REPRESENTING IDEMPOTENTS AS A SUM OF TWO
 NILPOTENTS-AN APPROACH VIA MATRICES
 OVER DIVISION RINGS

BY
ARKADIUSZ SALWA (WARSZAWA)

1. Introduction. It was proved in [3] that the Koethe conjecture is equivalent to the problem of determining whether a ring which is a sum of a nil subring and a nilpotent subring must be nil. A similar problem, whether a ring that is a sum of two locally nilpotent subrings must be nil, has a negative solution (see [8]). A simpler example of this type was then constructed in [11]. Therefore one may ask whether such a ring can contain a nonzero idempotent. This naturally leads to the following problem investigated in [4]: can a nonzero idempotent e be represented as a sum $e=x+y$ of two nilpotent elements x, y ? It was proved there that this is impossible if the nilpotency degrees of x and y are ≤ 3 and ≤ 5 respectively (or ≤ 2 and any $n \in \mathbb{N}$) provided that the characteristic is equal to zero. If the characteristic is positive, examples of this type are easy to find (see [4]), whence in this paper we restrict our attention to algebras over a field of characteristic zero.

We show that idempotents of such type exist if the nilpotency degrees of x, y are both 4 , or 3 and 6 respectively. This is done by investigating representations in matrices over division rings. In this context, the first Weyl algebra appears unexpectedly and unavoidably, as shown by our main results: Theorems 8 and 12 . In particular, we prove that $M_{4}(D)$ contains a nonzero idempotent with zero diagonal if and only if D contains a copy of the first Weyl algebra.

It was shown in [4] that the identity element may be represented as a sum of four nilpotent elements of nilpotency degree 2 . We prove that the identity element can also be a sum of three nilpotent elements of nilpotency degree 3. This is used to construct an example with $0 \neq e=e^{2}=x+y$ and $x^{3}=y^{6}=0$.

[^0]Finally, we give an application to a problem closely connected to Kegel's theorem asserting that a ring which is a sum of two nilpotent subrings must be nilpotent (see $[6,7]$).

It might seem possible that the diamond lemma (see [1]) can be applied to construct examples of the above types; however, it leads to very complex computations, which are not conclusive.

Throughout the paper D (K respectively) denotes a skew field (resp. a field) of characteristic zero. All spaces will be left spaces over D (resp. K). We denote by v_{1}, \ldots, v_{n} the standard basis of $D^{n} ; M_{n}(D)=\operatorname{End}_{D}\left(D^{n}\right)$ stands for the ring of $n \times n$ matrices over D, and I for the identity element of $M_{n}(D)$. The mappings $\pi_{i} \in \operatorname{End}_{D}\left(D^{n}\right)(1 \leq i \leq n)$ are defined by $\pi_{i}\left(v_{i}\right)=0$ and $\pi_{i}\left(v_{j}\right)=v_{j}$ for $i \neq j$. If A is a K-algebra, then $\operatorname{GKdim}(A)$ and $\mathcal{J}(A)$ denote the Gelfand-Kirillov dimension and the Jacobson radical of A respectively.
2. Idempotents with zero diagonal in $M_{4}(D)$. As explained above, our approach to the problem proposed in [4] is based on matrix algebras $M_{n}(D)$. Their multiplicative structure was investigated in [10]. We describe all idempotents with zero diagonal in $M_{4}(D)$; clearly such an element is a sum of two nilpotents. If $n<4$, then $M_{n}(D)$ does not contain such idempotents. A similar problem for $M_{n}(D), n \geq 5$, seems to be difficult. First we need some preparatory results.

Lemma 1. Let V be a linear space over D. Assume that $W_{1} \subseteq \ldots \subseteq$ $W_{n}=V$ and $Z_{1} \subseteq \ldots \subseteq Z_{m}=V$ are chains of subspaces of V. Then we can find subspaces $Y_{i, j}$ of V such that $W_{i} \cap Z_{j}=\bigoplus_{k \leq i, l \leq j} Y_{k, l}$ for all $i=1, \ldots, n, j=1, \ldots, m$.

Proof. Choose subspaces $Y_{i, j}$ satisfying

$$
\begin{equation*}
Y_{i, j} \oplus\left(W_{i} \cap Z_{j-1}+W_{i-1} \cap Z_{j}\right)=W_{i} \cap Z_{j} \tag{1}
\end{equation*}
$$

where $W_{0}=Z_{0}=0$. Consider the order on the set of all pairs (i, j) defined by:

$$
(i, j) \leq\left(i^{\prime}, j^{\prime}\right) \quad \text { if and only if } i \leq i^{\prime} \text { and } j \leq j^{\prime}
$$

By induction we prove that $W_{i} \cap Z_{j}=\bigoplus_{k \leq i, l \leq j} Y_{k, l}$. By the induction hypothesis we get

$$
\begin{align*}
& W_{i} \cap Z_{j-1}=\bigoplus_{r \leq i, s \leq j-1} Y_{r, s}, \tag{2}\\
& W_{i-1} \cap Z_{j}=\bigoplus_{p \leq i-1, q \leq j} Y_{p, q} . \tag{3}
\end{align*}
$$

Hence

$$
\begin{aligned}
W_{i} \cap Z_{j} & =Y_{i, j} \oplus\left(W_{i} \cap Z_{j-1}+W_{i-1} \cap Z_{j}\right) \\
& =Y_{i, j} \oplus\left(\bigoplus_{r \leq i, s \leq j-1} Y_{r, s}+\bigoplus_{p \leq i-1, q \leq j} Y_{p, q}\right)=\sum_{r \leq i, s \leq j} Y_{r, s}
\end{aligned}
$$

Now we prove that this sum is direct. Let $y_{r, s} \in Y_{r, s}$, where $r \leq i$ and $s \leq j$, be such that $\sum_{r \leq i, s \leq j} y_{r, s}=0$. By (1), $y_{i, j}=0$, hence

$$
\sum_{r \leq i, s \leq j-1} y_{r, s}=-\sum_{k \leq i-1} y_{k, j} \in\left(W_{i} \cap Z_{j-1}\right) \cap\left(W_{i-1} \cap Z_{j}\right)=W_{i-1} \cap Z_{j-1}
$$

This implies

$$
-\sum_{k \leq i-1} y_{k, j}=\sum_{p \leq i-1, q \leq j-1} \bar{y}_{p, q} \quad \text { for some } \bar{y}_{p, q} \in Y_{p, q}
$$

By (3) we get $y_{k, j}=0$ for $k \leq i-1$. Hence

$$
\sum_{r \leq i, s \leq j-1} y_{r, s}=-\sum_{k \leq i-1} y_{k, j}=0
$$

By (2), $y_{r, s}=0$ for $r \leq i$ and $s \leq j-1$. So we have proved that $y_{r, s}=0$ for all r, s.

LEmma 2. An element $e \in M_{n}(D)$ is a sum of two nilpotent elements if and only if e has zero diagonal in some basis of D^{n}.

Proof. Assume that $e=x+y$ where $x^{n}=y^{n}=0$. Define $W_{i}=\operatorname{Ker}\left(x^{i}\right)$ and $Z_{j}=\operatorname{Ker}\left(y^{j}\right), 1 \leq i, j \leq n$. Choose subspaces $Y_{i, j}$ as in Lemma 1 and take a basis which is the union of some bases of all nonzero $Y_{i, j}$. It is easy to see that e has zero diagonal in this basis.

Conversely, assume that the diagonal of e is zero. Then e can be represented as a sum of a strictly upper triangular and a strictly lower triangular matrices, which are clearly nilpotent.

Lemma 3. Every idempotent e of rank 1 in $M_{n}(D)$ has a nonzero diagonal.

Proof. Suppose that e is an idempotent of rank 1 with zero diagonal. Changing the order of v_{1}, \ldots, v_{n} we can assume that $v_{1}, \ldots, v_{k} \in \operatorname{Ker}(e)$, $v_{k+1}, \ldots, v_{n} \notin \operatorname{Ker}(e)$ for some $1 \leq k \leq n$. Let $\operatorname{Im}(e)=\operatorname{Lin}_{D}(v)$ for some $v \in D^{n}$. By the assumption $e\left(v_{j}\right) \in \operatorname{Lin}_{D}\left\{v_{l}: l \neq j\right\}$ for $j>k$, hence $v \in \operatorname{Lin}_{D}\left\{v_{l}: l \neq j\right\}$. Clearly $\bigcap_{j>k} \operatorname{Lin}_{D}\left\{v_{l}: l \neq j\right\}=\operatorname{Lin}_{D}\left(v_{1}, \ldots, v_{k}\right)$. This implies that $\operatorname{Im}(e)=\operatorname{Lin}_{D}(v) \subseteq \operatorname{Lin}_{D}\left(v_{1}, \ldots, v_{k}\right) \subseteq \operatorname{Ker}(e)$, a contradiction.

Lemma 4. Assume that $n>1$. Then every idempotent of rank $n-1$ in $M_{n}(D)$ has a nonzero diagonal.

Proof. Let $e=e^{2} \in M_{n}(D)$ be an idempotent of rank $n-1$. Suppose e has zero diagonal. Let $f=I-e$ and $\operatorname{Im}(f)=\operatorname{Lin}_{D}(v)$ for some $v \in D^{4}$. Then $f\left(v_{i}\right)=\alpha_{i} v$ for some $\alpha_{i} \in D$ and $f\left(v_{i}\right)=v_{i}+w_{i}$ for some $w_{i} \in$ $\operatorname{Lin}_{D}\left\{v_{j}: j \neq i\right\}$ by the assumptions on e. This implies that $v=\sum_{i} \alpha_{i}^{-1} v_{i}$ ($\alpha_{i} \neq 0$ in particular) and $f\left(v_{i}\right)=\alpha_{i} \sum_{j} \alpha_{j}^{-1} v_{j}$. Hence

$$
\begin{aligned}
f\left(v_{i}\right) & =f\left(f\left(v_{i}\right)\right)=f\left(\alpha_{i} \sum_{j} \alpha_{j}^{-1} v_{j}\right)=\sum_{j} \alpha_{i} \alpha_{j}^{-1} f\left(v_{j}\right) \\
& =\sum_{j} \alpha_{i} \alpha_{j}^{-1} \alpha_{j} v=n f\left(v_{i}\right)
\end{aligned}
$$

So $f\left(v_{i}\right)=0$ and $f=0$, a contradiction.
Lemma 5. Assume that $e \in M_{n}(D)$ is an idempotent and $e\left(v_{i}\right) \neq 0$ for some $i \in\{1, \ldots, n\}$. Then $\pi_{i}(\operatorname{Ker}(e)) \cap \operatorname{Im}(e) \neq 0$ if and only if $e\left(v_{i}\right) \in$ $\operatorname{Lin}_{D}\left\{v_{j}: j \neq i\right\}$.

Proof. (\Rightarrow) Assume that $\pi_{i}(v)=e(w) \neq 0$ and $e(v)=0$ for some $v, w D^{n}$. Let $v=\alpha v_{i}+\pi_{i}(v)$ for some $\alpha \in D$. Then $0=e(v)=\alpha e\left(v_{i}\right)+$ $e\left(\pi_{i}(v)\right)$. Hence $-\alpha e\left(v_{i}\right)=e\left(\pi_{i}(v)\right)=e(e(w))=e(w)=\pi_{i}(v)$. If $\alpha=0$, then $v=\pi_{i}(v)=e(w)$. Hence $0=e(v)=e^{2}(w)=e(w)$, a contradiction. So $\alpha \neq 0$ and $e\left(v_{i}\right)=-\alpha^{-1} \pi_{i}(v) \in \operatorname{Lin}_{D}\left\{v_{j}: j \neq i\right\}$.
(\Leftarrow) Assume that $e\left(v_{i}\right) \in \operatorname{Lin}_{D}\left\{v_{j}: j \neq i\right\}$. We claim that

$$
\left[\operatorname{Ker}(e)+\operatorname{Lin}_{D}\left(v_{i}\right)\right] \cap \operatorname{Im}(e) \subseteq \pi_{i}(\operatorname{Ker}(e)) \cap \operatorname{Im}(e)
$$

Any vector of $\left[\operatorname{Ker}(e)+\operatorname{Lin}_{D}\left(v_{i}\right)\right] \cap \operatorname{Im}(e)$ can be written in the form $v+\alpha v_{i}=$ $e(w)$, where $v, w \in D^{n}, e(v)=0$ and $\alpha \in D$. Then $\pi_{i}(v)+\alpha \pi_{i}\left(v_{i}\right)=$ $\pi_{i}(e(w))$. Hence

$$
\begin{aligned}
\pi_{i}(v) & =\pi_{i}(e(e(w)))=\pi_{i}\left(e\left(v+\alpha v_{i}\right)\right)=\pi_{i}\left(e\left(\alpha v_{i}\right)\right) \\
& =\alpha \pi_{i}\left(e\left(v_{i}\right)\right)=\alpha e\left(v_{i}\right)=e(e(w)-v)=e(w)
\end{aligned}
$$

This shows that $e(w)=\pi_{i}(v) \in \pi_{i}(\operatorname{Ker}(e)) \cap \operatorname{Im}(e)$, proving the claim.
Since $e\left(v_{i}\right) \neq 0$, we get $\left[\operatorname{Ker}(e)+\operatorname{Lin}_{D}\left(v_{i}\right)\right] \cap \operatorname{Im}(e) \neq 0$. Hence $\pi_{i}(\operatorname{Ker}(e)) \cap$ $\operatorname{Im}(e) \neq 0$, as desired.

Lemma 6. Let $e \in M_{4}(D)$ be an idempotent of rank 2 with zero diagonal. Then $\operatorname{Ker}(e) \cap \operatorname{Lin}_{D}\left(v_{i}, v_{j}\right)=0$ for any $i \neq j, i, j \in\{1,2,3,4\}$.

