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REPRESENTING IDEMPOTENTS AS A SUM OF TWO
NILPOTENTS—AN APPROACH VIA MATRICES

OVER DIVISION RINGS

BY

ARKADIUSZ S A L W A (WARSZAWA)

1. Introduction. It was proved in [3] that the Koethe conjecture is
equivalent to the problem of determining whether a ring which is a sum of a
nil subring and a nilpotent subring must be nil. A similar problem, whether a
ring that is a sum of two locally nilpotent subrings must be nil, has a negative
solution (see [8]). A simpler example of this type was then constructed in
[11]. Therefore one may ask whether such a ring can contain a nonzero
idempotent. This naturally leads to the following problem investigated in
[4]: can a nonzero idempotent e be represented as a sum e = x + y of two
nilpotent elements x, y? It was proved there that this is impossible if the
nilpotency degrees of x and y are ≤ 3 and ≤ 5 respectively (or ≤ 2 and any
n ∈ N) provided that the characteristic is equal to zero. If the characteristic
is positive, examples of this type are easy to find (see [4]), whence in this
paper we restrict our attention to algebras over a field of characteristic zero.

We show that idempotents of such type exist if the nilpotency degrees
of x, y are both 4, or 3 and 6 respectively. This is done by investigating
representations in matrices over division rings. In this context, the first
Weyl algebra appears unexpectedly and unavoidably, as shown by our main
results: Theorems 8 and 12. In particular, we prove that M4(D) contains a
nonzero idempotent with zero diagonal if and only if D contains a copy of
the first Weyl algebra.

It was shown in [4] that the identity element may be represented as a
sum of four nilpotent elements of nilpotency degree 2. We prove that the
identity element can also be a sum of three nilpotent elements of nilpotency
degree 3. This is used to construct an example with 0 6= e = e2 = x+ y and
x3 = y6 = 0.
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Finally, we give an application to a problem closely connected to Kegel’s
theorem asserting that a ring which is a sum of two nilpotent subrings must
be nilpotent (see [6, 7]).

It might seem possible that the diamond lemma (see [1]) can be applied
to construct examples of the above types; however, it leads to very complex
computations, which are not conclusive.

Throughout the paper D (K respectively) denotes a skew field (resp.
a field) of characteristic zero. All spaces will be left spaces over D (resp. K).
We denote by v1, . . . , vn the standard basis of Dn; Mn(D) = EndD(Dn)
stands for the ring of n× n matrices over D, and I for the identity element
of Mn(D). The mappings πi ∈ EndD(Dn) (1 ≤ i ≤ n) are defined by
πi(vi) = 0 and πi(vj) = vj for i 6= j. If A is a K-algebra, then GKdim(A)
and J (A) denote the Gelfand–Kirillov dimension and the Jacobson radical
of A respectively.

2. Idempotents with zero diagonal in M4(D). As explained above,
our approach to the problem proposed in [4] is based on matrix algebras
Mn(D). Their multiplicative structure was investigated in [10]. We describe
all idempotents with zero diagonal in M4(D); clearly such an element is a
sum of two nilpotents. If n < 4, then Mn(D) does not contain such idempo-
tents. A similar problem for Mn(D), n ≥ 5, seems to be difficult. First we
need some preparatory results.

Lemma 1. Let V be a linear space over D. Assume that W1 ⊆ . . . ⊆
Wn = V and Z1 ⊆ . . . ⊆ Zm = V are chains of subspaces of V . Then
we can find subspaces Yi,j of V such that Wi ∩ Zj =

⊕
k≤i, l≤j Yk,l for all

i = 1, . . . , n, j = 1, . . . ,m.

P r o o f. Choose subspaces Yi,j satisfying

(1) Yi,j ⊕ (Wi ∩ Zj−1 +Wi−1 ∩ Zj) = Wi ∩ Zj

where W0 = Z0 = 0. Consider the order on the set of all pairs (i, j) defined
by:

(i, j) ≤ (i′, j′) if and only if i ≤ i′ and j ≤ j′.

By induction we prove that Wi ∩ Zj =
⊕

k≤i, l≤j Yk,l. By the induction
hypothesis we get

Wi ∩ Zj−1 =
⊕

r≤i, s≤j−1

Yr,s,(2)

Wi−1 ∩ Zj =
⊕

p≤i−1, q≤j

Yp,q.(3)
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Hence

Wi ∩ Zj = Yi,j ⊕ (Wi ∩ Zj−1 +Wi−1 ∩ Zj)

= Yi,j ⊕
( ⊕

r≤i, s≤j−1

Yr,s +
⊕

p≤i−1, q≤j

Yp,q

)
=

∑
r≤i, s≤j

Yr,s.

Now we prove that this sum is direct. Let yr,s ∈ Yr,s, where r ≤ i and
s ≤ j, be such that

∑
r≤i, s≤j yr,s = 0. By (1), yi,j = 0, hence∑

r≤i, s≤j−1

yr,s = −
∑

k≤i−1

yk,j ∈ (Wi ∩ Zj−1) ∩ (Wi−1 ∩ Zj) = Wi−1 ∩ Zj−1.

This implies

−
∑

k≤i−1

yk,j =
∑

p≤i−1, q≤j−1

yp,q for some yp,q ∈ Yp,q.

By (3) we get yk,j = 0 for k ≤ i− 1. Hence∑
r≤i, s≤j−1

yr,s = −
∑

k≤i−1

yk,j = 0.

By (2), yr,s = 0 for r ≤ i and s ≤ j− 1. So we have proved that yr,s = 0 for
all r, s.

Lemma 2. An element e ∈Mn(D) is a sum of two nilpotent elements if
and only if e has zero diagonal in some basis of Dn.

P r o o f. Assume that e = x+y where xn = yn = 0. Define Wi = Ker(xi)
and Zj = Ker(yj), 1 ≤ i, j ≤ n. Choose subspaces Yi,j as in Lemma 1 and
take a basis which is the union of some bases of all nonzero Yi,j . It is easy
to see that e has zero diagonal in this basis.

Conversely, assume that the diagonal of e is zero. Then e can be repre-
sented as a sum of a strictly upper triangular and a strictly lower triangular
matrices, which are clearly nilpotent.

Lemma 3. Every idempotent e of rank 1 in Mn(D) has a nonzero diag-
onal.

P r o o f. Suppose that e is an idempotent of rank 1 with zero diagonal.
Changing the order of v1, . . . , vn we can assume that v1, . . . , vk ∈ Ker(e),
vk+1, . . . , vn 6∈ Ker(e) for some 1 ≤ k ≤ n. Let Im(e) = LinD(v) for some
v ∈ Dn. By the assumption e(vj) ∈ LinD{vl : l 6= j} for j > k, hence
v ∈ LinD{vl : l 6= j}. Clearly

⋂
j>k LinD{vl : l 6= j} = LinD(v1, . . . , vk).

This implies that Im(e) = LinD(v) ⊆ LinD(v1, . . . , vk) ⊆ Ker(e), a contra-
diction.

Lemma 4. Assume that n > 1. Then every idempotent of rank n− 1 in
Mn(D) has a nonzero diagonal.
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P r o o f. Let e = e2 ∈ Mn(D) be an idempotent of rank n − 1. Suppose
e has zero diagonal. Let f = I − e and Im(f) = LinD(v) for some v ∈ D4.
Then f(vi) = αiv for some αi ∈ D and f(vi) = vi + wi for some wi ∈
LinD{vj : j 6= i} by the assumptions on e. This implies that v =

∑
i α
−1
i vi

(αi 6= 0 in particular) and f(vi) = αi

∑
j α
−1
j vj . Hence

f(vi) = f(f(vi)) = f
(
αi

∑
j

α−1j vj

)
=
∑
j

αiα
−1
j f(vj)

=
∑
j

αiα
−1
j αjv = nf(vi).

So f(vi) = 0 and f = 0, a contradiction.

Lemma 5. Assume that e ∈ Mn(D) is an idempotent and e(vi) 6= 0 for
some i ∈ {1, . . . , n}. Then πi(Ker(e)) ∩ Im(e) 6= 0 if and only if e(vi) ∈
LinD{vj : j 6= i}.

