F has finite F-
rank if and only if the classical Cantor—-Bendixson rank of F is finite. For
Cantor-Bendixson derivates, we use the classical notation E’ for dp(E), and
E™ for d;?) (E). For a connection between the Cantor-Bendixson rank and
Dirichlet sets, see [5].

We shall use the following B-rank result of S. Kahane [6].

PROPOSITION 1. Letn € N, let E be a compact subset of T, and let B
be a hereditary family of compact subsets of T. If E is the union of n sets
from B, then the B-rank of E is at most n.

Given z in T, let z = Y27, zx27%, x), € {0,1}, denote its binary ex-
pansion, and write x = 0.x1z2x3...; this expression for = is unique if the
terminating expansion is chosen whenever possible. Let S_; = {0} and, for
each n € N, let S, signify the set of all x = 0.z129x3... in T such that
Speqag =n+1land zp =0if 1 <k < n. Define S =J,— ,S,. Note
that a point of T belongs to S if and only if the number of ones in the
binary expansion of x does not exceed the number of its leading zeros by
more than one. Clearly, S consists of rational points and hence is countable;
it is not hard to see that S is closed (and hence compact) and has infinite
Cantor-Bendixson rank ([4], or see Lemma 3 below).

THEOREM 1. The set S has infinite Dirichlet rank.

COROLLARY. The set S cannot be expressed as the union of a finite
number of Dirichlet sets.

Proof. Proposition 1 implies that if S were a union of n Dirichlet sets,
then the Dirichlet rank of S would not exceed n.

The proof of Theorem 1 will be based on the following three lemmas.
LEMMA 1. Ify € [0,1) N Q and N € N, then
{y}U{y+2™™ :meN, m> N}
s not a Dirichlet set.

Proof. Without loss of generality, we may assume that N > 2. It suffices
to show that the set Jys n consisting of all nonnegative integers k& such that

Ey+2 ™ :meNm>N}Co,27Mu -2 1]

is finite for sufficiently large positive integers M.
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If y =0, let M be any integer not less than 2. If y # 0, then denote by
¢ the smallest nonzero element of the finite subgroup

G={jy:jeZ}
of T. Choose M € N such that 2= < 6.
We first show that
(1) ky=0 forall ke Jyn.

If y = 0 then (1) is clear, so suppose y # 0. Fix k € Jy n and let p €
NN[0,6~* —1] be such that ky = pd. Since k27" — 0T as n — oo, it follows
that

(2) k(y+27") = pét asn— oo.

Because 27 < §, the only element of G contained in [0,2"M]U[1-2"M 1]
is 0. But (2) and the facts that peNN[0,671 — 1] and k € Jys n imply that
p = 0, thus establishing (1).

Next, we show that for each k € Jy w,

(3) k(y+27) €[0,27M] for all n > N.

To see this, fix k € Jy n. Since ky = 0 and 0 < k27" < 2=M for all n
sufficiently large, it follows that there exists an integer N1 = Ny(k) > N
such that

(4) k(y+27") €[0,27M]  for all n > Nj.

If (3) does not hold, then (4) implies that there exists a largest integer v > N
such that

(5) kly+27") e[l -27"1];

hence k € Jy,n implies

(6) k(y +2- WD)y e [0,27M].

But from (1) and (5), it follows that

(7 k27" =z+r whereze€Zandre[l—2"M 1),
and (1) and (6) imply

(8) k2~ =y 4+ s where y € Z and s € (0,2 M].
Dividing (7) by 2 yields

(9) k2= — (2 41)/2  where r/2 € 271 — 27 M1 971y,

If 2 is even, then (8) and (9) imply s = r/2, clearly a contradiction since M >
2 implies that (0,27 M]N[271—27M~1 271) is empty. If 2 is odd, then (8) and
(9) yield s = (1+7)/2, again a contradiction since (0,2=M]N[1—-2"M-11)
is empty. Therefore (3) is established.
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Finally, we show that Jjs n is finite. To this end, fix k € Jy n. By (1)
and (3), we have

(10) k27N =24+ r where z € Z and r € [0,27].

We shall show that

(11) 2277 €7 forall j €N,

so that z=0. This will conclude the proof because (10) then implies k =
2Ny < oN-M,

Note that (10) implies that (11) holds for j7 = 0. Suppose that (11) holds
for some integer j > 0, but that 22~U*1 is not an integer. Then

ko~ (N+i+1) — (z + T)2—(j+1)
=271 4270+ ¢ 271 971 4 o~ (MHiHD]

in contradiction to (1) and (3). Therefore (11) holds by induction, and the
proof of Lemma, 1 is complete.

LEMMA 2. Let © = 0.x12025... € S\ {0}, with x j11and x5+, denoting
the first and last nonzero binary digits of x, respectively. If y € S\ {z} and
ly — x| < 272+HE4D) then y > o and y; =x; forall1 < j < J+K.