Proof. First suppose that there exist $\alpha, \beta \in D \backslash\{0\}$ such that $\alpha v_{i}+\beta v_{j} \in$ $\operatorname{Ker}(e)$. Hence $\alpha e\left(v_{i}\right)+\beta e\left(v_{j}\right)=0$. Since e has zero diagonal, $e\left(v_{i}\right), e\left(v_{j}\right) \in$ $\operatorname{Lin}_{D}\left(v_{k}, v_{l}\right)$ whenever $\{i, j, k, l\}=\{1,2,3,4\}$. Hence the diagonal of e is zero in the basis $\alpha v_{i}+\beta v_{j}, v_{j}, v_{k}, v_{l}$. Let ${ }^{-}: D^{4} \rightarrow D^{4} / \operatorname{Lin}_{D}\left(\alpha v_{i}+\beta v_{j}\right)$ denote the quotient map and $\bar{e} \in \operatorname{End}_{D}\left(D^{4} / \operatorname{Lin}_{D}\left(\alpha v_{i}+\beta v_{j}\right)\right)$ be defined by $\bar{e}(\bar{v})=\overline{e(v)}$. Then \bar{e} is an idempotent of rank 2 (in $M_{3}(D)$) with zero diagonal in the basis $\bar{v}_{j}, \bar{v}_{k}, \bar{v}_{l}$. This contradicts Lemma 4.

It remains to consider the case when $v_{i} \in \operatorname{Ker}(e)$ or $v_{j} \in \operatorname{Ker}(e)$. Let for example $v_{i} \in \operatorname{Ker}(e)$. Then considering ${ }^{-}: D^{4} \rightarrow D^{4} / \operatorname{Lin}_{D}\left(v_{i}\right)$ and \bar{e} we get a contradiction as above.

Lemma 7. Let $V, W \subseteq D^{4}$ be subspaces such that $\operatorname{dim} V=\operatorname{dim} W=2$ and $V \cap \operatorname{Lin}_{D}\left(v_{i}, v_{j}\right)=0$ for all $i \neq j$. If $\pi_{i}(V) \cap W \neq 0$ for all i, then $V=W$ or $V \cap W=0$.

Proof. Suppose that $V \cap W \neq 0$ and $V \neq W$. Fix some i. We claim that either $V \cap W \subseteq \operatorname{Lin}_{D}\left\{v_{j}: j \neq i\right\}$ or $W \subseteq \operatorname{Lin}_{D}\left(v_{i}\right)+V$.

Assume that $W \nsubseteq \operatorname{Lin}_{D}\left(v_{i}\right)+V$. Since $\operatorname{dim}\left(\operatorname{Lin}_{D}\left(v_{i}\right)+V\right)=3$ and $\operatorname{dim} W=2$ by hypothesis, $\left(\operatorname{Lin}_{D}\left(v_{i}\right)+V\right) \cap W \neq 0$. Hence $\operatorname{dim}\left(\operatorname{Lin}_{D}\left(v_{i}\right)\right.$ $+V) \cap W=1$. Since $\pi_{i}(V) \subseteq \operatorname{Lin}_{D}\left(v_{i}\right)+V$, we have $0 \neq \pi_{i}(V) \cap W \subseteq$ $\left(\operatorname{Lin}_{D}\left(v_{i}\right)+V\right) \cap W$. Therefore $\left(\operatorname{Lin}_{D}\left(v_{i}\right)+V\right) \cap W=\pi_{i}(V) \cap W$. Similarly $0 \neq V \cap W \subseteq\left(\operatorname{Lin}_{D}\left(v_{i}\right)+V\right) \cap W$ yields $V \cap W=\left(\operatorname{Lin}_{D}\left(v_{i}\right)+V\right) \cap W$. This implies $V \cap W=\pi_{i}(V) \cap W \subseteq \operatorname{Lin}_{D}\left\{v_{j}: j \neq i\right\}$, proving the claim.

If $W \subseteq \operatorname{Lin}_{D}\left(v_{i}\right)+V$ and $W \subseteq \operatorname{Lin}_{D}\left(v_{j}\right)+V$ for some $i \neq j$ then $V+W \subseteq\left(\operatorname{Lin}_{D}\left(v_{i}\right)+V\right) \cap\left(\operatorname{Lin}_{D}\left(v_{j}\right)+V\right)$. Since $\operatorname{dim}(V+W)=3$, we get equality and so $\operatorname{Lin}_{D}\left(v_{i}\right)+V=\operatorname{Lin}_{D}\left(v_{j}\right)+V$. This contradicts the fact that $V \cap \operatorname{Lin}_{D}\left(v_{i}, v_{j}\right)=0$. So by the initial remark $V \cap W \subseteq \operatorname{Lin}_{D}\left\{v_{j}: j \neq i\right\}$ for at least three values of i.

If this inclusion holds for $i=1,2,3,4$ we get $V \cap W=0$, a contradiction. So it holds for exactly three values of i. This implies $V \cap W=\operatorname{Lin}_{D}\left(v_{i}\right)$ for some i. Since $v_{i} \in V$, we get $\operatorname{dim} \pi_{i}(V)=1$. As $\pi_{i}(V) \cap W \neq 0$ we have $\pi_{i}(V) \subseteq W$. Clearly $\pi_{i}(V) \subseteq \operatorname{Lin}_{D}\left(v_{i}\right)+V=V$. This yields $\operatorname{Lin}_{D}\left(v_{i}\right)+$ $\pi_{i}(V) \subseteq V \cap W$. Since $\operatorname{dim}\left(\operatorname{Lin}_{D}\left(v_{i}\right)+\pi_{i}(V)\right)=2$, we conclude that $V=W$, a contradiction.

Remark. It may be proved that if V, W are subspaces of $D^{4}, \operatorname{dim} V=$ $\operatorname{dim} W=2$ and $\pi_{i}(V) \cap W \neq 0$ for all i, then either $V=W$ or $V \cap W=0$ or $0 \neq V \cap W \subseteq \operatorname{Lin}_{D}\left(v_{i}, v_{j}\right)$ for some $i \neq j$ or $V+W \subseteq \operatorname{Lin}_{D}\left(v_{i}, v_{j}, v_{k}\right)$ for some distinct i, j, k. Moreover, if the first, third or fourth possibility holds, then $\pi_{i}(V) \cap W \neq 0$ for all i.

Denote by $A_{1}=K\langle x, y: x y-y x=1\rangle$ the first Weyl algebra over K. It is well known that A_{1} is a simple domain which has two-sided Ore fractions (see [9]). Hence the division ring D contains an isomorphic copy of $A_{1} A_{1}^{-1}$ if and only if D contains two elements x and y satisfying $x y-y x=1$. We are now ready to prove our first main result.

Theorem 8. Let D be a division ring of characteristic zero. Then there exists a nonzero idempotent $e \in M_{4}(D)$ which is a sum of two nilpotent elements if and only if D contains a copy of $A_{1} A_{1}^{-1}$.

Proof. By Lemma 2, $e^{2}=e$ is a sum of two nilpotent elements if and only if e has zero diagonal in some basis. We can assume that $v_{1}, v_{2}, v_{3}, v_{4}$ is the appropriate basis. Our assertion may be reformulated as follows:

There exists a nonzero idempotent with zero diagonal in $M_{4}(D)$ if and only if there exist two-dimensional subspaces $V, W \subseteq D^{4}$ such that $V \cap$ $\operatorname{Lin}_{D}\left(v_{i}, v_{j}\right)=0$ for $i \neq j, \pi_{i}(V) \cap W \neq 0$ for all i and $V \neq W$.
Indeed, if e is a nonzero idempotent with zero diagonal, then by Lemmas 3 and $4, \operatorname{rank}(e)=2$. Put $V=\operatorname{Ker}(e)$ and $W=\operatorname{Im}(e)$. Then by Lemma 6 , $V \cap \operatorname{Lin}_{D}\left(v_{i}, v_{j}\right)=0$ for $i \neq j$. By Lemma $5(\Leftarrow), \pi_{i}(V) \cap W \neq 0$. Conversely, if V and W are subspaces satisfying the above conditions then by Lemma 7, $V \cap W=0$. Define the idempotent e by $\operatorname{Ker}(e)=V$ and $\operatorname{Im}(e)=W$ $\left(V \oplus W=D^{4}\right)$. Then by Lemma $5(\Rightarrow), e$ has zero diagonal.

Assume that subspaces V, W are given. Then $V \nsubseteq \bigcup_{i} \operatorname{Lin}_{D}\left\{v_{j}: j \neq i\right\}$. Indeed, otherwise $V \subseteq \operatorname{Lin}_{D}\left\{v_{j}: j \neq i\right\}$ for some i, leading to $V \cap$ $\operatorname{Lin}_{D}\left(v_{k}, v_{l}\right) \neq 0$ for some $k \neq l$ and contradicting the assumption on V. Hence we can find a vector $\alpha_{1}^{\prime} v_{1}+\ldots+\alpha_{4}^{\prime} v_{4} \in V$ with $\alpha_{1}^{\prime}, \ldots, \alpha_{4}^{\prime} \in$ $D \backslash\{0\}$. Replacing the basis v_{1}, \ldots, v_{4} by $\alpha_{1}^{\prime} v_{1}, \ldots, \alpha_{4}^{\prime} v_{4}$ we can assume that $v_{1}+\ldots+v_{4} \in V$. Hence $V=\operatorname{Lin}_{D}\left(v_{1}+\ldots+v_{4}, \alpha_{1} v_{1}+\ldots+\alpha_{4} v_{4}\right)$ for some $\alpha_{i} \in D$. In this situation the condition $V \cap \operatorname{Lin}_{D}\left(v_{i}, v_{j}\right)=0(i \neq j)$ is equivalent to $\alpha_{i} \neq \alpha_{j}$ for $i \neq j$.

Assume now that V is given and we try to find a subspace W such that $\operatorname{dim} W=2$ and $\pi_{i}(V) \cap W \neq 0$ for all i. Note first that $\pi_{i}(V) \cap \pi_{j}(V)=0$ for $i \neq j$. Indeed, let for example $i=1$ and $j=2$. Take $w \in \pi_{1}(V) \cap \pi_{2}(V)$. Then $w=\pi_{1}\left(z_{1}\right)=\pi_{2}\left(z_{2}\right) \in \operatorname{Lin}_{D}\left(v_{3}, v_{4}\right)$ for some $z_{1}, z_{2} \in V$. Moreover, $z_{1}=\alpha v_{1}+w, z_{2}=\beta v_{2}+w$ for some $\alpha, \beta \in D$. This gives $z_{1}-z_{2} \in$ $\operatorname{Lin}_{D}\left(v_{1}, v_{2}\right) \cap V=0$. Hence $\alpha=\beta=0$ and $z_{1}=w \in V \cap \operatorname{Lin}_{D}\left(v_{3}, v_{4}\right)=0$. This proves the desired claim.

Let $w_{i}=p_{i}\left(\sum_{j \neq i} v_{j}\right)+q_{i}\left(\sum_{j \neq i} \alpha_{j} v_{j}\right) \in \pi_{i}(V) \cap W \backslash\{0\}$ for some $p_{i}, q_{i} \in$ $D, i=1, \ldots, 4$. Then, by the last paragraph, w_{i}, w_{j} are linearly independent for any $i \neq j$. Since $w_{i} \in \pi_{i}(V)$, existence of a subspace W with the desired properties is equivalent to $\operatorname{dim} \operatorname{Lin}_{D}\left\{w_{i}: i=1, \ldots, 4\right\}=2$. The latter is equivalent to $w_{3}=r w_{1}+s w_{2}, w_{4}=t w_{1}+u w_{2}$ for some $r, s, t, u \in D$ (of course $r, s, t, u \neq 0)$. By the definition of w_{i} this can be written as

$$
\left\{\begin{array}{l}
p_{3}+q_{3} \alpha_{1}=s p_{2}+s q_{2} \alpha_{1}, \tag{4}\\
p_{3}+q_{3} \alpha_{2}=r p_{1}+r q_{1} \alpha_{2}, \\
0=r p_{1}+r q_{1} \alpha_{3}+s p_{2}+s q_{2} \alpha_{3}, \\
p_{3}+q_{3} \alpha_{4}=r p_{1}+r q_{1} \alpha_{4}+s p_{2}+s q_{2} \alpha_{4}, \\
p_{4}+q_{4} \alpha_{1}=u p_{2}+u q_{2} \alpha_{1}, \\
p_{4}+q_{4} \alpha_{2}=t p_{1}+t q_{1} \alpha_{2}, \\
p_{4}+q_{4} \alpha_{3}=t p_{1}+t q_{1} \alpha_{3}+u p_{2}+u q_{2} \alpha_{3}, \\
0=t p_{1}+t q_{1} \alpha_{4}+u p_{2}+u q_{2} \alpha_{4} .
\end{array}\right.
$$

Now we prove that the condition $w_{1}, \ldots, w_{4} \neq 0$ can be replaced by $w_{1} \neq 0$, or equivalently $\left(p_{1}, q_{1}\right) \neq(0,0)$. Assume that w_{1} ot $=0$. If $w_{2}=0$ then $w_{3}=r w_{1} \neq 0$. Since $\pi_{1}(V) \cap \pi_{3}(V) \neq 0, w_{1}$ and w_{3} are linearly independent, and we get a contradiction. Hence $w_{1}, w_{2} \neq 0$ and w_{1}, w_{2} are linearly independent. This implies that $w_{3}=r w_{1}+s w_{2} \neq 0$ and $w_{4}=$ $t w_{1}+u w_{2} \neq 0$.

So our problem is reduced to solving (4) under the assumptions: $\alpha_{i} \neq \alpha_{j}$ for $i \neq j, r, s, t, u \neq 0,\left(p_{1}, q_{1}\right) \neq(0,0)$ and the solution corresponds to $V \neq W$.