P r o o f. (⇒) Assume that πi(v) = e(w) 6= 0 and e(v) = 0 for some
v, wDn. Let v = αvi + πi(v) for some α ∈ D. Then 0 = e(v) = αe(vi) +
e(πi(v)). Hence −αe(vi) = e(πi(v)) = e(e(w)) = e(w) = πi(v). If α = 0,
then v = πi(v) = e(w). Hence 0 = e(v) = e2(w) = e(w), a contradiction. So
α 6= 0 and e(vi) = −α−1πi(v) ∈ LinD{vj : j 6= i}.

(⇐) Assume that e(vi) ∈ LinD{vj : j 6= i}. We claim that

[Ker(e) + LinD(vi)] ∩ Im(e) ⊆ πi(Ker(e)) ∩ Im(e).

Any vector of [Ker(e)+LinD(vi)]∩Im(e) can be written in the form v+αvi =
e(w), where v, w ∈ Dn, e(v) = 0 and α ∈ D. Then πi(v) + απi(vi) =
πi(e(w)). Hence

πi(v) = πi(e(e(w))) = πi(e(v + αvi)) = πi(e(αvi))

= απi(e(vi)) = αe(vi) = e(e(w)− v) = e(w).

This shows that e(w) = πi(v) ∈ πi(Ker(e)) ∩ Im(e), proving the claim.
Since e(vi) 6=0, we get [Ker(e)+LinD(vi)]∩Im(e) 6= 0. Hence πi(Ker(e))∩

Im(e) 6= 0, as desired.

Lemma 6. Let e ∈M4(D) be an idempotent of rank 2 with zero diagonal.
Then Ker(e) ∩ LinD(vi, vj) = 0 for any i 6= j, i, j ∈ {1, 2, 3, 4}.

P r o o f. First suppose that there exist α, β∈D\{0} such that αvi+βvj ∈
Ker(e). Hence αe(vi) + βe(vj) = 0. Since e has zero diagonal, e(vi), e(vj) ∈
LinD(vk, vl) whenever {i, j, k, l} = {1, 2, 3, 4}. Hence the diagonal of e is
zero in the basis αvi + βvj , vj , vk, vl. Let : D4 → D4/LinD(αvi + βvj)
denote the quotient map and e ∈ EndD(D4/LinD(αvi + βvj)) be defined

by e(v) = e(v). Then e is an idempotent of rank 2 (in M3(D)) with zero
diagonal in the basis vj , vk, vl. This contradicts Lemma 4.
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It remains to consider the case when vi ∈ Ker(e) or vj ∈ Ker(e). Let for
example vi ∈ Ker(e). Then considering : D4→D4/LinD(vi) and e we get
a contradiction as above.

Lemma 7. Let V,W ⊆ D4 be subspaces such that dimV = dimW = 2
and V ∩ LinD(vi, vj) = 0 for all i 6= j. If πi(V ) ∩W 6= 0 for all i, then
V = W or V ∩W = 0.

P r o o f. Suppose that V ∩W 6= 0 and V 6= W . Fix some i. We claim
that either V ∩W ⊆ LinD{vj : j 6= i} or W ⊆ LinD(vi) + V .

Assume that W 6⊆ LinD(vi) + V . Since dim(LinD(vi) + V ) = 3 and
dimW = 2 by hypothesis, (LinD(vi) + V ) ∩W 6= 0. Hence dim(LinD(vi)
+ V ) ∩W = 1. Since πi(V ) ⊆ LinD(vi) + V , we have 0 6= πi(V ) ∩W ⊆
(LinD(vi) +V )∩W . Therefore (LinD(vi) +V )∩W = πi(V )∩W . Similarly
0 6= V ∩W ⊆ (LinD(vi) +V )∩W yields V ∩W = (LinD(vi) +V )∩W . This
implies V ∩W = πi(V ) ∩W ⊆ LinD{vj : j 6= i}, proving the claim.

If W ⊆ LinD(vi) + V and W ⊆ LinD(vj) + V for some i 6= j then
V +W ⊆ (LinD(vi) + V ) ∩ (LinD(vj) + V ). Since dim(V +W ) = 3, we get
equality and so LinD(vi)+V = LinD(vj)+V . This contradicts the fact that
V ∩ LinD(vi, vj) = 0. So by the initial remark V ∩W ⊆ LinD{vj : j 6= i}
for at least three values of i.

If this inclusion holds for i = 1, 2, 3, 4 we get V ∩W = 0, a contradiction.
So it holds for exactly three values of i. This implies V ∩W = LinD(vi) for
some i. Since vi ∈ V , we get dimπi(V ) = 1. As πi(V ) ∩W 6= 0 we have
πi(V ) ⊆ W . Clearly πi(V ) ⊆ LinD(vi) + V = V . This yields LinD(vi) +
πi(V ) ⊆ V ∩W . Since dim(LinD(vi)+πi(V )) = 2, we conclude that V = W ,
a contradiction.

Remark. It may be proved that if V,W are subspaces of D4, dimV =
dimW = 2 and πi(V ) ∩W 6= 0 for all i, then either V = W or V ∩W = 0
or 0 6= V ∩W ⊆ LinD(vi, vj) for some i 6= j or V +W ⊆ LinD(vi, vj , vk) for
some distinct i, j, k. Moreover, if the first, third or fourth possibility holds,
then πi(V ) ∩W 6= 0 for all i.

Denote by A1 = K〈x, y : xy − yx = 1〉 the first Weyl algebra over K. It
is well known that A1 is a simple domain which has two-sided Ore fractions
(see [9]). Hence the division ring D contains an isomorphic copy of A1A

−1
1

if and only if D contains two elements x and y satisfying xy − yx = 1. We
are now ready to prove our first main result.

Theorem 8. Let D be a division ring of characteristic zero. Then there
exists a nonzero idempotent e ∈ M4(D) which is a sum of two nilpotent
elements if and only if D contains a copy of A1A

−1
1 .
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P r o o f. By Lemma 2, e2 = e is a sum of two nilpotent elements if and
only if e has zero diagonal in some basis. We can assume that v1, v2, v3, v4
is the appropriate basis. Our assertion may be reformulated as follows:

There exists a nonzero idempotent with zero diagonal in M4(D) if and
only if there exist two-dimensional subspaces V,W ⊆ D4 such that V ∩
LinD(vi, vj) = 0 for i 6= j, πi(V ) ∩W 6= 0 for all i and V 6= W .

Indeed, if e is a nonzero idempotent with zero diagonal, then by Lemmas 3
and 4, rank(e) = 2. Put V = Ker(e) and W = Im(e). Then by Lemma 6,
V ∩LinD(vi, vj) = 0 for i 6= j. By Lemma 5(⇐), πi(V )∩W 6= 0. Conversely,
if V and W are subspaces satisfying the above conditions then by Lemma 7,
V ∩ W = 0. Define the idempotent e by Ker(e) = V and Im(e) = W
(V ⊕W = D4). Then by Lemma 5(⇒), e has zero diagonal.

Assume that subspaces V,W are given. Then V 6⊆
⋃

i LinD{vj : j 6= i}.
Indeed, otherwise V ⊆ LinD{vj : j 6= i} for some i, leading to V ∩
LinD(vk, vl) 6= 0 for some k 6= l and contradicting the assumption on
V. Hence we can find a vector α′1v1 + . . . + α′4v4 ∈ V with α′1, . . . , α

′
4 ∈

D \ {0}. Replacing the basis v1, . . . , v4 by α′1v1, . . . , α
′
4v4 we can assume

that v1 + . . .+ v4 ∈ V . Hence V = LinD(v1 + . . .+ v4, α1v1 + . . .+α4v4) for
some αi ∈ D. In this situation the condition V ∩ LinD(vi, vj) = 0 (i 6= j) is
equivalent to αi 6= αj for i 6= j.

Assume now that V is given and we try to find a subspace W such that
dimW = 2 and πi(V ) ∩W 6= 0 for all i. Note first that πi(V ) ∩ πj(V ) = 0
for i 6= j. Indeed, let for example i = 1 and j = 2. Take w ∈ π1(V )∩π2(V ).
Then w = π1(z1) = π2(z2) ∈ LinD(v3, v4) for some z1, z2 ∈ V . Moreover,
z1 = αv1 + w, z2 = βv2 + w for some α, β ∈ D. This gives z1 − z2 ∈
LinD(v1, v2) ∩ V = 0. Hence α = β = 0 and z1 = w ∈ V ∩ LinD(v3, v4) = 0.
This proves the desired claim.

