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SUBDIRECT DECOMPOSITIONS OF ALGEBRAS
FROM 2-CLONE EXTENSIONS OF VARIETIES

BY

J. P  L O N K A (WROC LAW)

Let τ : F → N be a type of algebras, where F is a set of fundamental
operation symbols and N is the set of nonnegative integers. We assume that
|F | ≥ 2 and 0 6∈ τ(F ). For a term ϕ of type τ we denote by F (ϕ) the
set of fundamental operation symbols from F occurring in ϕ. An identity
ϕ ≈ ψ of type τ is called clone compatible if ϕ and ψ are the same variable
or F (ϕ) = F (ψ) 6= ∅. For a variety V of type τ we denote by V c,2 the
variety of type τ defined by all identities ϕ ≈ ψ from Id(V ) which are
either clone compatible or |F (ϕ)|, |F (ψ)| ≥ 2. Under some assumption on
terms (condition (0.iii)) we show that an algebra A belongs to V c,2 iff it is
isomorphic to a subdirect product of an algebra from V and of some other
algebras of very simple structure. This result is applied to finding subdirectly
irreducible algebras in V c,2 where V is the variety of distributive lattices or
the variety of Boolean algebras.

0. Preliminaries. We consider algebras of a given type τ : F → N,
where F is a set of fundamental operation symbols and N is the set of
nonnegative integers (cf. [2] and [5]). In this paper we assume that |F | ≥ 2
and 0 6∈ τ(F ), i.e. we do not admit nullary fundamental operation symbols.

If ϕ is a term of type τ we denote by Var(ϕ) the set of variables occurring
in ϕ, and by F (ϕ) the set of fundamental operation symbols in ϕ. Writing
ϕ(xi1 , . . . , xim) instead of ϕ means that Var(ϕ) = {xi1 , . . . , xim}.

In several papers identities of some special structural forms and construc-
tions of algebras connected with them were considered. Let us recall some
of them. An identity ϕ ≈ ψ of type τ is regular if Var(ϕ) = Var(ψ) (see,
e.g., [6], [7], [10], [11], [15]). An identity ϕ ≈ ψ of type τ is nontrivializing or
normal if it is of the form x ≈ x or F (ϕ) 6= ∅ 6= F (ψ) (see, e.g., [4], [8], [13]).
Let P be a partition of F . An identity ϕ ≈ ψ of type τ is P -compatible if it
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is of the form x ≈ x or F (ϕ) 6= ∅ 6= F (ψ) and the outermost fundamental
operation symbols in ϕ and ψ are in the same block of P (see, e.g., [17]). An
identity ϕ ≈ ψ of type τ is biregular if Var(ϕ) = Var(ψ) and F (ϕ) = F (ψ)
(see, e.g., [14]–[16]).

In [18] we defined the so-called clone compatible identities as follows:
ϕ ≈ ψ of type τ is clone compatible if it is of the form x ≈ x or F (ϕ) =
F (ψ) 6= ∅. If V is a variety of type τ we denote by Id(V ) the set of all
identities of type τ satisfied in every algebra from V . For a variety V of
type τ we denote by V c the variety of type τ defined by all clone compatible
identities from Id(V ). We denote by V c,2 the variety of type τ defined by all
identities ϕ ≈ ψ from Id(V ) satisfying one of the following two conditions:

F (ϕ) = F (ψ), |F (ϕ)| = 1,(0.i)

|F (ϕ)|, |F (ψ)| ≥ 2.(0.ii)

We call the variety V c,2 the 2-clone extension of the variety V .
In [18] the variety V c,2 was denoted by V c. Here we prefer the notation

V c,2 since it agrees with the notation V c,n from [20] for n = 2.
Studying the variety V c,2 is very useful if we want to find descriptions

of algebras from V c. This is so because in many cases we have V c = V c,2.
This is the case if V is a variety of lattices, the variety of Boolean algebras
or a variety of groups satisfying xn ≈ yn for some n (see [18], examples).
Moreover, in [18] we found representations of algebras from V c = V c,2 by
means of so-called clone extensions of algebras from V , where we use the
following condition.

(0.iii) For every f ∈ F there exists a term qf (x) of type τ such that
F (qf (x)) = {f} and the identity qf (x) ≈ x belongs to Id(V ).

Note that this assumption is satisfied in lattices and Boolean algebras since
in lattices we have x + x ≈ x · x ≈ x, and in Boolean algebras we have
(x′)′ ≈ x. This assumption is also satisfied in varieties of groups if they
satisfy xn ≈ yn so xn+1 ≈ x and (x−1)−1 ≈ x.

In [19] we generalize results from [17] and in [18] we deal with free alge-
bras over V c,2 and in general over V c,n in some cases. In the present paper
under the assumption (0.iii) we give another representation of algebras from
V c,2. We prove that an algebra A belongs to V c,2 iff it is isomorphic to a
subdirect product of an algebra from V and some algebras easy to describe
(see Theorem 1.9).

This subdirect decomposition is useful for finding subdirectly irreducible
algebras in Dc = Dc,2 and Bc = Bc,2, where D is the variety of distributive
lattices and B is the variety of Boolean algebras (Section 2).