First assume that such a solution is given. We prove that $D \supseteq A_{1} A_{1}^{-1}$. From the first and fifth equations of (4) we get $p_{3}=s p_{2}+s q_{2} \alpha_{1}-q_{3} \alpha_{1}$ and $p_{4}=u p_{2}+u q_{2} \alpha_{1}-q_{4} \alpha_{1}$. Now we can eliminate p_{3} and p_{4} from (4) passing to

$$
\left\{\begin{array}{l}
q_{3} \alpha_{1}+r p_{1}+r q_{1} \alpha_{2}=q_{3} \alpha_{2}+s p_{2}+s q_{2} \alpha_{1} \\
0=r p_{1}+r q_{1} \alpha_{3}+s p_{2}+s q_{2} \alpha_{3} \\
s p_{2}+s q_{2} \alpha_{1}-q_{3} \alpha_{1}+q_{3} \alpha_{4}=r p_{1}+r q_{1} \alpha_{4}+s p_{2}+s q_{2} \alpha_{4} \\
q_{4} \alpha_{1}+t p_{1}+t q_{1} \alpha_{2}=q_{4} \alpha_{2}+u p_{2}+u q_{2} \alpha_{1} \\
u p_{2}+u q_{2} \alpha_{1}-q_{4} \alpha_{1}+q_{4} \alpha_{3}=t p_{1}+t q_{1} \alpha_{3}+u p_{2}+u q_{2} \alpha_{3} \\
0=t p_{1}+t q_{1} \alpha_{4}+u p_{2}+u q_{2} \alpha_{4}
\end{array}\right.
$$

By the first and fourth equations we have

$$
\left\{\begin{array}{l}
q_{3}=\left(s p_{2}-r p_{1}+s q_{2} \alpha_{1}-r q_{1} \alpha_{2}\right)\left(\alpha_{1}-\alpha_{2}\right)^{-1} \tag{5}\\
q_{4}=\left(u p_{2}-t p_{1}+u q_{2} \alpha_{1}-t q_{1} \alpha_{2}\right)\left(\alpha_{1}-\alpha_{2}\right)^{-1}
\end{array}\right.
$$

So q_{3} and q_{4} may be eliminated:

$$
\left\{\begin{array}{l}
0=r p_{1}+r q_{1} \alpha_{3}+s p_{2}+s q_{2} \alpha_{3} \\
s p_{2}+s q_{2} \alpha_{1}+\left(s p_{2}-r p_{1}+s q_{2} \alpha_{1}-r q_{1} \alpha_{2}\right)\left(\alpha_{1}-\alpha_{2}\right)^{-1}\left(\alpha_{4}-\alpha_{1}\right) \\
\quad=r p_{1}+r q_{1} \alpha_{4}+s p_{2}+s q_{2} \alpha_{4} \\
u p_{2}+u q_{2} \alpha_{1}+\left(u p_{2}-t p_{1}+u q_{2} \alpha_{1}-t q_{1} \alpha_{2}\right)\left(\alpha_{1}-\alpha_{2}\right)^{-1}\left(\alpha_{3}-\alpha_{1}\right) \\
\quad=t p_{1}+t q_{1} \alpha_{3}+u p_{2}+u q_{2} \alpha_{3} \\
0=t p_{1}+t q_{1} \alpha_{4}+u p_{2}+u q_{2} \alpha_{4}
\end{array}\right.
$$

Multiplying the first and second (resp. third and fourth) equations on the left by s^{-1} (resp. u^{-1}) we can take $s^{-1} r$ to be "new s " (resp. $u^{-1} t$ to be "new t ") and hence we can assume that $s=u=1$. From the first and fourth equations we obtain $p_{2}=-\left(r p_{1}+r q_{1} \alpha_{3}+q_{2} \alpha_{3}\right)=-\left(t p_{1}+t q_{1} \alpha_{4}+q_{2} \alpha_{4}\right)$. So p_{2} can be eliminated:

$$
\left\{\begin{array}{l}
r p_{1}+r q_{1} \alpha_{3}+q_{2} \alpha_{3}=t p_{1}+t q_{1} \alpha_{4}+q_{2} \alpha_{4} \\
q_{2} \alpha_{1}+\left(-r p_{1}-r q_{1} \alpha_{3}-q_{2} \alpha_{3}-r p_{1}+q_{2} \alpha_{1}-r q_{1} \alpha_{2}\right)\left(\alpha_{1}-\alpha_{2}\right)^{-1}\left(\alpha_{4}-\alpha_{1}\right) \\
\quad=r p_{1}+r q_{1} \alpha_{4}+q_{2} \alpha_{4} \\
q_{2} \alpha_{1}+\left(-t p_{1}-t q_{1} \alpha_{4}-q_{2} \alpha_{4}-t p_{1}+q_{2} \alpha_{1}-t q_{1} \alpha_{2}\right)\left(\alpha_{1}-\alpha_{2}\right)^{-1}\left(\alpha_{3}-\alpha_{1}\right) \\
\quad=t p_{1}+t q_{1} \alpha_{3}+q_{2} \alpha_{3}
\end{array}\right.
$$

Define $A=\left(\alpha_{1}-\alpha_{2}\right)^{-1}\left(\alpha_{4}-\alpha_{1}\right)$ and $B=\left(\alpha_{1}-\alpha_{2}\right)^{-1}\left(\alpha_{3}-\alpha_{1}\right)$. Transforming the above equations we pass to

$$
\left\{\begin{array}{l}
r p_{1}+r q_{1} \alpha_{3}+q_{2} \alpha_{3}=t p_{1}+t q_{1} \alpha_{4}+q_{2} \alpha_{4}, \\
q_{2}\left(\alpha_{1}-\alpha_{3} A+\alpha_{1} A-\alpha_{4}\right)+r p_{1}(-2 A-1)+r q_{1}\left(-\alpha_{3} A-\alpha_{2} A-\alpha_{4}\right)=0, \\
q_{2}\left(\alpha_{1}-\alpha_{4} B+\alpha_{1} B-\alpha_{3}\right)+t p_{1}(-2 B-1)+t q_{1}\left(-\alpha_{4} B-\alpha_{2} B-\alpha_{3}\right)=0 .
\end{array}\right.
$$

From the first equation we get

$$
\begin{equation*}
q_{2}=\left(t p_{1}-r p_{1}+t q_{1} \alpha_{4}-r q_{1} \alpha_{3}\right)\left(\alpha_{3}-\alpha_{4}\right)^{-1} . \tag{6}
\end{equation*}
$$

Now q_{2} can be eliminated:

$$
\left\{\begin{array}{l}
\left(t p_{1}-r p_{1}+t q_{1} \alpha_{4}-r q_{1} \alpha_{3}\right)\left(\alpha_{3}-\alpha_{4}\right)^{-1}\left(\alpha_{1}-\alpha_{4}+\left(\alpha_{1}-\alpha_{3}\right) A\right) \\
\quad+r p_{1}(-2 A-1)+r q_{1}\left(-\left(\alpha_{2}+\alpha_{3}\right) A-\alpha_{4}\right)=0, \\
\left(t p_{1}-r p_{1}+t q_{1} \alpha_{4}-r q_{1} \alpha_{3}\right)\left(\alpha_{3}-\alpha_{4}\right)^{-1}\left(\alpha_{1}-\alpha_{3}+\left(\alpha_{1}-\alpha_{4}\right) B\right) \\
\quad+t p_{1}(-2 B-1)+t q_{1}\left(-\left(\alpha_{2}+\alpha_{4}\right) B-\alpha_{3}\right)=0 .
\end{array}\right.
$$

Define

$$
\begin{aligned}
& \bar{A}=\left(\alpha_{3}-\alpha_{4}\right)^{-1}\left(\alpha_{1}-\alpha_{4}+\left(\alpha_{1}-\alpha_{3}\right) A\right), \\
& \bar{B}=\left(\alpha_{3}-\alpha_{4}\right)^{-1}\left(\alpha_{1}-\alpha_{3}+\left(\alpha_{1}-\alpha_{4}\right) B\right) .
\end{aligned}
$$

After transformations we get

$$
\left\{\begin{array}{l}
t\left(p_{1}+q_{1} \alpha_{4}\right) \bar{A}=r\left[p_{1}(\bar{A}+2 A+1)+q_{1}\left(\alpha_{3} \bar{A}+\left(\alpha_{2}+\alpha_{3}\right) A+\alpha_{4}\right)\right], \tag{7}\\
t\left[p_{1}(\bar{B}-2 B-1)+q_{1}\left(\alpha_{4} \bar{B}-\left(\alpha_{2}+\alpha_{4}\right) B-\alpha_{3}\right)\right]=r\left(p_{1}+q_{1} \alpha_{3}\right) \bar{B} .
\end{array}\right.
$$

It is easy to see that $\bar{A}=0$ implies $\alpha_{2}=\alpha_{3}$, a contradiction. Hence $\bar{A} \neq 0$.
Since $t, r \neq 0$, the elements

$$
p_{1}+q_{1} \alpha_{4} \quad \text { and } \quad p_{1}(\bar{A}+2 A+1)+q_{1}\left(\alpha_{3} \bar{A}+\left(\alpha_{2}+\alpha_{3}\right) A+\alpha_{4}\right)
$$

are either both zero or both nonzero. If both are zero, then by eliminating p_{1} and $q_{1}\left(\left(p_{1}, q_{1}\right) \neq(0,0)\right)$ we conclude that $\alpha_{2}=\alpha_{4}$. This contradiction shows that the above two elements are nonzero. Similarly one can prove that both sides of the second equation of (7) are nonzero. Now r and t may be eliminated:

$$
\begin{align*}
& {\left[p_{1}(\bar{A}+2 A+1)+q_{1}\left(\alpha_{3} \bar{A}+\left(\alpha_{2}+\alpha_{3}\right) A+\alpha_{4}\right)\right] \bar{A}^{-1}\left(p_{1}+q_{1} \alpha_{4}\right)^{-1}} \tag{8}\\
& \quad=\left(p_{1}+q_{1} \alpha_{3}\right) \bar{B}\left[p_{1}(\bar{B}-2 B-1)+q_{1}\left(\alpha_{4} \bar{B}-\left(\alpha_{2}+\alpha_{4}\right) B-\alpha_{3}\right)\right]^{-1} .
\end{align*}
$$

Define $X=p_{1}+q_{1} \alpha_{4}$ and $Y=p_{1}+q_{1} \alpha_{3}$. Then $p_{1}=-X\left(\alpha_{4}-\alpha_{3}\right)^{-1} \alpha_{3}+$ $Y\left(\alpha_{4}-\alpha_{3}\right)^{-1} \alpha_{4}$ and $q_{1}=(X-Y)\left(\alpha_{4}-\alpha_{3}\right)^{-1}$. Put $\bar{X}=X\left(\alpha_{4}-\alpha_{3}\right)^{-1}$ and $\bar{Y}=Y\left(\alpha_{4}-\alpha_{3}\right)^{-1}$. Then $p_{1}=-\bar{X} \alpha_{3}+\bar{Y} \alpha_{4}$ and $q_{1}=\bar{X}-\bar{Y}$. Substituting this to (8) we get

$$
\begin{aligned}
& {\left[\left(-\bar{X} \alpha_{3}+\bar{Y} \alpha_{4}\right)(\bar{A}+2 A+1)\right.} \\
& \left.\quad+(\bar{X}-\bar{Y})\left(\alpha_{3} \bar{A}+\left(\alpha_{2}+\alpha_{3}\right) A+\alpha_{4}\right)\right] \bar{A}^{-1}\left(\alpha_{4}-\alpha_{3}\right)^{-1} \bar{X}^{-1} \\
& =\bar{Y}\left(\alpha_{4}-\alpha_{3}\right) \bar{B}\left[\left(-\bar{X} \alpha_{3}+\bar{Y} \alpha_{4}\right)(\bar{B}-2 B-1)\right. \\
& \left.\quad+(\bar{X}-\bar{Y})\left(\alpha_{4} \bar{B}-\left(\alpha_{2}+\alpha_{4}\right) B-\alpha_{3}\right)\right]^{-1} .
\end{aligned}
$$

By the definition of \bar{A} and \bar{B} we obtain

$$
\begin{align*}
& \left\{\bar{X}\left[\left(\alpha_{2}-\alpha_{3}\right) A+\left(\alpha_{4}-\alpha_{3}\right)\right]\right. \tag{9}\\
& \left.+\bar{Y}\left[\left(\alpha_{4}-\alpha_{1}\right)+\left(2 \alpha_{4}-\alpha_{1}-\alpha_{2}\right) A\right]\right\}\left[\left(\alpha_{4}-\alpha_{1}\right)+\left(\alpha_{3}-\alpha_{1}\right) A\right]^{-1} \bar{X}^{-1} \\
= & \bar{Y}\left[\left(\alpha_{3}-\alpha_{1}\right)+\left(\alpha_{4}-\alpha_{1}\right) B\right]\left\{\bar{X}\left[\left(\alpha_{3}-\alpha_{1}\right)+\left(2 \alpha_{3}-\alpha_{1}-\alpha_{2}\right) B\right]\right. \\
& \left.+\bar{Y}\left[\left(\alpha_{2}-\alpha_{4}\right) B+\left(\alpha_{3}-\alpha_{4}\right)\right]\right\}^{-1}
\end{align*}
$$

Define $\beta_{2}=\alpha_{1}-\alpha_{2}, \beta_{3}=\alpha_{1}-\alpha_{3}$ and $\beta_{4}=\alpha_{1}-\alpha_{4}$. Then $A=-\beta_{2}^{-1} \beta_{4}$ and $B=-\beta_{2}^{-1} \beta_{3}$. So $\alpha_{1}, \ldots, \alpha_{4}, A, B$ can be eliminated:

$$
\begin{align*}
& \left\{\bar{X}\left[\left(\beta_{3}-\beta_{2}\right)\left(-\beta_{2}^{-1} \beta_{4}\right)+\left(\beta_{3}-\beta_{4}\right)\right]\right. \tag{10}\\
& \left.\quad \quad+\bar{Y}\left[-\beta_{4}+\left(\beta_{2}-2 \beta_{4}\right)\left(-\beta_{2}^{-1} \beta_{4}\right)\right]\right\}\left[-\beta_{4}-\beta_{3}\left(-\beta_{2}^{-1} \beta_{4}\right)\right]^{-1} \bar{X}^{-1} \\
& \quad= \\
& \quad \bar{Y}\left[-\beta_{3}-\beta_{4}\left(-\beta_{2} \beta_{3}^{-1}\right)\right]\left\{\bar{X}\left[-\beta_{3}+\left(\beta_{2}-2 \beta_{3}\right)\left(-\beta_{2}^{-1} \beta_{3}\right)\right]\right. \\
& \left.\quad+\bar{Y}\left[\left(\beta_{4}-\beta_{2}\right)\left(-\beta_{2}^{-1} \beta_{3}\right)+\left(\beta_{4}-\beta_{3}\right)\right]\right\}^{-1}
\end{align*}
$$