Let wi = pi(
∑

j 6=i vj)+qi(
∑

j 6=i αjvj) ∈ πi(V )∩W \{0} for some pi, qi ∈
D, i = 1, . . . , 4. Then, by the last paragraph, wi, wj are linearly independent
for any i 6= j. Since wi ∈ πi(V ), existence of a subspace W with the desired
properties is equivalent to dim LinD{wi : i = 1, . . . , 4} = 2. The latter is
equivalent to w3 = rw1 + sw2, w4 = tw1 + uw2 for some r, s, t, u ∈ D (of
course r, s, t, u 6= 0). By the definition of wi this can be written as

(4)



p3 + q3α1 = sp2 + sq2α1,
p3 + q3α2 = rp1 + rq1α2,
0 = rp1 + rq1α3 + sp2 + sq2α3,
p3 + q3α4 = rp1 + rq1α4 + sp2 + sq2α4,
p4 + q4α1 = up2 + uq2α1,
p4 + q4α2 = tp1 + tq1α2,
p4 + q4α3 = tp1 + tq1α3 + up2 + uq2α3,
0 = tp1 + tq1α4 + up2 + uq2α4.
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Now we prove that the condition w1, . . . , w4 6= 0 can be replaced by
w1 6= 0, or equivalently (p1, q1) 6= (0, 0). Assume that w1ot = 0. If w2 = 0
then w3 = rw1 6= 0. Since π1(V ) ∩ π3(V ) 6= 0, w1 and w3 are linearly
independent, and we get a contradiction. Hence w1, w2 6= 0 and w1, w2 are
linearly independent. This implies that w3 = rw1 + sw2 6= 0 and w4 =
tw1 + uw2 6= 0.

So our problem is reduced to solving (4) under the assumptions: αi 6= αj

for i 6= j, r, s, t, u 6= 0, (p1, q1) 6= (0, 0) and the solution corresponds to
V 6= W .

First assume that such a solution is given. We prove that D ⊇ A1A
−1
1 .

From the first and fifth equations of (4) we get p3 = sp2 + sq2α1− q3α1 and
p4 = up2 + uq2α1 − q4α1. Now we can eliminate p3 and p4 from (4) passing
to 

q3α1 + rp1 + rq1α2 = q3α2 + sp2 + sq2α1,
0 = rp1 + rq1α3 + sp2 + sq2α3,
sp2 + sq2α1 − q3α1 + q3α4 = rp1 + rq1α4 + sp2 + sq2α4,
q4α1 + tp1 + tq1α2 = q4α2 + up2 + uq2α1,
up2 + uq2α1 − q4α1 + q4α3 = tp1 + tq1α3 + up2 + uq2α3,
0 = tp1 + tq1α4 + up2 + uq2α4.

By the first and fourth equations we have

(5)

{
q3 = (sp2 − rp1 + sq2α1 − rq1α2)(α1 − α2)−1,
q4 = (up2 − tp1 + uq2α1 − tq1α2)(α1 − α2)−1.

So q3 and q4 may be eliminated:

0 = rp1 + rq1α3 + sp2 + sq2α3,
sp2 + sq2α1 + (sp2 − rp1 + sq2α1 − rq1α2)(α1 − α2)−1(α4 − α1)

= rp1 + rq1α4 + sp2 + sq2α4,
up2 + uq2α1 + (up2 − tp1 + uq2α1 − tq1α2)(α1 − α2)−1(α3 − α1)

= tp1 + tq1α3 + up2 + uq2α3,
0 = tp1 + tq1α4 + up2 + uq2α4.

Multiplying the first and second (resp. third and fourth) equations on the
left by s−1 (resp. u−1) we can take s−1r to be “new s” (resp. u−1t to be
“new t”) and hence we can assume that s = u = 1. From the first and fourth
equations we obtain p2 = −(rp1 + rq1α3 + q2α3) = −(tp1 + tq1α4 + q2α4).
So p2 can be eliminated:
rp1 + rq1α3 + q2α3 = tp1 + tq1α4 + q2α4,
q2α1 + (−rp1− rq1α3− q2α3− rp1 + q2α1− rq1α2)(α1−α2)−1(α4−α1)

= rp1 + rq1α4 + q2α4,
q2α1 + (−tp1 − tq1α4 − q2α4 − tp1 + q2α1 − tq1α2)(α1 − α2)−1(α3 − α1)

= tp1 + tq1α3 + q2α3.

Define A = (α1−α2)−1(α4−α1) and B = (α1−α2)−1(α3−α1). Trans-
forming the above equations we pass to
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{ rp1 + rq1α3 + q2α3 = tp1 + tq1α4 + q2α4,
q2(α1 − α3A+ α1A− α4) + rp1(−2A− 1) + rq1(−α3A− α2A− α4) = 0,
q2(α1 − α4B + α1B − α3) + tp1(−2B − 1) + tq1(−α4B − α2B − α3) = 0.

From the first equation we get

(6) q2 = (tp1 − rp1 + tq1α4 − rq1α3)(α3 − α4)−1.

Now q2 can be eliminated:
(tp1 − rp1 + tq1α4 − rq1α3)(α3 − α4)−1(α1 − α4 + (α1 − α3)A)

+ rp1(−2A− 1) + rq1(−(α2 + α3)A− α4) = 0,
(tp1 − rp1 + tq1α4 − rq1α3)(α3 − α4)−1(α1 − α3 + (α1 − α4)B)

+ tp1(−2B − 1) + tq1(−(α2 + α4)B − α3) = 0.

Define

A = (α3 − α4)−1(α1 − α4 + (α1 − α3)A),

B = (α3 − α4)−1(α1 − α3 + (α1 − α4)B).

After transformations we get

(7)

{
t(p1 + q1α4)A = r[p1(A+ 2A+ 1) + q1(α3A+ (α2 + α3)A+ α4)],
t[p1(B − 2B − 1) + q1(α4B − (α2 + α4)B − α3)] = r(p1 + q1α3)B.

It is easy to see that A = 0 implies α2 = α3, a contradiction. Hence A 6= 0.
Since t, r 6= 0, the elements

p1 + q1α4 and p1(A+ 2A+ 1) + q1(α3A+ (α2 + α3)A+ α4)

are either both zero or both nonzero. If both are zero, then by eliminating
p1 and q1 ((p1, q1) 6= (0, 0)) we conclude that α2 = α4. This contradiction
shows that the above two elements are nonzero. Similarly one can prove that
both sides of the second equation of (7) are nonzero. Now r and t may be
eliminated:

(8) [p1(A+ 2A+ 1) + q1(α3A+ (α2 + α3)A+ α4)]A−1(p1 + q1α4)−1

= (p1 + q1α3)B[p1(B − 2B − 1) + q1(α4B − (α2 + α4)B − α3)]−1.

Define X = p1 + q1α4 and Y = p1 + q1α3. Then p1 = −X(α4 − α3)−1α3+
Y (α4−α3)−1α4 and q1 = (X−Y )(α4−α3)−1. Put X = X(α4−α3)−1 and
Y = Y (α4 −α3)−1. Then p1 = −Xα3 + Y α4 and q1 = X − Y . Substituting
this to (8) we get

[(−Xα3 + Y α4)(A+ 2A+ 1)

+ (X − Y )(α3A+ (α2 + α3)A+ α4)]A−1(α4 − α3)−1X−1

= Y (α4 − α3)B[(−Xα3 + Y α4)(B − 2B − 1)

+ (X − Y )(α4B − (α2 + α4)B − α3)]−1.
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By the definition of A and B we obtain

(9) {X[(α2 − α3)A+ (α4 − α3)]

+ Y [(α4 − α1) + (2α4 − α1 − α2)A]}[(α4 − α1) + (α3 − α1)A]−1X−1

= Y [(α3 − α1) + (α4 − α1)B]{X[(α3 − α1) + (2α3 − α1 − α2)B]

+ Y [(α2 − α4)B + (α3 − α4)]}−1

Define β2 = α1 − α2, β3 = α1 − α3 and β4 = α1 − α4. Then A = −β−12 β4
and B = −β−12 β3. So α1, . . . , α4, A,B can be eliminated:

(10) {X[(β3 − β2)(−β−12 β4) + (β3 − β4)]

+ Y [−β4 + (β2 − 2β4)(−β−12 β4)]}[−β4 − β3(−β−12 β4)]−1X−1

= Y [−β3 − β4(−β2β−13 )]{X[−β3 + (β2 − 2β3)(−β−12 β3)]

+ Y [(β4 − β2)(−β−12 β3) + (β4 − β3)]}−1.