Proof. Let y = 0.y19y2 ...ys4+1 denote the binary expansion of y. Sup-
pose z; = y; for all j < jo and x;, # yj,-

CASE 1: xj, > yj,. Note that this is precisely the case when z > y. If
Yjo+1 = 0 then

J+L
9 2(J+K+1) o lz—y| > 9—Jjo _ Z ij_j ~ 9—(jo+1)
J=Jjo+2
Consequently, jo +1 > 2(J + K + 1), and hence z; = 1 for some j = jo >
J + K, a contradiction. If y;,41 = 1 then, since y € S and y has at most
jo leading zeros in its binary expansion, it follows that Z;’il y; < jo+ L.
Arguing as when y;,4+1 = 0, we have

J+L 2jo+1
9—2(J+K+1)  9—jo _ Z ij—J' > 9—Jo _ Z 9=7 — 9—(2jo+1)
Jj=jo+1 Jj=jo+1

Thus, 2jp+1 > 2(J + K + 1) and hence jo > J + K, a contradiction just as
before. Therefore the case x;, > y;, cannot occur.

CASE 2: xj, < yj,. Note that this is precisely the case when y > x. We
have
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J+K
2 2D >y — g > 2790 — N g7,
J=jo+1
Since z € S and z has J leading zeros in its binary expansion, it follows
that 3372, x; < J + 1. Therefore

J+K Jo+J+1
9—Jo _ E ij_j > 9o _ E 9—J — 9—(jo+J+1)
Jj=jo+1 Jj=jo+1

Combining the last pair of displayed inequalities gives jo + J + 1 > 2(J +
K + 1), and hence jo > J + K. This completes the proof of Lemma 2.

DEFINITION. Let x be a nonzero element of T with binary expansion
x = 0.x1z223 ... (Recall that if x has two binary expansions, we agree to
consider only the terminating expansion.) Suppose that z; = 01if j < J and
zj+1 = 1. Define the deficiency of x by

def(z) =1+ J — Z:L‘j.
j=1

Furthermore, define def(0) = oc.

The following properties of the deficiency are clear:

(a) def(z) > —oo if and only if x is a binary rational number;
(b) def(x) > 0 if and only if x € S.

LEMMA 3. Letn € Nandx € S. Then x € S™ if and only if def (z) > n.

Proof. The proof is by induction. The case n=0 is property (b) above.
Suppose the result holds for n > 0. If z € StV then there exists a
sequence {y(™1%°_, from S\ {z} such that y(™ — 2 as m — oco. By the
induction hypothesis, def(y("™) > n for all m > 1. Lemma 2 implies that
def () > def(y(™) for m sufficiently large. Hence def(z)>n+1. Conversely,
suppose def(x) > n + 1. For sufficiently large m, say m > N, we have

def(z +27™) = def(z) — 1 > n.

The induction hypothesis implies that the sequence {z +27™}>°_ . is
contained in S \ {z}, and hence z € S(**+1),

Proof of Theorem 1. By Lemma 3, we have 0 € S for all n € N.

Therefore it suffices to show that for each n € N, we have S C d(Dn)(S);
for this we use induction. For n = 0 the inclusion is clear. Suppose the

inclusion S(™ C dg)(S) holds for n > 0. Then
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di () = dp(dfy ()
={z € dgl)(S): if I is an open interval containing x,
then I N dg)(S) is not a Dirichlet set}
D {xeS™ :if Iisan open interval containing z,
then 7 N S(™ is not a Dirichlet set}
=dp(S™).

To finish the proof, it therefore is enough to show that S+ C dp(S™).
Let z € S+, by Lemma 3, we have def(z) > n+1. Lemma 2 then implies
that for sufficiently large m, say m > N, we have def (z+27"") = def(x)—1 >
n. Thus {z +27™}>_ is contained in S by Lemma 3. If I is any open

interval containing x, Lemma 1 then implies that I N {x +2-m}°_ C

INS™M is not a Dirichlet set. Hence S+t C dp(S™), and the proof of
Theorem 1 is complete.

The question as to whether the set .S is expressible as the union of finitely
many H-sets cannot be answered so easily, as demonstrated by the next two
results. A simple compactness argument yields the first assertion.

PROPOSITION 2. Let E C T be compact and let B be a hereditary family
of compact subsets of T. If the B-rank of E is 1 then E can be expressed as
the union of finitely many B-sets.

THEOREM 2. The H-rank of the set § is 2.

The following lemma will be used to establish Theorem 2.

LEMMA 4. For every J € N, SN [27771 1 - 27771 is an H-set.

Proof. Ify € SN[277/71, 127771, then y has at most J leading zeros
in its binary expansion, and consequently has at most J + 1 ones. Thus, for

all j € N, we have 27y = x where

J+1
0<z< Zr’f =1 -2 U+,
k=1

Therefore 27(S M [27771,1 — 277/71]) misses the interval (1 — 27771 1) for
all j € N.

Proof of Theorem 2. It suffices to show that dy(S) = {0}. Suppose that

y € S\ {0}, and choose J € N such that 27771 < y <1 —27771 Then

I = (277711 —277/71) is an open interval containing y, and Lemma 4
implies that SN T is an H-set. Thus dg(S) C {0}.

To show the reverse inclusion, suppose by way of contradiction that

0&Zdp(S). Then there is an open interval I containing 0 such that SiNI is an
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H-set.Choose J € N such that T is the union of I and

Iy=[2"7""1-27771.

Another application of Lemma 4 shows that S = (SNI)U(SN1;) is the
union of two H-sets, contradicting the Theorem of [4]. Thus dg(S) = {0}.
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