Multiplying by \bar{Y}^{-1} on the left and by \bar{X} on the right and setting $T=\bar{X}^{-1} \bar{Y}$ we obtain $P Q^{-1}=R S^{-1}$, where

$$
\begin{aligned}
P & =T^{-1}\left(-\beta_{3} \beta_{2}^{-1} \beta_{4}+\beta_{3}\right)+\left(-2 \beta_{4}+2 \beta_{4} \beta_{2}^{-1} \beta_{4}\right) \\
Q & =-\beta_{4}+\beta_{3} \beta_{2}^{-1} \beta_{4}, \quad R=-\beta_{3}+\beta_{4} \beta_{2}^{-1} \beta_{3} \\
S & =\left(-2 \beta_{3}+2 \beta_{3} \beta_{2}^{-1} \beta_{3}\right)+T\left(-\beta_{4} \beta_{2}^{-1} \beta_{3}+\beta_{4}\right)
\end{aligned}
$$

Then clearly

$$
\left(\beta_{4}^{-1} P \beta_{4}^{-1}\right)\left(\beta_{3}^{-1} Q \beta_{4}^{-1}\right)^{-1}=\left(\beta_{4}^{-1} R \beta_{3}^{-1}\right)\left(\beta_{3}^{-1} S \beta_{3}^{-1}\right)^{-1}
$$

But

$$
\begin{aligned}
& \beta_{4}^{-1} P \beta_{4}^{-1}=\left(\beta_{4}^{-1} T^{-1} \beta_{3}-2\right)\left(\beta_{4}^{-1}-\beta_{2}^{-1}\right), \quad \beta_{3}^{-1} Q \beta_{4}^{-1}=-\beta_{3}^{-1}+\beta_{2}^{-1} \\
& \beta_{4}^{-1} R \beta_{3}^{-1}=-\beta_{4}^{-1}+\beta_{2}^{-1}, \quad \beta_{3}^{-1} S \beta_{3}^{-1}=\left(-2+\beta_{3}^{-1} T \beta_{4}\right)\left(\beta_{3}^{-1}-\beta_{2}^{-1}\right)
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \left(\beta_{4}^{-1} T^{-1} \beta_{3}-2\right)\left(\beta_{4}^{-1}-\beta_{2}^{-1}\right)\left(-\beta_{3}^{-1}+\beta_{2}^{-1}\right)^{-1} \\
& \quad=\left(-\beta_{4}^{-1}+\beta_{2}^{-1}\right)\left(\beta_{3}^{-1}-\beta_{2}^{-1}\right)^{-1}\left(\beta_{3}^{-1} T \beta_{4}-2\right)^{-1}
\end{aligned}
$$

Define $Z=\beta_{3}^{-1} T \beta_{4}$ and $w_{0}=\left(\beta_{4}^{-1}-\beta_{2}^{-1}\right)\left(\beta_{2}^{-1}-\beta_{3}^{-1}\right)^{-1}$. Then we get the equation

$$
\begin{equation*}
\left(z^{-1}-2\right) w_{0}=w_{0}(z-2)^{-1} \tag{11}
\end{equation*}
$$

This implies $(1-2 z) w_{0}(z-2)=z w_{0}$. After substituting $z=t+1$ we get $2 t w_{0} t-t w_{0}+w_{0} t=0$. Hence

$$
\begin{equation*}
(2 t) w_{0}(2 t)-(2 t) w_{0}+w_{0}(2 t)=0 \tag{12}
\end{equation*}
$$

Next we check that $t \neq 0$. If $t=0$, then $z=1$ and $T=\beta_{3} \beta_{4}^{-1}$. Hence $\bar{X}^{-1} \bar{Y}=\beta_{3} \beta_{4}^{-1}$. This implies

$$
\left(\alpha_{4}-\alpha_{3}\right) X^{-1} Y\left(\alpha_{4}-\alpha_{3}\right)^{-1}=\left(\alpha_{1}-\alpha_{3}\right)\left(\alpha_{1}-\alpha_{4}\right)^{-1}
$$

Therefore $X^{-1} Y=1+\left(\alpha_{1}-\alpha_{4}\right)^{-1}\left(\alpha_{4}-\alpha_{3}\right)$. Since $X=p_{1}+q_{1} \alpha_{4}$ and $Y=p_{1}+q_{1} \alpha_{3}$,

$$
\left(p_{1}+q_{1} \alpha_{4}\right)\left[1+\left(\alpha_{1}-\alpha_{4}\right)^{-1}\left(\alpha_{4}-\alpha_{3}\right)\right]=p_{1}+q_{1} \alpha_{3}
$$

This is equivalent to $p_{1}+q_{1} \alpha_{1}=0$. In this case $0 \neq p_{1}\left(v_{1}+\ldots+v_{4}\right)+$ $q_{1}\left(\alpha_{1} v_{1}+\ldots+\alpha_{4} v_{4}\right)=p_{1}\left(v_{2}+v_{3}+v_{4}\right)+q_{1}\left(\alpha_{2} v_{2}+\alpha_{3} v_{3}+\alpha_{4} v_{4}\right) \in V \cap W$. By Lemma $7, V=W$, a contradiction. Hence $2 t \neq 0$.

Multiplying (12) by $\left(2 t w_{0}\right)^{-1}$ on the left and by $(2 t)^{-1}$ on the right we get $1-(2 t)^{-1}+w_{0}^{-1}(2 t)^{-1} w_{0}=0$. Substituting $x=w_{0}$ and $y=w_{0}^{-1}(2 t)^{-1}$ we have $1=x y-y x$. Hence the division ring generated by x and y over K is isomorphic to $A_{1} A_{1}^{-1}$.

Now assume that D contains two elements x, y such that $x y-y x=1$. Following the argument of the "if" part in reverse order one can construct the desired solution of (4). Namely, define $w_{0}=x, t=\frac{1}{2} y^{-1} x^{-1}$ and $z=$ $t+1$. Then (11) is satisfied. Elements $\beta_{2}, \beta_{3}, \beta_{4} \in D \backslash\{0\}$ such that $w_{0}=$ $\left(\beta_{4}^{-1}-\beta_{2}^{-1}\right)\left(\beta_{2}^{-1}-\beta_{3}^{-1}\right)^{-1}$ are easy to find. Define $T=\beta_{3} Z \beta_{4}^{-1}$. Choose $\bar{X}, \bar{Y} \in D$ satisfying $T=\bar{X}^{-1} \bar{Y}$. Then (10) is true.

Define $A=-\beta_{2}^{-1} \beta_{4}$ and $B=-\beta_{2}^{-1} \beta_{3}$. Choose $\alpha_{1}, \ldots, \alpha_{4} \in D$ such that $\beta_{i}=\alpha_{1}-\alpha_{i}$ for $i=2,3,4$. Then (9) holds.

Define also $\bar{A}=\left(\alpha_{3}-\alpha_{4}\right)^{-1}\left(\alpha_{1}-\alpha_{4}+\left(\alpha_{1}-\alpha_{3}\right) A\right), \bar{B}=\left(\alpha_{3}-\alpha_{4}\right)^{-1}\left(\alpha_{1}-\right.$ $\left.\alpha_{3}+\left(\alpha_{1}-\alpha_{4}\right) B\right), X=\bar{X}\left(\alpha_{4}-\alpha_{3}\right), Y=\bar{Y}\left(\alpha_{4}-\alpha_{3}\right), p_{1}=-\bar{X} \alpha_{3}+\bar{Y} \alpha_{4}$ and $q_{1}=\bar{X}-\bar{Y}$. Then (8) is satisfied.

Now we can find $t, r \in D \backslash\{0\}$ satisfying (7). Next q_{2} can be calculated from (6). Define $p_{2}=-\left(r p_{1}+r q_{1} \alpha_{3}+q_{2} \alpha_{3}\right)$. Put $s=u=1$. Then q_{3} and q_{4} are given by (5). Finally, define $p_{3}=s p_{2}+s q_{2} \alpha_{1}-q_{3} \alpha_{1}$ and $p_{4}=$ $u p_{2}+u q_{2} \alpha_{1}-q_{4} \alpha_{1}$. In this way a solution of (4) is obtained.

Now we have to check that our solution corresponds to $V \neq W$ (the remaining conditions are easy to verify). Suppose that $V=W$. Then

$$
w_{1}=p_{1} \sum_{j \neq 1} v_{j}+q_{1} \sum_{j \neq 1} \alpha_{j} v_{j} \in \pi_{1}(V) \cap V
$$

Hence we can find $g, h \in D$ such that

$$
w_{1}=g \sum_{j} v_{j}+h \sum_{j} \alpha_{j} v_{j}
$$

Comparing both expressions one can prove that $g=p_{1}$ and $h=q_{1}$. Hence $p_{1}+q_{1} \alpha_{1}=0$. Repeating the arguments given at the end of the proof of the "if" part in reverse order, we can prove that $t=0$. This contradicts the choice of $t\left(=\frac{1}{2} y^{-1} x^{-1}\right)$.
3. The identity as a sum of three nilpotents. Bokut' proved that each algebra can be embedded into a simple algebra which is a sum of three nilpotent algebras of degree 3 (see [2]). We show that the identity element of $M_{3}(D)$ can be represented as a sum of three nilpotent elements for certain D. The proof will be preceded by auxiliary lemmas. However, we start with a negative result concerning such representations.

Proposition 9. The equality $1=x+y+z$ where $x^{2}=y^{3}=z^{5}=0$ does not hold for any K-algebra A with unit and $x, y, z \in A$.

Proof. Consider the algebra $A=K\left\langle x, y, z: 1=x+y+z, x^{2}=y^{3}=\right.$ $\left.z^{5}=0\right\rangle$. Eliminating z we get $A=K\left\langle x, y: x^{2}=y^{3}=(1-x-y)^{5}=0\right\rangle$. Since $x^{2}=0, y^{3}=0$, from $x(1-x-y)^{5} x=0$ and $x(1-x-y)^{5} y=0$ it follows that

$$
\begin{align*}
& x y^{2} x y^{2} x=-x y x y x y x+\ldots \tag{13}\\
& x y^{2} x y x y=-x y x y^{2} x y-x y x y x y^{2}+\ldots \tag{14}
\end{align*}
$$

where monomials of degrees ≤ 6 are not specified. Set $B=\left\{1, y, y^{2}\right\}$ and $E=\left\{1, x, x y^{2}, x y^{2} x, x y^{2} x y, x y^{2} x y^{2}, x y^{2} x y x\right\}$. Define also

$$
\begin{aligned}
V_{m}= & \operatorname{Lin}_{K}\{\text { monomials of degree } \leq m\} \\
Z_{m}= & \operatorname{Lin}_{K}\left\{b(x y)^{n} e^{\prime}: b \in B, e^{\prime} \in E, n \in \mathbb{N} \cup\{0\}\right. \\
& \left.\quad \text { and } b(x y)^{n} e^{\prime} \text { is of degree } \leq m\right\}
\end{aligned}
$$

Every nonzero monomial which cannot be written as in the definition of Z_{m} must be either (i) $b(x y)^{n} x y^{2} x y^{2} x a$ or (ii) $b(x y)^{n} x y^{2} x y x y a$ for some $b \in B$, $n \geq 0$, and for a monomial a (maybe empty). In the first case, applying (13) we get

$$
b(x y)^{n} x y^{2} x y^{2} x a=-b(x y)^{n} x y x y x y x a+\ldots=-b(x y)^{n+3} x a+\ldots
$$

In the second case applying (14) we get

$$
\begin{aligned}
b(x y)^{n} x y^{2} x y x y a & =-b(x y)^{n} x y x y^{2} x y a-b(x y)^{n} x y x y x y^{2} a+\ldots \\
& =-b(x y)^{n+1} x y^{2} x y a-b(x y)^{n+2} x y^{2} a+\ldots
\end{aligned}
$$

(monomials of smaller degrees are not specified). Repeating the above arguments for monomials of degree m we increase n. This allows us to prove that $V_{m} \subseteq Z_{m}+V_{m-1}$. Then

$$
V_{m} \subseteq Z_{m}+V_{m-1} \subseteq Z_{m}+\left(Z_{m-1}+V_{m-1}\right) \subseteq \ldots \subseteq Z_{m}+\ldots+Z_{1}=Z_{m}
$$

Hence $V_{m} \subseteq Z_{m}$. By the definition of Z_{m} we see that $\operatorname{GKdim}(A) \leq 1$. By [12] we know that A is PI. Hence $A / J(A)$ is a subdirect product of $M_{n_{i}}\left(D_{i}\right)$, $i \in I$, where D_{i} are finite-dimensional division algebras over their centers $Z\left(D_{i}\right)$ (see [5]). Now using the $Z\left(D_{i}\right)$-linear trace function on $M_{n_{i}}\left(D_{i}\right)$ we can prove that $A=\mathcal{J}(A)$, but $1 \in A$, a contradiction.

A similar method can be used to prove that if $e=e^{2}=x+y$ and $x^{3}=y^{5}=0$ then $e=0$. This yields a simpler proof than that given in [4]. It is easy to see that $1=x+y+z$ and $x^{2}=y^{2}=z^{n}=0, n \in \mathbb{N}$, leads to a contradiction. The next cases to be considered are those where $x^{2}=y^{4}=z^{4}=0$ or $x^{2}=y^{3}=z^{6}=0$. We conjecture that examples of algebras of these types exist.