Multiplying by Y −1 on the left and by X on the right and setting T = X−1Y
we obtain PQ−1 = RS−1, where

P = T−1(−β3β−12 β4 + β3) + (−2β4 + 2β4β
−1
2 β4),

Q = −β4 + β3β
−1
2 β4, R = −β3 + β4β

−1
2 β3,

S = (−2β3 + 2β3β
−1
2 β3) + T (−β4β−12 β3 + β4).

Then clearly

(β−14 Pβ−14 )(β−13 Qβ−14 )−1 = (β−14 Rβ−13 )(β−13 Sβ−13 )−1.

But

β−14 Pβ−14 = (β−14 T−1β3 − 2)(β−14 − β−12 ), β−13 Qβ−14 = −β−13 + β−12 ,

β−14 Rβ−13 = −β−14 + β−12 , β−13 Sβ−13 = (−2 + β−13 Tβ4)(β−13 − β−12 ).

Hence

(β−14 T−1β3 − 2)(β−14 − β−12 )(−β−13 + β−12 )−1

= (−β−14 + β−12 )(β−13 − β−12 )−1(β−13 Tβ4 − 2)−1.

Define Z = β−13 Tβ4 and w0 = (β−14 − β
−1
2 )(β−12 − β

−1
3 )−1. Then we get the

equation

(11) (z−1 − 2)w0 = w0(z − 2)−1.

This implies (1 − 2z)w0(z − 2) = zw0. After substituting z = t + 1 we get
2tw0t− tw0 + w0t = 0. Hence

(12) (2t)w0(2t)− (2t)w0 + w0(2t) = 0.
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Next we check that t 6= 0. If t = 0, then z = 1 and T = β3β
−1
4 . Hence

X−1Y = β3β
−1
4 . This implies

(α4 − α3)X−1Y (α4 − α3)−1 = (α1 − α3)(α1 − α4)−1.

Therefore X−1Y = 1 + (α1 − α4)−1(α4 − α3). Since X = p1 + q1α4 and
Y = p1 + q1α3,

(p1 + q1α4)[1 + (α1 − α4)−1(α4 − α3)] = p1 + q1α3.

This is equivalent to p1 + q1α1 = 0. In this case 0 6= p1(v1 + . . . + v4) +
q1(α1v1 + . . .+α4v4) = p1(v2 + v3 + v4) + q1(α2v2 +α3v3 +α4v4) ∈ V ∩W .
By Lemma 7, V = W , a contradiction. Hence 2t 6= 0.

Multiplying (12) by (2tw0)−1 on the left and by (2t)−1 on the right we
get 1− (2t)−1 +w−10 (2t)−1w0 = 0. Substituting x = w0 and y = w−10 (2t)−1

we have 1 = xy − yx. Hence the division ring generated by x and y over K
is isomorphic to A1A

−1
1 .

Now assume that D contains two elements x, y such that xy − yx = 1.
Following the argument of the “if” part in reverse order one can construct
the desired solution of (4). Namely, define w0 = x, t = 1

2y
−1x−1 and z =

t + 1. Then (11) is satisfied. Elements β2, β3, β4 ∈ D \ {0} such that w0 =
(β−14 − β−12 )(β−12 − β−13 )−1 are easy to find. Define T = β3Zβ

−1
4 . Choose

X,Y ∈ D satisfying T = X−1Y . Then (10) is true.
Define A = −β−12 β4 and B = −β−12 β3. Choose α1, . . . , α4 ∈ D such that

βi = α1 − αi for i = 2, 3, 4. Then (9) holds.
Define also A = (α3−α4)−1(α1−α4+(α1−α3)A), B = (α3−α4)−1(α1−

α3 + (α1 − α4)B), X = X(α4 − α3), Y = Y (α4 − α3), p1 = −Xα3 + Y α4

and q1 = X − Y . Then (8) is satisfied.
Now we can find t, r ∈ D \ {0} satisfying (7). Next q2 can be calculated

from (6). Define p2 = −(rp1 + rq1α3 + q2α3). Put s = u = 1. Then q3
and q4 are given by (5). Finally, define p3 = sp2 + sq2α1 − q3α1 and p4 =
up2 + uq2α1 − q4α1. In this way a solution of (4) is obtained.

Now we have to check that our solution corresponds to V 6= W (the
remaining conditions are easy to verify). Suppose that V = W . Then

w1 = p1
∑
j 6=1

vj + q1
∑
j 6=1

αjvj ∈ π1(V ) ∩ V.

Hence we can find g, h ∈ D such that

w1 = g
∑
j

vj + h
∑
j

αjvj .

Comparing both expressions one can prove that g = p1 and h = q1. Hence
p1 + q1α1 = 0. Repeating the arguments given at the end of the proof of
the “if” part in reverse order, we can prove that t = 0. This contradicts the
choice of t (= 1

2y
−1x−1).
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3. The identity as a sum of three nilpotents. Bokut’ proved that
each algebra can be embedded into a simple algebra which is a sum of three
nilpotent algebras of degree 3 (see [2]). We show that the identity element of
M3(D) can be represented as a sum of three nilpotent elements for certain
D. The proof will be preceded by auxiliary lemmas. However, we start with
a negative result concerning such representations.

Proposition 9. The equality 1 = x+y+ z where x2 = y3 = z5 = 0 does
not hold for any K-algebra A with unit and x, y, z ∈ A.

P r o o f. Consider the algebra A = K〈x, y, z : 1 = x + y + z, x2 = y3 =
z5 = 0〉. Eliminating z we get A = K〈x, y : x2 = y3 = (1 − x − y)5 = 0〉.
Since x2 = 0, y3 = 0, from x(1 − x − y)5x = 0 and x(1 − x − y)5y = 0 it
follows that

xy2xy2x = −xyxyxyx+ . . . ,(13)

xy2xyxy = −xyxy2xy − xyxyxy2 + . . . ,(14)

where monomials of degrees ≤ 6 are not specified. Set B = {1, y, y2} and
E = {1, x, xy2, xy2x, xy2xy, xy2xy2, xy2xyx}. Define also

Vm = LinK{monomials of degree ≤ m},

Zm = LinK{b(xy)ne′ : b ∈ B, e′ ∈ E, n ∈ N ∪ {0}
and b(xy)ne′ is of degree ≤ m}.

Every nonzero monomial which cannot be written as in the definition of Zm

must be either (i) b(xy)nxy2xy2xa or (ii) b(xy)nxy2xyxya for some b ∈ B,
n ≥ 0, and for a monomial a (maybe empty). In the first case, applying
(13) we get

b(xy)nxy2xy2xa = −b(xy)nxyxyxyxa+ . . . = −b(xy)n+3xa+ . . .

In the second case applying (14) we get

b(xy)nxy2xyxya = −b(xy)nxyxy2xya− b(xy)nxyxyxy2a+ . . .

= −b(xy)n+1xy2xya− b(xy)n+2xy2a+ . . .

(monomials of smaller degrees are not specified). Repeating the above ar-
guments for monomials of degree m we increase n. This allows us to prove
that Vm ⊆ Zm + Vm−1. Then

Vm ⊆ Zm + Vm−1 ⊆ Zm + (Zm−1 + Vm−1) ⊆ . . . ⊆ Zm + . . .+ Z1 = Zm.

Hence Vm ⊆ Zm. By the definition of Zm we see that GKdim(A) ≤ 1. By
[12] we know that A is PI. Hence A/J(A) is a subdirect product of Mni

(Di),
i ∈ I, where Di are finite-dimensional division algebras over their centers
Z(Di) (see [5]). Now using the Z(Di)-linear trace function on Mni(Di) we
can prove that A = J (A), but 1 ∈ A, a contradiction.
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A similar method can be used to prove that if e = e2 = x + y and
x3 = y5 = 0 then e = 0. This yields a simpler proof than that given in
[4]. It is easy to see that 1 = x + y + z and x2 = y2 = zn = 0, n ∈ N,
leads to a contradiction. The next cases to be considered are those where
x2 = y4 = z4 = 0 or x2 = y3 = z6 = 0. We conjecture that examples of
algebras of these types exist.

Lemma 10. Assume that

g

 1 1 0
0 1 1
0 0 1

 g−1 = (ai,j)

for some g ∈ M3(D) and ai,j ∈ D such that ai,i = 0. Then ai,j 6= 0 for all
i 6= j.

P r o o f. Suppose that ai,j = 0 for some i 6= j. Conjugating by a permu-
tation matrix we can assume that a2,1 = 0. Then

I =

 0 0 0
0 0 0
a3,1 a3,2 0

+

 0 a1,2 a1,3
0 0 a2,3
0 0 0

− g
 0 1 0

0 0 1
0 0 0

 g−1.

This contradicts Proposition 9.

Lemma 11. Under the assumptions of Lemma 10, we can find (i, j, k)
such that {1, 2, 3} = {i, j, k}, ak,jaj,k 6= 1 and ai,jaj,k + ai,k 6= 0.

P r o o f. First assume that ak,jaj,k 6= 1 for some k 6= j. Then we can
assume that ai,jaj,k+ai,k = 0 for i such that {1, 2, 3} = {i, j, k}. In this case
aj,kak,j 6= 1 and ai,kak,j +ai,j = (−ai,jaj,k)ak,j +ai,j = ai,j(1−aj,kak,j) 6= 0
by Lemma 10. Hence the triple (i, k, j) satisfies the claim.

Now, suppose that ai,jaj,i = 1 for every i 6= j. Let

h =

 1 0 0
0 a1,2 0
0 0 a1,2a2,3

 .

Then

(hg)

 1 1 0
0 1 1
0 0 1

 (hg)−1 = h(ai,j)h
−1 =

 0 1 λ
1 0 1
λ−1 1 0


where λ = a1,3a

−1
2,3a

−1
1,2 6= 0. Let p

q
r

 = hg

 1
0
0

 6= 0.
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Then  0 1 λ
1 0 1
λ−1 1 0

 p
q
r

 =

 p
q
r

 .

This immediately implies that λ = −1. Then

2 = rank

(hg)

 1 1 0
0 1 1
0 0 1

 (hg)−1 − I

 = rank

−1 1 −1
1 −1 1
−1 1 −1

 = 1,

a contradiction.

Theorem 12. Let D be a division ring of characteristic zero. Then
M3(D) contains elements x, y, z such that I = x+y+z and x3 = y3 = z3 = 0
if and only if D contains a copy of A1A

−1
1 .

P r o o f. (⇒) By Proposition 9, x is nilpotent of index 3. So x is equal to(
0 −1 0

0 0 −1
0 0 0

)
in a certain basis. By Lemma 2, y+z has zero diagonal in some

basis. Since I − x = y + z, we can find an invertible g ∈M3(D) such that

g

 1 1 0
0 1 1
0 0 1

 g−1 =

 0 p q
s 0 r
t u 0


for some p, q, r, s, t, u ∈ D. By Lemma 10, p, q, r, s, t, u 6= 0. By Lemma 11,
changing the order of v1, v2, v3 if necessary, we can assume that sp 6= 1 and
tp+ u 6= 0. Denoting

g =

 a b c
d e f
g h i

 , a, b, . . . ∈ D,

we have

(15)

 a b c
d e f
g h i

 1 1 0
0 1 1
0 0 1

 =

 0 p q
s 0 r
t u 0

 a b c
d e f
g h i

 .

Comparing the first columns on both sides of (15) we get{
a = pd+ qg,
d = sa+ rg,
g = ta+ ud.

Eliminating a = pd+ qg we get{
(1− sp)d = (sq + r)g,
(1− tq)g = (tp+ u)d.

If g = 0 then d = 0 and a = 0. This implies that g is not invertible, a
contradiction. Hence g 6= 0 and (1−sp)−1(sq+r) = (tp+u)−1(1− tq). Any
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solution of our system of equations with respect to a, d, g looks like{ g = g,
d = (1− sp)−1(sq + r)g,
a = p(1− sp)−1(sq + r)g + qg.

Define X = 1− tq, Y = 1− sp, P = sq + r and Q = tp+ u. Since we have
(tq)(sq)−1(sp)(tp)−1 = 1 it follows that

(16) (1−X)(P − r)−1(1− Y )(Q− u)−1 = 1.

The previous equations can be written in the form

(17) Y −1P = Q−1X and

{ g = g,
d = Y −1Pg,
a = (pY −1P + q)g.

Next we consider further equations derived from (15) (second columns):{
a+ b = pe+ qh,
d+ e = sb+ rh,
g + h = tb+ ue.

By eliminating b = pe+ qh− a we obtain{
d+ sa = (sp− 1)e+ (sq + r)h,
g + ta = (tp+ u)e+ (tq − 1)h.

After eliminating e, h vanishes and we get

(sp− 1)−1(d+ sa) = (tp+ u)−1(g + ta).

By (17) we have

d+ sa = (Y −1P + spY −1P + sq)g

= (Y −1P + (1− Y )Y −1P + (P − r))g = (2Y −1P − r)g
and

g+ ta = (1+ tpY −1P + tq)g = (1+(Q−u)Y −1P +1−X)g = (2−uY −1P )g.

Therefore

(18) −Y −1(2Y −1P − r) = Q−1(2− uY −1P ).

Any solution of the last system of equations with respect to b, e, h has the
form

(19)


h = h,
e = −Y −1((2Y −1P − r)g − Ph),
b = −pY −1((2Y −1P − r)g − Ph) + qh− (pY −1P + q)g

= −pY −1((2Y −1P − r + P )g − Ph) + q(h− g).

Now, consider the remaining equations coming from (15) (third columns):{
b+ c = pf + qi,
e+ f = sc+ ri,
h+ i = tc+ uf.
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By eliminating c = pf + qi− b we obtain{
e+ sb = (sp− 1)f + (sq + r)i,
h+ tb = (tp+ u)f + (tq − 1)i.

After eliminating f , i vanishes and we get

(sp− 1)−1(e+ sb) = (tp+ u)−1(h+ tb).

By (19) we have

e+ sb = − Y −1((2Y −1P − r)g − Ph)

+ (−sp)Y −1((2Y −1P − r + P )g − Ph) + sq(h− g)

= − Y −1((2Y −1P − r)g − Ph)

+ (Y − 1)Y −1((2Y −1P − r + P )g − Ph) + (P − r)(h− g)

= Y −1(−2(2Y −1P − r) + P )g + (2Y −1P − r)h

and

h+ tb = h+ (−tp)Y −1((2Y −1P − r + P )g − Ph) + tq(h− g)

= h+ (u−Q)Y −1((2Y −1P − r + P )g − Ph) + (1− x)(h− g)

= ((u−Q)Y −1(2Y −1P − r) + uY −1P −QY −1P − 1 +X)g

+ (2− (u−Q)Y −1P −X)h

= ((u−Q)Y −1(2Y −1P − r) + (−2 + uY −1P ) + 1)g

+ (2− (u−Q)Y −1P −X)h by (17)

= ((u−Q)Y −1(2Y −1P − r) +QY −1(2Y −1P − r) + 1)g

+ (2− (u−Q)Y −1P −X)h by (18)

= (uY −1(2Y −1P − r) + 1)g + (2− (u−Q)Y −1P −X)h.

Hence

−Y −1[Y −1(−2(2Y −1P − r) + P )g + (2Y −1P − r)h]

= Q−1[uY −1(2Y −1P − r + 1)g + (2− (u−Q)Y −1P −X)h].

By (17) and (18) we have−Y −1(2Y −1P−r)h = Q−1(2−(u−Q)Y −1P−X)h.
Hence −Y −2(−2(2Y −1P − r) + P ) = Q−1(uY −1(2Y −1P − r) + 1). This
implies

(20) (2− Y Q−1u)Y −1(2Y −1P − r) = Y −1P + Y Q−1.

Set P = Y −1P and Q = Y Q−1. Then (17) becomes X = Q−1Y P , and (16),
(18) and (20) can be rewritten as (1−Q−1Y P )(Y P − r)−1(1− Y )(Q−1Y − u)−1 = 1,

−(2P − r) = Q(2− uP ),
(2−Qu)Y −1(2P − r) = P +Q.
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Next we will prove that P 6= 0. If P = 0 then (−r)−1(1− Y )(Q−1Y − u)−1 = 1,
r = 2Q,
(2−Qu)Y −1(−r) = Q.

Eliminating r we get {
Y − 1 = 2Q(Q−1Y − u),
(2−Qu)Y −1(−2Q) = Q.

Hence 3 = 0, a contradiction.
Our system of equations is equivalent to (QP−1 − Y )(Y − rP−1)(1− Y )(Y −Qu)−1 = 1,

rP−1 − 2 = 2QP−1 −Qu,
(2−Qu)Y −1(2− rP−1) = 1 +QP−1.