Lemma 10. Assume that

$$
g\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right) g^{-1}=\left(a_{i, j}\right)
$$

for some $g \in M_{3}(D)$ and $a_{i, j} \in D$ such that $a_{i, i}=0$. Then $a_{i, j} \neq 0$ for all $i \neq j$.

Proof. Suppose that $a_{i, j}=0$ for some $i \neq j$. Conjugating by a permutation matrix we can assume that $a_{2,1}=0$. Then

$$
I=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
a_{3,1} & a_{3,2} & 0
\end{array}\right)+\left(\begin{array}{ccc}
0 & a_{1,2} & a_{1,3} \\
0 & 0 & a_{2,3} \\
0 & 0 & 0
\end{array}\right)-g\left(\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right) g^{-1} .
$$

This contradicts Proposition 9.
Lemma 11. Under the assumptions of Lemma 10, we can find (i, j, k) such that $\{1,2,3\}=\{i, j, k\}, a_{k, j} a_{j, k} \neq 1$ and $a_{i, j} a_{j, k}+a_{i, k} \neq 0$.

Proof. First assume that $a_{k, j} a_{j, k} \neq 1$ for some $k \neq j$. Then we can assume that $a_{i, j} a_{j, k}+a_{i, k}=0$ for i such that $\{1,2,3\}=\{i, j, k\}$. In this case $a_{j, k} a_{k, j} \neq 1$ and $a_{i, k} a_{k, j}+a_{i, j}=\left(-a_{i, j} a_{j, k}\right) a_{k, j}+a_{i, j}=a_{i, j}\left(1-a_{j, k} a_{k, j}\right) \neq 0$ by Lemma 10. Hence the triple (i, k, j) satisfies the claim.

Now, suppose that $a_{i, j} a_{j, i}=1$ for every $i \neq j$. Let

$$
h=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & a_{1,2} & 0 \\
0 & 0 & a_{1,2} a_{2,3}
\end{array}\right)
$$

Then

$$
(h g)\left(\begin{array}{ccc}
1 & 1 & 0 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right)(h g)^{-1}=h\left(a_{i, j}\right) h^{-1}=\left(\begin{array}{ccc}
0 & 1 & \lambda \\
1 & 0 & 1 \\
\lambda^{-1} & 1 & 0
\end{array}\right)
$$

where $\lambda=a_{1,3} a_{2,3}^{-1} a_{1,2}^{-1} \neq 0$. Let

$$
\left(\begin{array}{l}
p \\
q \\
r
\end{array}\right)=h g\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right) \neq 0
$$

Then

$$
\left(\begin{array}{ccc}
0 & 1 & \lambda \\
1 & 0 & 1 \\
\lambda^{-1} & 1 & 0
\end{array}\right)\left(\begin{array}{c}
p \\
q \\
r
\end{array}\right)=\left(\begin{array}{c}
p \\
q \\
r
\end{array}\right)
$$

This immediately implies that $\lambda=-1$. Then

$$
2=\operatorname{rank}\left[(h g)\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right)(h g)^{-1}-I\right]=\operatorname{rank}\left(\begin{array}{rrr}
-1 & 1 & -1 \\
1 & -1 & 1 \\
-1 & 1 & -1
\end{array}\right)=1,
$$

a contradiction.
Theorem 12. Let D be a division ring of characteristic zero. Then $M_{3}(D)$ contains elements x, y, z such that $I=x+y+z$ and $x^{3}=y^{3}=z^{3}=0$ if and only if D contains a copy of $A_{1} A_{1}^{-1}$.

Proof. (\Rightarrow) By Proposition 9, x is nilpotent of index 3. So x is equal to $\left(\begin{array}{rrr}0 & -1 & 0 \\ 0 & 0 & -1 \\ 0 & 0 & 0\end{array}\right)$ in a certain basis. By Lemma $2, y+z$ has zero diagonal in some basis. Since $I-x=y+z$, we can find an invertible $g \in M_{3}(D)$ such that

$$
g\left(\begin{array}{ccc}
1 & 1 & 0 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right) g^{-1}=\left(\begin{array}{ccc}
0 & p & q \\
s & 0 & r \\
t & u & 0
\end{array}\right)
$$

for some $p, q, r, s, t, u \in D$. By Lemma 10, $p, q, r, s, t, u \neq 0$. By Lemma 11, changing the order of v_{1}, v_{2}, v_{3} if necessary, we can assume that $s p \neq 1$ and $t p+u \neq 0$. Denoting

$$
g=\left(\begin{array}{ccc}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right), \quad a, b, \ldots \in D
$$

we have

$$
\left(\begin{array}{lll}
a & b & c \tag{15}\\
d & e & f \\
g & h & i
\end{array}\right)\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right)=\left(\begin{array}{lll}
0 & p & q \\
s & 0 & r \\
t & u & 0
\end{array}\right)\left(\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right)
$$

Comparing the first columns on both sides of (15) we get

$$
\left\{\begin{array}{l}
a=p d+q g \\
d=s a+r g \\
g=t a+u d
\end{array}\right.
$$

Eliminating $a=p d+q g$ we get

$$
\left\{\begin{array}{l}
(1-s p) d=(s q+r) g \\
(1-t q) g=(t p+u) d
\end{array}\right.
$$

If $g=0$ then $d=0$ and $a=0$. This implies that g is not invertible, a contradiction. Hence $g \neq 0$ and $(1-s p)^{-1}(s q+r)=(t p+u)^{-1}(1-t q)$. Any
solution of our system of equations with respect to a, d, g looks like

$$
\left\{\begin{array}{l}
g=g, \\
d=(1-s p)^{-1}(s q+r) g, \\
a=p(1-s p)^{-1}(s q+r) g+q g .
\end{array}\right.
$$

Define $X=1-t q, Y=1-s p, P=s q+r$ and $Q=t p+u$. Since we have $(t q)(s q)^{-1}(s p)(t p)^{-1}=1$ it follows that

$$
\begin{equation*}
(1-X)(P-r)^{-1}(1-Y)(Q-u)^{-1}=1 . \tag{16}
\end{equation*}
$$

The previous equations can be written in the form

$$
Y^{-1} P=Q^{-1} X \quad \text { and } \quad\left\{\begin{array}{l}
g=g, \tag{17}\\
d=Y^{-1} P g, \\
a=\left(p Y^{-1} P+q\right) g .
\end{array}\right.
$$

Next we consider further equations derived from (15) (second columns):

$$
\left\{\begin{array}{l}
a+b=p e+q h, \\
d+e=s b+r h, \\
g+h=t b+u e
\end{array}\right.
$$

By eliminating $b=p e+q h-a$ we obtain

$$
\left\{\begin{array}{l}
d+s a=(s p-1) e+(s q+r) h, \\
g+t a=(t p+u) e+(t q-1) h .
\end{array}\right.
$$

After eliminating e, h vanishes and we get

$$
(s p-1)^{-1}(d+s a)=(t p+u)^{-1}(g+t a) .
$$

By (17) we have

$$
\begin{aligned}
d+s a & =\left(Y^{-1} P+s p Y^{-1} P+s q\right) g \\
& =\left(Y^{-1} P+(1-Y) Y^{-1} P+(P-r)\right) g=\left(2 Y^{-1} P-r\right) g
\end{aligned}
$$

and
$g+t a=\left(1+t p Y^{-1} P+t q\right) g=\left(1+(Q-u) Y^{-1} P+1-X\right) g=\left(2-u Y^{-1} P\right) g$.
Therefore

$$
\begin{equation*}
-Y^{-1}\left(2 Y^{-1} P-r\right)=Q^{-1}\left(2-u Y^{-1} P\right) \tag{18}
\end{equation*}
$$

Any solution of the last system of equations with respect to b, e, h has the form

$$
\left\{\begin{align*}
h & =h, \tag{19}\\
e & =-Y^{-1}\left(\left(2 Y^{-1} P-r\right) g-P h\right), \\
b & =-p Y^{-1}\left(\left(2 Y^{-1} P-r\right) g-P h\right)+q h-\left(p Y^{-1} P+q\right) g \\
& =-p Y^{-1}\left(\left(2 Y^{-1} P-r+P\right) g-P h\right)+q(h-g) .
\end{align*}\right.
$$

Now, consider the remaining equations coming from (15) (third columns):

$$
\left\{\begin{array}{l}
b+c=p f+q i, \\
e+f=s c+r i, \\
h+i=t c+u f
\end{array}\right.
$$

By eliminating $c=p f+q i-b$ we obtain

$$
\left\{\begin{array}{l}
e+s b=(s p-1) f+(s q+r) i \\
h+t b=(t p+u) f+(t q-1) i
\end{array}\right.
$$

After eliminating f, i vanishes and we get

$$
(s p-1)^{-1}(e+s b)=(t p+u)^{-1}(h+t b)
$$

By (19) we have

$$
\begin{aligned}
e+s b= & -Y^{-1}\left(\left(2 Y^{-1} P-r\right) g-P h\right) \\
& +(-s p) Y^{-1}\left(\left(2 Y^{-1} P-r+P\right) g-P h\right)+s q(h-g) \\
= & -Y^{-1}\left(\left(2 Y^{-1} P-r\right) g-P h\right) \\
& +(Y-1) Y^{-1}\left(\left(2 Y^{-1} P-r+P\right) g-P h\right)+(P-r)(h-g) \\
= & Y^{-1}\left(-2\left(2 Y^{-1} P-r\right)+P\right) g+\left(2 Y^{-1} P-r\right) h
\end{aligned}
$$

and

$$
\begin{aligned}
h+t b= & h+(-t p) Y^{-1}\left(\left(2 Y^{-1} P-r+P\right) g-P h\right)+t q(h-g) \\
= & h+(u-Q) Y^{-1}\left(\left(2 Y^{-1} P-r+P\right) g-P h\right)+(1-x)(h-g) \\
= & \left((u-Q) Y^{-1}\left(2 Y^{-1} P-r\right)+u Y^{-1} P-Q Y^{-1} P-1+X\right) g \\
& +\left(2-(u-Q) Y^{-1} P-X\right) h \\
= & \left((u-Q) Y^{-1}\left(2 Y^{-1} P-r\right)+\left(-2+u Y^{-1} P\right)+1\right) g \\
& +\left(2-(u-Q) Y^{-1} P-X\right) h \quad \text { by }(17) \\
= & \left((u-Q) Y^{-1}\left(2 Y^{-1} P-r\right)+Q Y^{-1}\left(2 Y^{-1} P-r\right)+1\right) g \\
& +\left(2-(u-Q) Y^{-1} P-X\right) h \quad \text { by }(18) \\
= & \left(u Y^{-1}\left(2 Y^{-1} P-r\right)+1\right) g+\left(2-(u-Q) Y^{-1} P-X\right) h .
\end{aligned}
$$

Hence

$$
\begin{aligned}
& -Y^{-1}\left[Y^{-1}\left(-2\left(2 Y^{-1} P-r\right)+P\right) g+\left(2 Y^{-1} P-r\right) h\right] \\
& \quad=Q^{-1}\left[u Y^{-1}\left(2 Y^{-1} P-r+1\right) g+\left(2-(u-Q) Y^{-1} P-X\right) h\right]
\end{aligned}
$$

By (17) and (18) we have $-Y^{-1}\left(2 Y^{-1} P-r\right) h=Q^{-1}\left(2-(u-Q) Y^{-1} P-X\right) h$.
Hence $-Y^{-2}\left(-2\left(2 Y^{-1} P-r\right)+P\right)=Q^{-1}\left(u Y^{-1}\left(2 Y^{-1} P-r\right)+1\right)$. This implies

$$
\begin{equation*}
\left(2-Y Q^{-1} u\right) Y^{-1}\left(2 Y^{-1} P-r\right)=Y^{-1} P+Y Q^{-1} \tag{20}
\end{equation*}
$$

Set $\bar{P}=Y^{-1} P$ and $\bar{Q}=Y Q^{-1}$. Then (17) becomes $X=\bar{Q}^{-1} Y \bar{P}$, and (16), (18) and (20) can be rewritten as

$$
\left\{\begin{array}{l}
\left(1-\bar{Q}^{-1} Y \bar{P}\right)(Y \bar{P}-r)^{-1}(1-Y)\left(\bar{Q}^{-1} Y-u\right)^{-1}=1, \\
-(2 \bar{P}-r)=\bar{Q}(2-u \bar{P}), \\
(2-\bar{Q} u) Y^{-1}(2 \bar{P}-r)=\bar{P}+\bar{Q} .
\end{array}\right.
$$

Next we will prove that $\bar{P} \neq 0$. If $\bar{P}=0$ then

$$
\left\{\begin{array}{l}
(-r)^{-1}(1-Y)\left(\bar{Q}^{-1} Y-u\right)^{-1}=1, \\
r=2 \bar{Q}, \\
(2-\bar{Q} u) Y^{-1}(-r)=\bar{Q}
\end{array}\right.
$$

Eliminating r we get

$$
\left\{\begin{array}{l}
Y-1=2 \bar{Q}\left(\bar{Q}^{-1} Y-u\right), \\
(2-\bar{Q} u) Y^{-1}(-2 \bar{Q})=\bar{Q}
\end{array}\right.
$$

Hence $3=0$, a contradiction.
Our system of equations is equivalent to

$$
\left\{\begin{array}{l}
\left(\bar{Q} \bar{P}^{-1}-Y\right)\left(Y-r \bar{P}^{-1}\right)(1-Y)(Y-\bar{Q} u)^{-1}=1 \\
r \bar{P}^{-1}-2=2 \bar{Q} \bar{P}^{-1}-\bar{Q} u \\
(2-\bar{Q} u) Y^{-1}\left(2-r \bar{P}^{-1}\right)=1+\bar{Q} \bar{P}^{-1}
\end{array}\right.
$$