Define A = QP−1, B = rP−1 and C = Qu. Then (A− Y )(Y −B)−1(1− Y )(Y − C)−1 = 1,
−2 +B = 2A− C,
(2− C)Y −1(2−B) = 1 +A.

Substituting A = 1
2B + 1

2C − 1 we obtain{
Y − 1

2B −
1
2C + 1 = (Y − C)(Y − 1)−1(Y −B),

(2− C)Y −1(2−B) = 1
2B + 1

2C.

If B + C = 0 then B = 2 or C = 2. Let for example B = 2. Then C = −2.
Hence (Y + 1) = (Y − 2)(Y − 1)−1(Y − 2). This is equivalent to 0 = 3, a
contradiction. Hence B + C 6= 0. Set S = (B + C)−1, T = B(B + C)−1,
(1− T = C(B + C)−1) and Y = Y (B + C)−1. Then{

Y + S − 1
2 = (Y − (1− T ))(Y − S)−1(Y − T ),

(2S − (1− T ))Y −1(2S − T ) = 1
2 .

Hence {(
Y + S − 1

2

)
(Y − T )−1 = (Y + T − 1)(Y − S)−1,

Y = 1
2 (2S − T )(2S + T − 1).

The first equation will be transformed equivalently:(
(Y − T ) +

(
T + S − 1

2

))
(Y − T )−1 = ((Y − S) + (T + S − 1))(Y − S)−1,(

T + S − 1
2

)
(Y − T )−1 = (T + S − 1)(Y − S)−1,

(Y − T )
(
T + S − 1

2

)−1
= (Y − S)(T + S − 1)−1,

Y
((
T + S − 1

2

)−1 − (T + S − 1)−1
)

= T
(
T + S − 1

2

)−1 − S(T + S − 1)−1,

Y
((
T + S − 1

2

)−1
(T + S − 1)− 1

)
= T

(
T + S − 1

2

)−1
(T + S − 1)− S,

Y
[(
T+S− 1

2

)−1((
T+S− 1

2

)
− 1

2

)
−1
]

= T
(
T+S− 1

2

)−1((
T+S− 1

2

)
− 1

2

)
−S,
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Y
(
− 1

2

)(
T + S − 1

2

)−1
= T

(
1− 1

2

(
T + S − 1

2

)−1)− S,(
− 1

2Y + 1
2T
)(
T + S − 1

2

)−1
= T − S.

Substituting Y = 1
2 (2S − T )(2S + T − 1) we have

− 1
4 (2S − T )(2S + T − 1) + 1

2T = (T − S)
(
T + S − 1

2

)
,

− 3
4T

2 + 1
2ST −

1
2TS + 3

4T = 0,

− 3
4T + 1

2 (ST−1)T − 1
2T (ST−1) + 3

4 = 0,(
2
3ST

−1)(T − 1)− (T − 1)
(
2
3ST

−1) = T − 1.

If T = 1 then 0 = C = Qu = Y Q−1u, a contradiction. Hence T − 1 6= 0 and
we have[(

2
3ST

−1)(T − 1)−1
]
(T − 1)− (T − 1)

[(
2
3ST

−1)(T − 1)−1
]

= 1

Define M =
(
2
3ST

−1)(T − 1)−1 and N = T − 1. Then MN − NM = 1.

Hence D contains a copy of A1A
−1
1 .

(⇐) Let M,N ∈ D be such that MN−NM = 1. We will find a solution
of the system of equations arising from (15). This may be done by following
the argument of the proof of (⇒) in reverse order. If M = 2

3ST
−1(T − 1)−1

and N = T − 1 then T = N + 1 and S = 3
2MN(N + 1). Hence Y =

1
2 (2S − T )(2S + T − 1). Now we get B = TS−1, C = (1 − T )S−1 and

A = 1
2B + 1

2C − 1. Put P = 1. Then Q = A, r = B, u = A−1C. Moreover,

P = Y P , Q = Q−1Y and X = Q−1Y P . We have defined X,Y, P,Q, r, u
such that (16), (18) and (20) are satisfied.

Next we use (16) to define p, q, s, t. Put p = 1. Then s = 1 − Y , q =
s−1(P − r) and t = Q − u. Now, the proof of (⇒) yields a solution of the
system of equations arising from (15), with p, q, r, s, t, u given. For example
let g = 1, d = Y −1Pg and a = (pY −1P + q)g. From (19) we can read h, e, b
(h can be chosen arbitrary), and so forth.

Now we have to prove that the solution just constructed leads to an
invertible matrix g. Let

W =


 p
q
r

 : p, q, r ∈ D, g

 p
q
r

 =

 0
0
0

 .

Then by (15),

(
1 1 0

0 1 1

0 0 1

)
W ⊆ W . Hence if W 6= 0 then

(
1

0

0

)
∈ W and

the first column of g is zero, a contradiction. Therefore W = 0 and g is
invertible. Hence

I = g

 0 −1 0
0 0 −1
0 0 0

 g−1 +

 0 0 0
s 0 0
t u 0

+

 0 p q
0 0 r
0 0 0


is the desired decomposition.
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It is easy to see that the assertions of Theorems 8 and 12 remain true,
with the same proofs, if D is any division ring of characteristic 6= 2, 3.

Now we can give an example of an idempotent e such that e = x+y and
x3 = y6 = 0. The assertion of Theorem 12 will be used in the construction.

Example 13. Let T , T 1 be the free semigroup, respectively monoid,
generated by 1, 1′, 2, 2′, 3, 3′. Put X = {1, 2, 3}, X ′ = {1, 1′, 2, 2′, 3, 3′} and
define an order < on X ′ by 1 < 1′ < 2 < 2′ < 3 < 3′. In a vector space over
K consider the following system of equations in unknowns vr for r ∈ T :

(21)


∑

i∈X′ vr1ir2 = vr1r2 where r1, r2 ∈ T ,
vr1iir2 = 0 where r1, r2 ∈ T 1, i ∈ X ′,
vr1ii′r2 = 0 where r1, r2 ∈ T 1, i ∈ X.

We will find a solution of (21) which satisfies the condition

(22)
∑
i∈X′

v1i 6= 0.

Assume that D is a division ring such that A1A
−1
1 ⊆ D. From Theorem

12 we know that there exist b1, b2, b3 ∈ M3(D) such that I = b1 + b2 + b3
and b31 = b32 = b33 = 0. Each bi can be written as 0 1 0

0 0 1
0 0 0

 =

 0 0 0
0 0 1
0 0 0

+

 0 1 0
0 0 0
0 0 0


in some basis of D3. Hence we can find ai, ai′ ∈ M3(D) such that bi =
ai + ai′ and a2i = aiai′ = a2i′ = 0. Let v ∈ D3 \ {0} be such that a1v 6= 0.
Define vik...i1 = aik . . . ai1v for i1, . . . , ik ∈ X ′. If r1 = ijij−1 . . . ik+1 and
r2 = ikik−1 . . . i1 for i1, . . . , ij ∈ X ′, then∑
i∈X′

vr1ir2 =
∑
i∈X′

aij . . . aik+1
aiaik . . . ai1v = aij . . . aik+1

( ∑
i∈X′

ai

)
aik . . . ai1v

= aij . . . aik+1
aik . . . ai1v = vr1r2 ,

vr1iir2 = aij . . . aik+1
aiaiaik . . . ai1v = 0,

vr1ii′r2 = 0 similarly.

Hence (21) is satisfied. Since
∑

i∈X′ v1i =
∑

i∈X′ a1aiv = a1v 6= 0, (22)

holds. Let V be a linear space (over K) spanned by the vectors vr (r ∈ T ),
subject to the relations given in (21). Define e, x, y ∈ EndK(V ) by

x(vri) =
∑

j∈X′:j>i

vrij , y(vri) =
∑

j∈X′:j<i

vrij for r ∈ T 1, e = x+ y.

Then x, y are indeed well defined since they preserve the relations defining
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V . For example: if r2 = r′2k for r′2 ∈ T 1 and k ∈ X ′, then

x
( ∑

i∈X′
vr1ir′2k

)
− xvr1r′2k =

( ∑
i,j∈X′:j>k

vr1ir′2kj

)
−
( ∑

j∈X′:j>k

vr1r′2kj

)
=

∑
j∈X′:j>k

[( ∑
i∈X′

vr1i(r′2kj)

)
vr1(r′2kj)

]
= 0.