Define $A=\bar{Q} \bar{P}^{-1}, B=r \bar{P}^{-1}$ and $C=\bar{Q} u$. Then

$$
\left\{\begin{array}{l}
(A-Y)(Y-B)^{-1}(1-Y)(Y-C)^{-1}=1 \\
-2+B=2 A-C \\
(2-C) Y^{-1}(2-B)=1+A
\end{array}\right.
$$

Substituting $A=\frac{1}{2} B+\frac{1}{2} C-1$ we obtain

$$
\left\{\begin{array}{l}
Y-\frac{1}{2} B-\frac{1}{2} C+1=(Y-C)(Y-1)^{-1}(Y-B) \\
(2-C) Y^{-1}(2-B)=\frac{1}{2} B+\frac{1}{2} C
\end{array}\right.
$$

If $B+C=0$ then $B=2$ or $C=2$. Let for example $B=2$. Then $C=-2$.
Hence $(Y+1)=(Y-2)(Y-1)^{-1}(Y-2)$. This is equivalent to $0=3$, a contradiction. Hence $B+C \neq 0$. Set $S=(B+C)^{-1}, T=B(B+C)^{-1}$, $\left(1-T=C(B+C)^{-1}\right)$ and $\bar{Y}=Y(B+C)^{-1}$. Then

$$
\left\{\begin{array}{l}
\bar{Y}+S-\frac{1}{2}=(\bar{Y}-(1-T))(\bar{Y}-S)^{-1}(\bar{Y}-T) \\
(2 S-(1-T)) \bar{Y}^{-1}(2 S-T)=\frac{1}{2}
\end{array}\right.
$$

Hence

$$
\left\{\begin{array}{l}
\left(\bar{Y}+S-\frac{1}{2}\right)(\bar{Y}-T)^{-1}=(\bar{Y}+T-1)(\bar{Y}-S)^{-1} \\
\bar{Y}=\frac{1}{2}(2 S-T)(2 S+T-1)
\end{array}\right.
$$

The first equation will be transformed equivalently:

$$
\begin{aligned}
\left((\bar{Y}-T)+\left(T+S-\frac{1}{2}\right)\right)(\bar{Y}-T)^{-1} & =((\bar{Y}-S)+(T+S-1))(\bar{Y}-S)^{-1} \\
\left(T+S-\frac{1}{2}\right)(\bar{Y}-T)^{-1} & =(T+S-1)(\bar{Y}-S)^{-1} \\
(\bar{Y}-T)\left(T+S-\frac{1}{2}\right)^{-1} & =(\bar{Y}-S)(T+S-1)^{-1} \\
\bar{Y}\left(\left(T+S-\frac{1}{2}\right)^{-1}-(T+S-1)^{-1}\right) & =T\left(T+S-\frac{1}{2}\right)^{-1}-S(T+S-1)^{-1} \\
\bar{Y}\left(\left(T+S-\frac{1}{2}\right)^{-1}(T+S-1)-1\right) & =T\left(T+S-\frac{1}{2}\right)^{-1}(T+S-1)-S \\
\bar{Y}\left[\left(T+S-\frac{1}{2}\right)^{-1}\left(\left(T+S-\frac{1}{2}\right)-\frac{1}{2}\right)-1\right] & =T\left(T+S-\frac{1}{2}\right)^{-1}\left(\left(T+S-\frac{1}{2}\right)-\frac{1}{2}\right)-S
\end{aligned}
$$

$$
\begin{gathered}
\bar{Y}\left(-\frac{1}{2}\right)\left(T+S-\frac{1}{2}\right)^{-1}=T\left(1-\frac{1}{2}\left(T+S-\frac{1}{2}\right)^{-1}\right)-S, \\
\left(-\frac{1}{2} \bar{Y}+\frac{1}{2} T\right)\left(T+S-\frac{1}{2}\right)^{-1}=T-S .
\end{gathered}
$$

Substituting $\bar{Y}=\frac{1}{2}(2 S-T)(2 S+T-1)$ we have

$$
\begin{gathered}
-\frac{1}{4}(2 S-T)(2 S+T-1)+\frac{1}{2} T=(T-S)\left(T+S-\frac{1}{2}\right), \\
-\frac{3}{4} T^{2}+\frac{1}{2} S T-\frac{1}{2} T S+\frac{3}{4} T=0, \\
-\frac{3}{4} T+\frac{1}{2}\left(S T^{-1}\right) T-\frac{1}{2} T\left(S T^{-1}\right)+\frac{3}{4}=0, \\
\left(\frac{2}{3} S T^{-1}\right)(T-1)-(T-1)\left(\frac{2}{3} S T^{-1}\right)=T-1 .
\end{gathered}
$$

If $T=1$ then $0=C=\bar{Q} u=Y Q^{-1} u$, a contradiction. Hence $T-1 \neq 0$ and we have

$$
\left[\left(\frac{2}{3} S T^{-1}\right)(T-1)^{-1}\right](T-1)-(T-1)\left[\left(\frac{2}{3} S T^{-1}\right)(T-1)^{-1}\right]=1
$$

Define $M=\left(\frac{2}{3} S T^{-1}\right)(T-1)^{-1}$ and $N=T-1$. Then $M N-N M=1$. Hence D contains a copy of $A_{1} A_{1}^{-1}$.
(\Leftarrow) Let $M, N \in D$ be such that $M N-N M=1$. We will find a solution of the system of equations arising from (15). This may be done by following the argument of the proof of (\Rightarrow) in reverse order. If $M=\frac{2}{3} S T^{-1}(T-1)^{-1}$ and $N=T-1$ then $T=N+1$ and $S=\frac{3}{2} M N(N+1)$. Hence $\bar{Y}=$ $\frac{1}{2}(2 S-T)(2 S+T-1)$. Now we get $B=T S^{-1}, C=(1-T) S^{-1}$ and $A=\frac{1}{2} B+\frac{1}{2} C-1$. Put $\bar{P}=1$. Then $\bar{Q}=A, r=B, u=A^{-1} C$. Moreover, $P=Y \bar{P}, Q=\bar{Q}^{-1} Y$ and $X=\bar{Q}^{-1} Y \bar{P}$. We have defined X, Y, P, Q, r, u such that (16), (18) and (20) are satisfied.

Next we use (16) to define p, q, s, t. Put $p=1$. Then $s=1-Y, q=$ $s^{-1}(P-r)$ and $t=Q-u$. Now, the proof of (\Rightarrow) yields a solution of the system of equations arising from (15), with p, q, r, s, t, u given. For example let $g=1, d=Y^{-1} P g$ and $a=\left(p Y^{-1} P+q\right) g$. From (19) we can read h, e, b (h can be chosen arbitrary), and so forth.

Now we have to prove that the solution just constructed leads to an invertible matrix g. Let

$$
W=\left\{\left(\begin{array}{l}
p \\
q \\
r
\end{array}\right): p, q, r \in D, g\left(\begin{array}{l}
p \\
q \\
r
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)\right\} .
$$

Then by (15), $\left(\begin{array}{lll}1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1\end{array}\right) W \subseteq W$. Hence if $W \neq 0$ then $\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right) \in W$ and the first column of g is zero, a contradiction. Therefore $W=0$ and g is invertible. Hence

$$
I=g\left(\begin{array}{rrr}
0 & -1 & 0 \\
0 & 0 & -1 \\
0 & 0 & 0
\end{array}\right) g^{-1}+\left(\begin{array}{lll}
0 & 0 & 0 \\
s & 0 & 0 \\
t & u & 0
\end{array}\right)+\left(\begin{array}{lll}
0 & p & q \\
0 & 0 & r \\
0 & 0 & 0
\end{array}\right)
$$

is the desired decomposition.

It is easy to see that the assertions of Theorems 8 and 12 remain true, with the same proofs, if D is any division ring of characteristic $\neq 2,3$.

Now we can give an example of an idempotent e such that $e=x+y$ and $x^{3}=y^{6}=0$. The assertion of Theorem 12 will be used in the construction.

Example 13. Let T, T^{1} be the free semigroup, respectively monoid, generated by $1,1^{\prime}, 2,2^{\prime}, 3,3^{\prime}$. Put $X=\{1,2,3\}, X^{\prime}=\left\{1,1^{\prime}, 2,2^{\prime}, 3,3^{\prime}\right\}$ and define an order $<$ on X^{\prime} by $1<1^{\prime}<2<2^{\prime}<3<3^{\prime}$. In a vector space over K consider the following system of equations in unknowns v_{r} for $r \in T$:

$$
\begin{cases}\sum_{i \in X^{\prime}} v_{r_{1} i r_{2}}=v_{r_{1} r_{2}} & \text { where } r_{1}, r_{2} \in T \tag{21}\\ v_{r_{1} i i r_{2}}=0 & \text { where } r_{1}, r_{2} \in T^{1}, i \in X^{\prime} \\ v_{r_{1} i i^{\prime} r_{2}}=0 & \text { where } r_{1}, r_{2} \in T^{1}, i \in X\end{cases}
$$

We will find a solution of (21) which satisfies the condition

$$
\begin{equation*}
\sum_{i \in X^{\prime}} v_{1 i} \neq 0 \tag{22}
\end{equation*}
$$

Assume that D is a division ring such that $A_{1} A_{1}^{-1} \subseteq D$. From Theorem 12 we know that there exist $b_{1}, b_{2}, b_{3} \in M_{3}(D)$ such that $I=b_{1}+b_{2}+b_{3}$ and $b_{1}^{3}=b_{2}^{3}=b_{3}^{3}=0$. Each b_{i} can be written as

$$
\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right)=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right)+\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

in some basis of D^{3}. Hence we can find $a_{i}, a_{i^{\prime}} \in M_{3}(D)$ such that $b_{i}=$ $a_{i}+a_{i^{\prime}}$ and $a_{i}^{2}=a_{i} a_{i^{\prime}}=a_{i^{\prime}}^{2}=0$. Let $v \in D^{3} \backslash\{0\}$ be such that $a_{1} v \neq 0$. Define $v_{i_{k} \ldots i_{1}}=a_{i_{k}} \ldots a_{i_{1}} v$ for $i_{1}, \ldots, i_{k} \in X^{\prime}$. If $r_{1}=i_{j} i_{j-1} \ldots i_{k+1}$ and $r_{2}=i_{k} i_{k-1} \ldots i_{1}$ for $i_{1}, \ldots, i_{j} \in X^{\prime}$, then

$$
\begin{aligned}
\sum_{i \in X^{\prime}} v_{r_{1} i r_{2}} & =\sum_{i \in X^{\prime}} a_{i_{j}} \ldots a_{i_{k+1}} a_{i} a_{i_{k}} \ldots a_{i_{1}} v=a_{i_{j}} \ldots a_{i_{k+1}}\left(\sum_{i \in X^{\prime}} a_{i}\right) a_{i_{k}} \ldots a_{i_{1}} v \\
& =a_{i_{j}} \ldots a_{i_{k+1}} a_{i_{k}} \ldots a_{i_{1}} v=v_{r_{1} r_{2}} \\
v_{r_{1} i i r_{2}} & =a_{i_{j}} \ldots a_{i_{k+1}} a_{i} a_{i} a_{i_{k}} \ldots a_{i_{1}} v=0, \\
v_{r_{1} i i^{\prime} r_{2}} & =0 \quad \text { similarly }
\end{aligned}
$$

Hence (21) is satisfied. Since $\sum_{i \in X^{\prime}} v_{1 i}=\sum_{i \in X^{\prime}} a_{1} a_{i} v=a_{1} v \neq 0,(22)$ holds. Let \bar{V} be a linear space (over K) spanned by the vectors $v_{r}(r \in T)$, subject to the relations given in (21). Define $e, x, y \in \operatorname{End}_{K}(\bar{V})$ by

$$
x\left(v_{r i}\right)=\sum_{j \in X^{\prime}: j>i} v_{r i j}, \quad y\left(v_{r i}\right)=\sum_{j \in X^{\prime}: j<i} v_{r i j} \quad \text { for } r \in T^{1}, \quad e=x+y
$$

Then x, y are indeed well defined since they preserve the relations defining
\bar{V}. For example: if $r_{2}=r_{2}^{\prime} k$ for $r_{2}^{\prime} \in T^{1}$ and $k \in X^{\prime}$, then

$$
\begin{aligned}
x\left(\sum_{i \in X^{\prime}} v_{r_{1} i r_{2}^{\prime} k}\right)-x v_{r_{1} r_{2}^{\prime} k} & =\left(\sum_{i, j \in X^{\prime}: j>k} v_{r_{1} i r_{2}^{\prime} k j}\right)-\left(\sum_{j \in X^{\prime}: j>k} v_{r_{1} r_{2}^{\prime} k j}\right) \\
& =\sum_{j \in X^{\prime}: j>k}\left[\left(\sum_{i \in X^{\prime}} v_{r_{1} i\left(r_{2}^{\prime} k j\right)}\right) v_{r_{1}\left(r_{2}^{\prime} k j\right)}\right]=0 .
\end{aligned}
$$

Moreover, e is a nonzero idempotent because

$$
e\left(e v_{r}\right)=e\left(\sum_{i \in X^{\prime}} v_{r i}\right)=\sum_{i, j \in X^{\prime}} v_{r i j}=\sum_{j \in X^{\prime}}\left(\sum_{i \in X^{\prime}} v_{r i j}\right)=\sum_{j \in X^{\prime}} v_{r j}=e v_{r}
$$

for $r \in T$ and $e\left(v_{1}\right)=\sum_{i \in X^{\prime}} v_{1 i} \neq 0$. Let $r^{\prime} \in T^{1}$ and $i \in X^{\prime}$. It is easy to see that

$$
x^{3}\left(v_{r^{\prime} i}\right)=\sum_{j_{1}, j_{2}, j_{3} \in X^{\prime}: i<j_{1}<j_{2}<j_{3}} v_{r^{\prime} i j_{1} j_{2} j_{3}} .
$$

Since certain neighbouring elements of the sequence i, j_{1}, j_{2}, j_{3} are equal to k, k^{\prime} for some $k \in X$, from (21) it follows that $v_{r^{\prime} i j_{1} j_{2} j_{3}}=0$. This proves that $x^{3}=0$. Similarly one can show that $y^{6}=0$.