Moreover, e is a nonzero idempotent because

e(evr) = e
( ∑

i∈X′
vri

)
=
∑

i,j∈X′
vrij =

∑
j∈X′

( ∑
i∈X′

vrij

)
=
∑
j∈X′

vrj = evr

for r ∈ T and e(v1) =
∑

i∈X′ v1i 6= 0. Let r′ ∈ T 1 and i ∈ X ′. It is easy to
see that

x3(vr′i) =
∑

j1,j2,j3∈X′:i<j1<j2<j3

vr′ij1j2j3 .

Since certain neighbouring elements of the sequence i, j1, j2, j3 are equal to
k, k′ for some k ∈ X, from (21) it follows that vr′ij1j2j3 = 0. This proves
that x3 = 0. Similarly one can show that y6 = 0.

Examples of the following two types were constructed in [4]: an identity
element which is a sum of four nilpotent elements of degree 2, and a nonzero
idempotent which is a sum of three nilpotent elements of degree 2. Another
construction of this type can be obtained from [1, Prop. 2.2.1]. Here we give
new examples by considering M2(D). As in the preceding constructions,
this leads to the first Weyl algebra.

Proposition 14. There exists an idempotent e ∈M2(D)\{0} which is a
sum of three nilpotent elements if and only if D contains a copy of A1A

−1
1 .

P r o o f. (⇒) Let e = x+y+z where x, y, z ∈M2(D) are nilpotent. Then
x2 = y2 = z2 = 0. Since e−z is a sum of two nilpotent elements, by Lemma
2 we can assume (changing the basis) that e− z =

( 0 q

p 0

)
for some p, q ∈ D.

Let z =
(
a b

c d

)
, a, b, c, d ∈ D. Since z2 = 0 and z 6= 0, either b 6= 0 or c 6= 0.

Let for example b 6=0. From z2 =0 we get a2 + bc=0. Hence c=−b−1a2.
Also ab+ bd = 0, so that d = −b−1ab. (It is easy to see that(

a b
c d

)
=

(
a b

−b−1a2 −b−1ab

)
is nilpotent). Therefore

e =

(
a b+ q

p− b−1a2 −b−1ab

)
.
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Define p = p− b−1a2 and q = b+ q. Then

e =

(
a q
p −b−1ab

)
.

If p = q = 0 then from e2 = e we get a2 = a and b−1a2b = −b−1ab.
Hence a = 0 and e = 0, a contradiction.

So suppose for example that p 6= 0. Then e2 = e implies pa+(−b−1ab)p =
p. Hence (abp)(p−1b−1) − (p−1b−1)(abp) = 1. Defining x = abp and y =
p−1b−1 we obtain xy − yx = 1. Therefore D contains a copy of A1A

−1
1 .

(⇐) Assume that x, y ∈ D such that xy− yx = 1 are given. Let a = xy,
b = y−1, p = 1 and q = xy − (xy)2. Then

e =

(
a q
p −b−1ab

)
is a nonzero idempotent. Put p = p + b−1a2 = 1 + yxyxy and q = q − b =
xy − (xy)2 − y−1. Then

e =

(
0 0
p 0

)
+

(
0 q
0 0

)
+

(
a b

−b−1a2 −b−1ab

)
is a sum of three nilpotent elements.

Proposition 15. I ∈M2(D) can be represented as a sum of four nilpo-
tent elements if and only if D contains a copy of A1A

−1
1 .

P r o o f. (⇒) Let I = x+y+z+ t where x, y, z, t ∈M2(D) are nilpotent.

By Lemma 2 we can assume that z+ t =
( 0 q

p 0

)
for some p, q ∈ D. Similarly

there exists an invertible A ∈M2(D) and r, s ∈ D such that

x+ y = A

(
0 s
r 0

)
A−1.

Hence

A = A

(
0 s
r 0

)
+

(
0 q
p 0

)
A.

Assume that A =
(
a b

c d

)
, a, b, c, d ∈ D. Then our equality is equivalent to

(23)


a = br + qc,
b = as+ qd,
c = dr + pa,
d = cs+ pb.

If one of p, q, r, s is zero then I can be represented as a sum of three
nilpotent elements of degree 2. This contradicts [4]. Hence p, q, r, s 6= 0.
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Next we show that a, b, c, d 6= 0. Let for example a = 0. Then we get
0 = br + qc,
b = qd,
c = dr,
d = cs+ pb.

Substituting b = qd and c = dr to the first equation we get 0 = 2qdr. Hence
d = 0 and b = qd = 0, c = dr = 0, a contradiction (A is invertible). The
proof that b, c, d 6= 0 is similar.

Now we eliminate q from the first and second equations of (23) and p
from the third and fourth equations of (23):{

(a− br)c−1 = (b− as)d−1,
(c− dr)a−1 = (d− cs)b−1.

Defining f = b−1a and g = d−1c we get{
f − r = (1− fs)g,
g − r = (1− gs)f.

After eliminating r we obtain −f + g − fsg = −g + f − gsf . Define h by
g = f+h and substitute it to the previous equation. We get 2h = fsh−hsf .
If h = 0 then b−1a = d−1c and A is not invertible. Hence h 6= 0. Therefore
1 =

(
1
2h
−1f

)
(sh) − (sh)

(
1
2h
−1f

)
. Put x = 1

2h
−1f and y = sh. Then 1 =

xy − yx. Hence D ⊇ A1A
−1
1 .

(⇐) Assume that x, y ∈ D such that 1 = xy − yx are given. Put h = 1.
Then reading the proof of (⇒) in reverse direction we have f = 2hx = 2x,
s = yh−1 = y, g = f+h = 2x+1 and r = f−(1−fs)g = −1+2xy+4xyx. Put
also b = d = 1. Then a = bf = 2x, c = dg = 2x+1, q = (a−br)c−1 = 1−2xy
and p = (c−dr)a−1 = 1+x−1−xyx−1+2xy. The elements a, b, c, d, p, q, r, s
just found satisfy (23) and A is invertible because h 6= 0. This gives the
desired decomposition of I.

4. An application. In [6, 7] Kegel proved that a ringR which is a sum of
two nilpotent subrings R1 and R2 must be nilpotent. If R is an algebra over
a field K, then we may assume that R ⊆ EndK(V ), where V is a K-linear
space. Define Wi = {v ∈ V : Ri

1v = 0} and Zj = {v ∈ V : Rj
2v = 0} and

i, j = 1, 2, . . . Then W1 ⊆ . . . ⊆ Wn = V and Z1 ⊆ . . . ⊆ Zm = V where
n,m are the nilpotency degrees of R1, R2 respectively. By Lemma 1 we can
find subspaces Yi,j ⊆ V such that Wk =

⊕
i≤k Yi,j and Zl =

⊕
j≤l Yi,j .

Since R1Wi ⊆ Wi−1, R2Zj ⊆ Zj−1 for i, j = 1, 2, . . . (W0 = Z0 = 0) and
R = R1 +R2 we have

R(Yi,j) ⊆Wi−1 + Zj−1 ⊆
⊕

(k,l) 6=(i,j)

Yk,l.
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So it is natural to consider the following problem. Let V =
⊕n

i=1 Vi where Vi
are subspaces of a K-linear space V and let R ⊆ EndK(V ) be a subalgebra
satisfying R(Vi) ⊆

⊕
j 6=i Vj . Is R necessarily nilpotent?

The answer is negative in general by Theorem 8 (take R = LinK(e)).
Hence we shall discuss the case where V is finite-dimensional. Then R must
be nilpotent since tr(R)=0. The natural question that arises here is whether
the nilpotency degree of R is bounded by a function depending on n only
(as in Kegel’s theorem). We answer this question in the more convenient
setting of a semigroup R (clearly, if R satisfies the desired conditions, then
the linear span of R also satisfies them).

Proposition 16. Let V =
⊕n

i=1 Vi, dimK(V )<∞ and let S⊆EndK(V )
be a semigroup satisfying S(Vi) ⊆

⊕
j 6=i Vj. Then

(a) if n = 2 then S2 = 0,
(b) if n = 3 then S4 = 0.

On the other hand , if n = 4 then S may have an arbitrarily large nilpotency
degree.

P r o o f. (a) For any s ∈ S we have s(V1) ⊆ V2 and s(V2) ⊆ V1. Let
s1, s2 ∈ S. Then s1s2(V1) ⊆ s1(V2) ⊆ V1 and s1s2(V2) ⊆ s1(V1) ⊆ V2. Since
s1s2 ∈ S, we have s1s2(V1) ⊆ V1 ∩ V2 = 0 and s1s2(V2) ⊆ V2 ∩ V1 = 0. This
implies s1s2 = 0. Hence S2 = 0.