Examples of the following two types were constructed in [4]: an identity element which is a sum of four nilpotent elements of degree 2, and a nonzero idempotent which is a sum of three nilpotent elements of degree 2. Another construction of this type can be obtained from [1, Prop. 2.2.1]. Here we give new examples by considering $M_{2}(D)$. As in the preceding constructions, this leads to the first Weyl algebra.

Proposition 14. There exists an idempotent $e \in M_{2}(D) \backslash\{0\}$ which is a sum of three nilpotent elements if and only if D contains a copy of $A_{1} A_{1}^{-1}$.

Proof. (\Rightarrow) Let $e=x+y+z$ where $x, y, z \in M_{2}(D)$ are nilpotent. Then $x^{2}=y^{2}=z^{2}=0$. Since $e-z$ is a sum of two nilpotent elements, by Lemma 2 we can assume (changing the basis) that $e-z=\left(\begin{array}{ll}0 & q \\ p & 0\end{array}\right)$ for some $p, q \in D$. Let $z=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right), a, b, c, d \in D$. Since $z^{2}=0$ and $z \neq 0$, either $b \neq 0$ or $c \neq 0$.

Let for example $b \neq 0$. From $z^{2}=0$ we get $a^{2}+b c=0$. Hence $c=-b^{-1} a^{2}$. Also $a b+b d=0$, so that $d=-b^{-1} a b$. (It is easy to see that

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=\left(\begin{array}{cc}
a & b \\
-b^{-1} a^{2} & -b^{-1} a b
\end{array}\right)
$$

is nilpotent). Therefore

$$
e=\left(\begin{array}{cc}
a & b+q \\
p-b^{-1} a^{2} & -b^{-1} a b
\end{array}\right) .
$$

Define $\bar{p}=p-b^{-1} a^{2}$ and $\bar{q}=b+q$. Then

$$
e=\left(\begin{array}{cc}
a & \bar{q} \\
\bar{p} & -b^{-1} a b
\end{array}\right) .
$$

If $\bar{p}=\bar{q}=0$ then from $e^{2}=e$ we get $a^{2}=a$ and $b^{-1} a^{2} b=-b^{-1} a b$. Hence $a=0$ and $e=0$, a contradiction.

So suppose for example that $\bar{p} \neq 0$. Then $e^{2}=e$ implies $\bar{p} a+\left(-b^{-1} a b\right) \bar{p}=$ \bar{p}. Hence $(a b \bar{p})\left(\bar{p}^{-1} b^{-1}\right)-\left(\bar{p}^{-1} b^{-1}\right)(a b \bar{p})=1$. Defining $x=a b \bar{p}$ and $y=$ $\bar{p}^{-1} b^{-1}$ we obtain $x y-y x=1$. Therefore D contains a copy of $A_{1} A_{1}^{-1}$.
(\Leftarrow) Assume that $x, y \in D$ such that $x y-y x=1$ are given. Let $a=x y$, $b=y^{-1}, \bar{p}=1$ and $\bar{q}=x y-(x y)^{2}$. Then

$$
e=\left(\begin{array}{cc}
a & \bar{q} \\
\bar{p} & -b^{-1} a b
\end{array}\right)
$$

is a nonzero idempotent. Put $p=\bar{p}+b^{-1} a^{2}=1+y x y x y$ and $q=\bar{q}-b=$ $x y-(x y)^{2}-y^{-1}$. Then

$$
e=\left(\begin{array}{ll}
0 & 0 \\
p & 0
\end{array}\right)+\left(\begin{array}{ll}
0 & q \\
0 & 0
\end{array}\right)+\left(\begin{array}{cc}
a & b \\
-b^{-1} a^{2} & -b^{-1} a b
\end{array}\right)
$$

is a sum of three nilpotent elements.
Proposition 15. $I \in M_{2}(D)$ can be represented as a sum of four nilpotent elements if and only if D contains a copy of $A_{1} A_{1}^{-1}$.

Proof. (\Rightarrow) Let $I=x+y+z+t$ where $x, y, z, t \in M_{2}(D)$ are nilpotent. By Lemma 2 we can assume that $z+t=\left(\begin{array}{ll}0 & q \\ p & 0\end{array}\right)$ for some $p, q \in D$. Similarly there exists an invertible $A \in M_{2}(D)$ and $r, s \in D$ such that

$$
x+y=A\left(\begin{array}{ll}
0 & s \\
r & 0
\end{array}\right) A^{-1}
$$

Hence

$$
A=A\left(\begin{array}{ll}
0 & s \\
r & 0
\end{array}\right)+\left(\begin{array}{ll}
0 & q \\
p & 0
\end{array}\right) A
$$

Assume that $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right), a, b, c, d \in D$. Then our equality is equivalent to

$$
\left\{\begin{array}{l}
a=b r+q c, \tag{23}\\
b=a s+q d, \\
c=d r+p a, \\
d=c s+p b
\end{array}\right.
$$

If one of p, q, r, s is zero then I can be represented as a sum of three nilpotent elements of degree 2. This contradicts [4]. Hence $p, q, r, s \neq 0$.

Next we show that $a, b, c, d \neq 0$. Let for example $a=0$. Then we get

$$
\left\{\begin{array}{l}
0=b r+q c \\
b=q d \\
c=d r \\
d=c s+p b
\end{array}\right.
$$

Substituting $b=q d$ and $c=d r$ to the first equation we get $0=2 q d r$. Hence $d=0$ and $b=q d=0, c=d r=0$, a contradiction (A is invertible). The proof that $b, c, d \neq 0$ is similar.

Now we eliminate q from the first and second equations of (23) and p from the third and fourth equations of (23):

$$
\left\{\begin{array}{l}
(a-b r) c^{-1}=(b-a s) d^{-1} \\
(c-d r) a^{-1}=(d-c s) b^{-1}
\end{array}\right.
$$

Defining $f=b^{-1} a$ and $g=d^{-1} c$ we get

$$
\left\{\begin{array}{l}
f-r=(1-f s) g \\
g-r=(1-g s) f
\end{array}\right.
$$

After eliminating r we obtain $-f+g-f s g=-g+f-g s f$. Define h by $g=f+h$ and substitute it to the previous equation. We get $2 h=f s h-h s f$. If $h=0$ then $b^{-1} a=d^{-1} c$ and A is not invertible. Hence $h \neq 0$. Therefore $1=\left(\frac{1}{2} h^{-1} f\right)(s h)-(s h)\left(\frac{1}{2} h^{-1} f\right)$. Put $x=\frac{1}{2} h^{-1} f$ and $y=s h$. Then $1=$ $x y-y x$. Hence $D \supseteq A_{1} A_{1}^{-1}$.
(\Leftarrow) Assume that $x, y \in D$ such that $1=x y-y x$ are given. Put $h=1$. Then reading the proof of (\Rightarrow) in reverse direction we have $f=2 h x=2 x$, $s=y h^{-1}=y, g=f+h=2 x+1$ and $r=f-(1-f s) g=-1+2 x y+4 x y x$. Put also $b=d=1$. Then $a=b f=2 x, c=d g=2 x+1, q=(a-b r) c^{-1}=1-2 x y$ and $p=(c-d r) a^{-1}=1+x^{-1}-x y x^{-1}+2 x y$. The elements a, b, c, d, p, q, r, s just found satisfy (23) and A is invertible because $h \neq 0$. This gives the desired decomposition of I.
4. An application. In $[6,7]$ Kegel proved that a ring R which is a sum of two nilpotent subrings R_{1} and R_{2} must be nilpotent. If R is an algebra over a field K, then we may assume that $R \subseteq \operatorname{End}_{K}(V)$, where V is a K-linear space. Define $W_{i}=\left\{v \in V: R_{1}^{i} v=0\right\}$ and $Z_{j}=\left\{v \in V: R_{2}^{j} v=0\right\}$ and $i, j=1,2, \ldots$ Then $W_{1} \subseteq \ldots \subseteq W_{n}=V$ and $Z_{1} \subseteq \ldots \subseteq Z_{m}=V$ where n, m are the nilpotency degrees of R_{1}, R_{2} respectively. By Lemma 1 we can find subspaces $Y_{i, j} \subseteq V$ such that $W_{k}=\bigoplus_{i \leq k} Y_{i, j}$ and $Z_{l}=\bigoplus_{j \leq l} Y_{i, j}$. Since $R_{1} W_{i} \subseteq W_{i-1}, R_{2} Z_{j} \subseteq Z_{j-1}$ for $i, j=\overline{1}, 2, \ldots\left(W_{0}=Z_{0}=\overline{0}\right)$ and $R=R_{1}+R_{2}$ we have

$$
R\left(Y_{i, j}\right) \subseteq W_{i-1}+Z_{j-1} \subseteq \bigoplus_{(k, l) \neq(i, j)} Y_{k, l}
$$

So it is natural to consider the following problem. Let $V=\bigoplus_{i=1}^{n} V_{i}$ where V_{i} are subspaces of a K-linear space V and let $R \subseteq \operatorname{End}_{K}(V)$ be a subalgebra satisfying $R\left(V_{i}\right) \subseteq \bigoplus_{j \neq i} V_{j}$. Is R necessarily nilpotent?

The answer is negative in general by Theorem 8 (take $R=\operatorname{Lin}_{K}(e)$). Hence we shall discuss the case where V is finite-dimensional. Then R must be nilpotent since $\operatorname{tr}(R)=0$. The natural question that arises here is whether the nilpotency degree of R is bounded by a function depending on n only (as in Kegel's theorem). We answer this question in the more convenient setting of a semigroup R (clearly, if R satisfies the desired conditions, then the linear span of R also satisfies them).

Proposition 16. Let $V=\bigoplus_{i=1}^{n} V_{i}, \operatorname{dim}_{K}(V)<\infty$ and let $S \subseteq \operatorname{End}_{K}(V)$ be a semigroup satisfying $S\left(V_{i}\right) \subseteq \bigoplus_{j \neq i} V_{j}$. Then
(a) if $n=2$ then $S^{2}=0$,
(b) if $n=3$ then $S^{4}=0$.

On the other hand, if $n=4$ then S may have an arbitrarily large nilpotency degree.

Proof. (a) For any $s \in S$ we have $s\left(V_{1}\right) \subseteq V_{2}$ and $s\left(V_{2}\right) \subseteq V_{1}$. Let $s_{1}, s_{2} \in S$. Then $s_{1} s_{2}\left(V_{1}\right) \subseteq s_{1}\left(V_{2}\right) \subseteq V_{1}$ and $s_{1} s_{2}\left(V_{2}\right) \subseteq s_{1}\left(V_{1}\right) \subseteq V_{2}$. Since $s_{1} s_{2} \in S$, we have $s_{1} s_{2}\left(V_{1}\right) \subseteq V_{1} \cap V_{2}=0$ and $s_{1} s_{2}\left(V_{2}\right) \subseteq V_{2} \cap V_{1}=0$. This implies $s_{1} s_{2}=0$. Hence $S^{2}=0$.
(b) First we show that it is sufficient to prove the claim for semigroups S generated by one element. Let $s_{1}, \ldots, s_{4} \in S$. Consider $\bar{s} \in \operatorname{End}_{K}\left(V^{5}\right)$ defined by $\bar{s}\left(v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right)=\left(s_{1} v_{2}, s_{2} v_{3}, s_{3} v_{4}, s_{4} v_{5}, 0\right)$ for any $v_{i} \in V$. Then the condition $s_{1} \ldots s_{4}=0$ is equivalent to $\bar{s}^{4}=0$. Moreover, $V^{5}=$ $\bigoplus_{i=1}^{4} V_{i}^{5}$ and $\bar{s}^{k}\left(V_{i}^{5}\right) \subseteq \bigoplus_{j \neq i} V_{j}^{5}$ for $k=1,2, \ldots$ Hence it is enough to consider the semigroup generated by \bar{s}. So we can indeed assume that S is generated by some $s \in S$.

Let $v_{1} \in V_{1}$. Then $s\left(v_{1}\right)=v_{2}+v_{3}$ for some $v_{2} \in V_{2}$ and $v_{3} \in V_{3}$. Similarly $s\left(v_{2}\right)=v_{1}^{\prime}+v_{3}^{\prime}, s\left(v_{3}\right)=v_{1}^{\prime \prime}+v_{2}^{\prime}$ for some $v_{1}^{\prime}, v_{1}^{\prime \prime} \in V_{1}, v_{2}^{\prime} \in V_{2}$ and $v_{3}^{\prime} \in V_{3}$. Since

$$
s^{2}\left(v_{1}\right)=s\left(v_{2}+v_{3}\right)=\left(v_{1}^{\prime}+v_{1}^{\prime \prime}\right)+v_{2}^{\prime}+v_{3}^{\prime} \in V_{2} \oplus V_{3},
$$

we get $v_{1}^{\prime \prime}=-v_{1}^{\prime}$. Moreover, $s\left(v_{1}^{\prime}\right)=\bar{v}_{2}+\bar{v}_{3}, s\left(v_{2}^{\prime}\right)=\bar{v}_{1}+\overline{\bar{v}}_{3}$ and $s\left(v_{3}^{\prime}\right)=$ $\overline{\bar{v}}_{1}+\overline{\bar{v}}_{2}$ for some $\bar{v}_{1}, \overline{\bar{v}}_{1} \in V_{1}, \bar{v}_{2}, \overline{\bar{v}}_{2} \in V_{2}$ and $\bar{v}_{3}, \overline{\bar{v}}_{3} \in V_{3}$. Now

$$
s^{2}\left(v_{2}\right)=s\left(v_{1}^{\prime}+v_{3}^{\prime}\right)=\overline{\bar{v}}_{1}+\left(\bar{v}_{2}+\overline{\bar{v}}_{2}\right)+\bar{v}_{3} \in V_{1} \oplus V_{3}
$$

implies that $\overline{\bar{v}}_{2}=-\bar{v}_{2}$. Since

$$
s^{2}\left(v_{3}\right)=s\left(-v_{1}^{\prime}+v_{2}^{\prime}\right)=\bar{v}_{1}-\bar{v}_{2}+\left(-\bar{v}_{3}+\overline{\bar{v}}_{3}\right) \in V_{1} \oplus V_{2}
$$

we get $\overline{\bar{v}}_{3}=\bar{v}_{3}$. Similarly

$$
s^{3}\left(v_{1}\right)=s\left(v_{2}^{\prime}+v_{3}^{\prime}\right)=\left(\bar{v}_{1}+\overline{\bar{v}}_{1}\right)+\overline{\bar{v}}_{2}+\overline{\bar{v}}_{3} \in V_{2} \oplus V_{3}
$$

implies that $\overline{\bar{v}}_{1}=-\bar{v}_{1}$. We also have $s\left(\bar{v}_{1}\right)=\widetilde{v}_{2}+\widetilde{v}_{3}, s\left(\bar{v}_{2}\right)=\widetilde{v}_{1}+\widehat{v}_{3}$ and $s\left(\bar{v}_{3}\right)=\widehat{v}_{1}+\widehat{v}_{2}$ for some $\widetilde{v}_{i}, \widehat{v}_{i} \in V_{i}, i=1,2,3$. Since

$$
s^{2}\left(v_{1}^{\prime}\right)=s\left(\bar{v}_{2}+\bar{v}_{3}\right)=\left(\widetilde{v}_{1}+\widehat{v}_{1}\right)+\widehat{v}_{2}+\widehat{v}_{3} \in V_{2} \oplus V_{3},
$$

it follows that $\widehat{v}_{1}=-\widetilde{v}_{1}$. From

$$
s^{2}\left(v_{2}^{\prime}\right)=s\left(\bar{v}_{1}+\bar{v}_{3}\right)=\widehat{v}_{1}+\left(\widetilde{v}_{2}+\widehat{v}_{2}\right)+\widetilde{v}_{3} \in V_{1} \oplus V_{3}
$$

it follows that $\widehat{v}_{2}=-\widetilde{v}_{2}$. Similarly

$$
s^{2}\left(v_{3}^{\prime}\right)=s\left(-\bar{v}_{1}-\bar{v}_{2}\right)=-\widetilde{v}_{1}-\widetilde{v}_{2}+\left(-\widetilde{v}_{3}-\widehat{v}_{3}\right) \in V_{1} \oplus V_{2}
$$

leads to $\widehat{v}_{3}=-\widetilde{v}_{3}$.
Next note that

$$
s^{3}\left(v_{2}\right)=s\left(-\bar{v}_{1}+\bar{v}_{3}\right)=\widehat{v}_{1}+\left(-\widetilde{v}_{2}+\widehat{v}_{2}\right)-\widetilde{v}_{3}=-\widetilde{v}_{1}-2 \widetilde{v}_{2}-\widetilde{v}_{3} \in V_{1} \oplus V_{3},
$$

and consequently $\widetilde{v}_{2}=0$. Since

$$
s^{3}\left(v_{3}\right)=s\left(\bar{v}_{1}-\bar{v}_{2}\right)=-\widetilde{v}_{1}+\widetilde{v}_{2}+\left(\widetilde{v}_{3}-\widehat{v}_{3}\right)=-\widetilde{v}_{1}+\widetilde{v}_{2}+2 \widetilde{v}_{3} \in V_{1} \oplus V_{2},
$$

we also get $\widetilde{v}_{3}=0$. Finally,

$$
s^{4}\left(v_{1}\right)=s\left(-\bar{v}_{2}+\bar{v}_{3}\right)=\left(-\widetilde{v}_{1}+\widehat{v}_{1}\right)+\widehat{v}_{2}-\widehat{v}_{3}=-2 \widetilde{v}_{1}-\widetilde{v}_{2}+\widetilde{v}_{3} \in V_{2} \oplus V_{3},
$$

so that $\widetilde{v}_{1}=0$. This implies $s^{4}\left(v_{1}\right)=0$ because $\widetilde{v}_{i}=0$ for $i=1,2,3$.
Similarly one can prove that $\left.s^{4}\right|_{V_{i}}=0$ for $i=2,3$. Hence $s^{4}=0$, as desired.
To prove the remaining assertion, fix some $n \in \mathbb{N}$. Let T be the free monoid generated by $1,2,3,4$. We denote by $|w|$ the length of a word $w \in T$. Put $X=\{1,2,3,4\}$. Consider the system of linear equations with unknown vectors v_{r}, where $r \in T$, and $|r| \leq n$,

$$
\begin{array}{r}
\sum_{r \in T:|r|=k} v_{r_{1} \text { irir }_{2}}=0 \quad \text { for } r_{1}, r_{2} \in T, i \in X, k \in \mathbb{N} \cup\{0\} \tag{24}\\
\quad \text { such that } \mid r_{1} i \text { irir } r_{2} \mid \leq n .
\end{array}
$$

We show that there exists a solution of (24) satisfying

$$
\begin{equation*}
\sum_{r \in T:|r|=n} v_{r} \neq 0 \tag{25}
\end{equation*}
$$

Let $e \in M_{4}(D)$ be an idempotent with zero diagonal arising from Theorem 8. Let $e_{i} \in M_{4}(D)$ denote the projection on the i th coordinate in $D^{4}, i=1,2,3,4$. Define $v_{1}=(1,0,0,0), v_{2}=v_{3}=v_{4}=0 \in D^{4}$ and $v_{i_{1} \ldots i_{k}}=\left(e_{i_{k}} e\right) \ldots\left(e_{i_{2}} e\right) v_{i_{1}}$ for $k \geq 2, i_{1}, \ldots, i_{k} \in X$. We check that (24) is satisfied.

Let $r_{1}=i_{1} \ldots i_{p}$ and $r_{2}=j_{1} \ldots j_{q}$. Then

$$
\begin{aligned}
& \sum_{r \in T:|r|=k} v_{r_{1} \text { irir }_{2}} \\
& =\sum_{z_{1}, \ldots, z_{k} \in X}\left(e_{j_{q}} e\right) \ldots\left(e_{j_{1}} e\right)\left(e_{i} e\right)\left[\left(e_{z_{k}} e\right) \ldots\left(e_{z_{1}} e\right)\right]\left(e_{i} e\right)\left(e_{i_{p}} e\right) \ldots\left(e_{i_{2}} e\right) v_{i_{1}}
\end{aligned}
$$

$$
\begin{aligned}
& =\left(e_{j_{q}} e\right) \ldots\left(e_{j_{1}} e\right)\left(e_{i} e\right)\left(\sum_{i=1}^{4} e_{i} e\right)^{k}\left(e_{i} e\right)\left(e_{i_{p}} e\right) \ldots\left(e_{i_{2}} e\right) v_{i_{1}} \\
& =\left(e_{j_{q}} e\right) \ldots\left(e_{j_{1}} e\right)\left(e_{i} e e_{i} e\right)\left(e_{i_{p}} e\right) \ldots\left(e_{i_{2}} e\right) v_{i_{1}}=0
\end{aligned}
$$

because $e_{i} e e_{i}=0$ and $e_{i} e v_{i}=0$ if $\left|r_{1}\right|=0$. Moreover,

$$
\sum_{r \in T:|r|=n} v_{r}=\sum_{i_{1}, \ldots, i_{n} \in X}\left(e_{i_{n}} e\right) \ldots\left(e_{i_{2}} e\right) v_{i_{1}}=\left(\sum_{i=1}^{4}\left(e_{i} e\right)\right)^{n-1} v_{1}=e v_{1} \neq 0
$$

This yields (25).
Let \bar{V}_{n} be the K-linear space spanned by the vectors $v_{t},(t \in T)$ subject to relations (24) and $v_{t}=0$ for $|t| \geq n+1$. Define $s \in \operatorname{End}_{K}\left(\bar{V}_{n}\right)$ by $s\left(v_{r}\right)=\sum_{i=1}^{n} v_{r i}$ for $|r| \leq n-1$ and $s\left(v_{r}\right)=0$ for $|r| \geq n$. Then s is indeed well defined since it preserves the defining relations of \bar{V}_{n}. Namely,

$$
s\left(\sum_{r \in T:|r|=k} v_{r_{1} i \text { irir }}\right)=\sum_{r \in T:|r|=k} \sum_{j=1}^{4} v_{r_{1} i r i r_{2} j}=\sum_{j=1}^{4}\left(\sum_{r \in T:|r|=k} v_{r_{1} i r i r_{2} j}\right)=0
$$

and $s\left(v_{t}\right)=\sum_{i=1}^{4} v_{t i}=0$ for $t \in T$ such that $|t| \geq n+1$. Let $\bar{V}_{n, i}=$ $\operatorname{Lin}_{K}\left\{v_{r i}: r \in T\right\}, i \in X$. Since the defining relations of \bar{V}_{n} are homogeneous with respect to the last letter of the index $r \in T$ of v_{r}, it follows that $\bar{V}_{n}=\bigoplus_{i=1}^{4} \bar{V}_{n, i}$.

We check that $s^{m}\left(\bar{V}_{n, i}\right) \subseteq \bigoplus_{j \neq i} \bar{V}_{n, j}$. Let $r_{1} \in T$. Then

$$
\begin{aligned}
s^{m}\left(v_{r_{1} i}\right) & =\sum_{i_{1}, \ldots, i_{m} \in X} v_{r_{1} i i_{1} \ldots i_{m}} \\
& =\sum_{i_{1}, \ldots, i_{m-1}} v_{r_{1} i i_{1} \ldots i_{m-1} i}+\sum_{i_{1}, \ldots, i_{m}: i_{m} \neq i} v_{r_{1} i i_{1} \ldots i_{m-1} i_{m}} \\
& =\sum_{i_{1}, \ldots, i_{m}: i_{m} \neq i} v_{r_{1} i i_{1} \ldots i_{m-1} i_{m}} \in \bigoplus_{j \neq i} \bar{V}_{n, j} .
\end{aligned}
$$

Moreover, $s^{n}\left(v_{r_{1}}\right)=\sum_{i_{1}, \ldots, i_{n} \in X} v_{r_{1} i_{1} \ldots i_{n}}=0$ and

$$
s^{n-1}\left(v_{1}+\ldots+v_{4}\right)=\sum_{r \in T:|r|=n} v_{i_{1} \ldots i_{n}} \neq 0
$$

because there exists a solution of (24) satisfying (25). Hence s is nilpotent of degree n and the semigroup generated by s has the desired properties.

Our final example shows that the bound on the nilpotency degree of the semigroup S in Proposition 16(b) cannot be improved.

Example 17. Let v_{1}, \ldots, v_{9} be a basis of a K-linear space V. Define $s \in \operatorname{End}_{K}(V)$ by $s\left(v_{1}\right)=v_{4}+v_{7}, s\left(v_{2}\right)=v_{6}+v_{9}, s\left(v_{3}\right)=0, s\left(v_{4}\right)=$ $v_{2}+v_{8}, s\left(v_{5}\right)=v_{3}+v_{9}, s\left(v_{6}\right)=0, s\left(v_{7}\right)=-v_{2}+v_{5}, s\left(v_{8}\right)=-v_{3}-v_{6}$
and $s\left(v_{9}\right)=0$. Set also $V_{1}=\operatorname{Lin}_{K}\left(v_{1}, v_{2}, v_{3}\right), V_{2}=\operatorname{Lin}_{K}\left(v_{4}, v_{5}, v_{6}\right)$ and $V_{3}=\operatorname{Lin}_{K}\left(v_{7}, v_{8}, v_{9}\right)$. Then $V=V_{1} \oplus V_{2} \oplus V_{3}$. It is easy to check that $s^{k}\left(V_{i}\right) \subseteq \bigoplus_{j \neq i} V_{j}$ for $k=1,2, \ldots, i=1,2,3$ and $s^{3} \neq 0$.

REFERENCES

[1] G. M. Bergman, The diamond lemma for ring theory, Adv. Math. 29 (1978), 178-218.
[2] L. A. Bokut', Embedding into simple associative algebras, Algebra i Logika 15 (1976), no. 2, 117-142 (in Russian).
[3] M. Ferrero and E. R. Puczyłowski, On rings which are sums of two subrings, Arch. Math. (Basel) 53 (1989), 4-10.
[4] M. Ferrero, E. R. Puczyłowski and S. Sidki, On the representation of an idempotent as a sum of nilpotent elements, Canad. Math. Bull. 39 (1996), 178-185.
[5] I. N. Herstein, Noncommutative Rings, Wiley, New York, 1968.
[6] O. H. Kegel, Zur Nilpotenz gewisser assoziativer Ringe, Math. Ann. 149 (1962/63), 258-260.
[7] -, On rings that are sums of two subrings, J. Algebra 1 (1964), 103-109.
[8] A. V. Kelarev, A sum of two locally nilpotent rings may be not nil, Arch. Math. (Basel) 60 (1993), 431-435.
[9] J. C. McConnell and J. C. Robson, Noncommutative Noetherian Rings, Wiley, New York, 1987.
[10] A. Salwa, Structure of skew linear semigroups, Internat. J. Algebra Comput. 3 (1993), 101-113.
[11] -, Rings that are sums of two locally nilpotent subrings, Comm. Algebra 24 (1996), 3921-3931.
[12] L. W. Small, J. T. Stafford and R. B. Warfield, Affine algebras of GelfandKirillov dimension one are PI, Math. Proc. Cambridge Philos. Soc. 97 (1985), 407-414.

Institute of Mathematics
University of Warsaw
Banacha 2
02-097 Warszawa, Poland
E-mail: asalwa@mimuw.edu.pl

[^0]: 1991 Mathematics Subject Classification: Primary 16U99.
 Supported by a KBN research grant.