(b) First we show that it is sufficient to prove the claim for semigroups
S generated by one element. Let s1, . . . , s4 ∈ S. Consider s ∈ EndK(V 5)
defined by s(v1, v2, v3, v4, v5) = (s1v2, s2v3, s3v4, s4v5, 0) for any vi ∈ V .
Then the condition s1 . . . s4 = 0 is equivalent to s4 = 0. Moreover, V 5 =⊕4

i=1 V
5
i and sk(V 5

i ) ⊆
⊕

j 6=i V
5
j for k = 1, 2, . . . Hence it is enough to

consider the semigroup generated by s. So we can indeed assume that S is
generated by some s ∈ S.

Let v1 ∈ V1. Then s(v1) = v2+v3 for some v2 ∈ V2 and v3 ∈ V3. Similarly
s(v2) = v′1 + v′3, s(v3) = v′′1 + v′2 for some v′1, v

′′
1 ∈ V1, v′2 ∈ V2 and v′3 ∈ V3.

Since

s2(v1) = s(v2 + v3) = (v′1 + v′′1 ) + v′2 + v′3 ∈ V2 ⊕ V3,
we get v′′1 = −v′1. Moreover, s(v′1) = v2 + v3, s(v′2) = v1 + v3 and s(v′3) =
v1 + v2 for some v1, v1 ∈ V1, v2, v2 ∈ V2 and v3, v3 ∈ V3. Now

s2(v2) = s(v′1 + v′3) = v1 + (v2 + v2) + v3 ∈ V1 ⊕ V3
implies that v2 = −v2. Since

s2(v3) = s(−v′1 + v′2) = v1 − v2 + (−v3 + v3) ∈ V1 ⊕ V2,
we get v3 = v3. Similarly

s3(v1) = s(v′2 + v′3) = (v1 + v1) + v2 + v3 ∈ V2 ⊕ V3
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implies that v1 = −v1. We also have s(v1) = ṽ2 + ṽ3, s(v2) = ṽ1 + v̂3 and
s(v3) = v̂1 + v̂2 for some ṽi, v̂i ∈ Vi, i = 1, 2, 3. Since

s2(v′1) = s(v2 + v3) = (ṽ1 + v̂1) + v̂2 + v̂3 ∈ V2 ⊕ V3,
it follows that v̂1 = −ṽ1. From

s2(v′2) = s(v1 + v3) = v̂1 + (ṽ2 + v̂2) + ṽ3 ∈ V1 ⊕ V3
it follows that v̂2 = −ṽ2. Similarly

s2(v′3) = s(−v1 − v2) = −ṽ1 − ṽ2 + (−ṽ3 − v̂3) ∈ V1 ⊕ V2
leads to v̂3 = −ṽ3.

Next note that

s3(v2) = s(−v1 + v3) = v̂1 + (−ṽ2 + v̂2)− ṽ3 = −ṽ1 − 2ṽ2 − ṽ3 ∈ V1 ⊕ V3,
and consequently ṽ2 = 0. Since

s3(v3) = s(v1 − v2) = −ṽ1 + ṽ2 + (ṽ3 − v̂3) = −ṽ1 + ṽ2 + 2ṽ3 ∈ V1 ⊕ V2,
we also get ṽ3 = 0. Finally,

s4(v1) = s(−v2 + v3) = (−ṽ1 + v̂1) + v̂2 − v̂3 = −2ṽ1 − ṽ2 + ṽ3 ∈ V2 ⊕ V3,
so that ṽ1 = 0. This implies s4(v1) = 0 because ṽi = 0 for i = 1, 2, 3.
Similarly one can prove that s4|Vi

= 0 for i = 2, 3. Hence s4 = 0, as desired.

To prove the remaining assertion, fix some n ∈ N. Let T be the free
monoid generated by 1, 2, 3, 4. We denote by |w| the length of a word w ∈ T .
Put X = {1, 2, 3, 4}. Consider the system of linear equations with unknown
vectors vr, where r ∈ T, and |r| ≤ n,

(24)
∑

r∈T :|r|=k

vr1irir2 = 0 for r1, r2 ∈ T, i ∈ X, k ∈ N ∪ {0}

such that |r1irir2| ≤ n.

We show that there exists a solution of (24) satisfying

(25)
∑

r∈T :|r|=n

vr 6= 0.

Let e ∈ M4(D) be an idempotent with zero diagonal arising from The-
orem 8. Let ei ∈ M4(D) denote the projection on the ith coordinate in
D4, i = 1, 2, 3, 4. Define v1 = (1, 0, 0, 0), v2 = v3 = v4 = 0 ∈ D4 and
vi1...ik = (eike) . . . (ei2e)vi1 for k ≥ 2, i1, . . . , ik ∈ X. We check that (24) is
satisfied.

Let r1 = i1 . . . ip and r2 = j1 . . . jq. Then∑
r∈T :|r|=k

vr1irir2

=
∑

z1,...,zk∈X
(ejqe) . . . (ej1e)(eie)[(ezke) . . . (ez1e)](eie)(eipe) . . . (ei2e)vi1
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= (ejqe) . . . (ej1e)(eie)
( 4∑

i=1

eie
)k

(eie)(eipe) . . . (ei2e)vi1

= (ejqe) . . . (ej1e)(eieeie)(eipe) . . . (ei2e)vi1 = 0

because eieei = 0 and eievi = 0 if |r1| = 0. Moreover,∑
r∈T :|r|=n

vr =
∑

i1,...,in∈X
(eine) . . . (ei2e)vi1 =

( 4∑
i=1

(eie)
)n−1

v1 = ev1 6= 0.

This yields (25).
Let Vn be the K-linear space spanned by the vectors vt, (t ∈ T ) subject

to relations (24) and vt = 0 for |t| ≥ n + 1. Define s ∈ EndK(Vn) by
s(vr) =

∑n
i=1 vri for |r| ≤ n− 1 and s(vr) = 0 for |r| ≥ n. Then s is indeed

well defined since it preserves the defining relations of Vn. Namely,

s
( ∑

r∈T :|r|=k

vr1irir2

)
=

∑
r∈T :|r|=k

4∑
j=1

vr1irir2j =

4∑
j=1

( ∑
r∈T :|r|=k

vr1irir2j

)
= 0

and s(vt) =
∑4

i=1 vti = 0 for t ∈ T such that |t| ≥ n + 1. Let Vn,i =
LinK{vri : r ∈ T}, i ∈ X. Since the defining relations of Vn are homoge-
neous with respect to the last letter of the index r ∈ T of vr, it follows that
Vn =

⊕4
i=1 Vn,i.

We check that sm(Vn,i) ⊆
⊕

j 6=i Vn,j . Let r1 ∈ T . Then

sm(vr1i) =
∑

i1,...,im∈X
vr1ii1...im

=
∑

i1,...,im−1

vr1ii1...im−1i +
∑

i1,...,im:im 6=i

vr1ii1...im−1im

=
∑

i1,...,im:im 6=i

vr1ii1...im−1im ∈
⊕
j 6=i

Vn,j .

Moreover, sn(vr1) =
∑

i1,...,in∈X vr1i1...in = 0 and

sn−1(v1 + . . .+ v4) =
∑

r∈T :|r|=n

vi1...in 6= 0

because there exists a solution of (24) satisfying (25). Hence s is nilpotent
of degree n and the semigroup generated by s has the desired properties.

Our final example shows that the bound on the nilpotency degree of the
semigroup S in Proposition 16(b) cannot be improved.

Example 17. Let v1, . . . , v9 be a basis of a K-linear space V . Define
s ∈ EndK(V ) by s(v1) = v4 + v7, s(v2) = v6 + v9, s(v3) = 0, s(v4) =
v2 + v8, s(v5) = v3 + v9, s(v6) = 0, s(v7) = −v2 + v5, s(v8) = −v3 − v6
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and s(v9) = 0. Set also V1 = LinK(v1, v2, v3), V2 = LinK(v4, v5, v6) and
V3 = LinK(v7, v8, v9). Then V = V1 ⊕ V2 ⊕ V3. It is easy to check that
sk(Vi) ⊆

⊕
j 6=i Vj for k = 1, 2, . . . , i = 1, 2, 3 and s3 6= 0.
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