If an identity ϕ ≈ ψ belongs to Id(V ), we often write V |= ϕ ≈ ψ. If
A = (A;FA) is an algebra from V , ϕ(xi1 , . . . , xim) and ψ(xj1 , . . . , xjs) are
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terms of type τ , ai1 , . . . , aim , aj1 , . . . , ajs ∈ A and the equality

ϕA(xi1 , . . . , xim) = ψA(xj1 , . . . , xjs)

holds in A since V |= ϕ ≈ ψ, then we write

ϕA(xi1 , . . . , xim)
V
= ψA(xj1 , . . . , xjs).

It should be emphasized that many identities are consequences of (0.iii)
and are of the form (0.i) or (0.ii), so they belong to Id(V c,2); for example in
V c,2 we have

(0.iv) qf (qf (x)) ≈ qf (x) for every f ∈ F ,
(0.v) qf (qg(x)) ≈ qp(qs(x)) for every f, g, p, s ∈ F with f 6= g and p 6= s.

The results of this paper were presented to the conference “Workshop on
hyperidentities and clones”, Kemnitz, April 3–6, 1997 and to the algebraic
seminar at the University of Wroc law.

1. Subdirect decomposition of algebras from V c,2. In this section
we assume that V is a variety of type τ satisfying (0.iii) and A = (A;FA)
is an algebra from V c,2. For some distinct f, g ∈ F and for qf , qg satisfying
(0.iii) we put qh(x) = qf (qg(x)). We define a relation Rh on A putting, for
a, b ∈ A,

aRh b iff qAh (a) = qAh (b).

By (0.v) the relation Rh does not depend on the choice of f and g.

Lemma 1.1. The relation Rh is a congruence of A.

P r o o f. Obviously Rh is an equivalence. It satisfies the superposition
law since for every s ∈ F and a1, . . . , aτ(s) ∈ A we have

qAh (sA(a1, . . . , aτ(s)))
V c,2

= sA(qAh (a1), . . . , qAh (aτ(s))).

Lemma 1.2. The algebra A/Rh belongs to V .

P r o o f. If V |= ϕ ≈ ψ, then by (0.iii), V |= qh(ϕ) ≈ qh(ψ) and qh(ϕ) ≈
qh(ψ) is of the form (0.ii). So V c,2 |= qh(ϕ) ≈ qh(ψ). Consequently, A/Rh
satisfies ϕ ≈ ψ.

For every f ∈ F we define a relation Rf on A putting, for a, b ∈ A,
aRf b iff one of the following two conditions holds:

qAf (a) = qAf (b),(1.i)

qAf (a) = qAh (a) and qAf (b) = qAh (b).(1.ii)

By (0.i) the relation Rf depends on f but not on the choice of qf .

Lemma 1.3. For every f ∈ F the relation Rf is a congruence of A.
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P r o o f. For every f ∈ F the relation Rf is reflexive and symmetric.
Let a, b, c ∈ A. To show the transitivity consider a nontrivial case when
qAf (a) = qAf (b), qAf (b) = qAh (b) and qAf (c) = qAh (c). Then by (0.v) we have

qAf (a) = qAf (b) = qAh (b)
V c,2

= qAg (qAf (b)) = qAg (qAf (a)) = qAh (a)

for some g 6= f , g ∈ F . Thus qAf (a) = qAh (a) and qAf (c) = qAh (c). The other
cases for transitivity are trivial or analogous.

We check the superposition property for Rf . Let s ∈ F and ak Rf bk for
k ∈ {1, . . . , τ(s)}. If qAf (ak) = qAf (bk) for k = 1, . . . , τ(s), then

qAf (sA(a1, . . . , aτ(s)))
V c,2

= sA(qAf (a1), . . . , qAf (aτ(s)))

= sA(qAf (b1), . . . , qAf (bτ(s)))
V c,2

= qAf (sA(b1, . . . , bτ(s))).

Assume ak Rf bk for k ∈ {1, . . . , τ(s)}; since qAf (ak) = qAh (ak) and qAf (bk)

= qAh (bk) without loss of generality we can assume k = 1. Then

qAf (sA(a1, a2, . . . , aτ(s)))
V c,2

= sA(qAf (a1), a2, . . . , aτ(s))

= sA(qAh (a1), a2, . . . , aτ(s))
V c,2

= qAh (sA(a1, a2, . . . , aτ(s))).

Similarly

qAf (sA(b1, . . . , aτ(s))) = qAh (sA(b1, . . . , bτ(s))).

For f ∈ F we denote by V (f) the variety of type τ defined by all identities
ϕ ≈ ψ of type τ satisfying one of the following two conditions:

F (ϕ) \ {f} 6= ∅ 6= F (ψ) \ {f},(1.iii)

V |= ϕ ≈ ψ and F (ϕ) ∪ F (ψ) ⊆ {f}.(1.iv)

Lemma 1.4. Obviously V (f) ⊆ V c,2. Moreover , an algebra B = (B;FB)
belongs to V (f) iff it satisfies all identities of the form (1.iv) and there exists
an element ef in B such that the value of every fundamental operation gB

is the constant ef if g ∈ F \ {f}, and the value of fB is equal to ef if ef
occurs among the arguments of fB.

Lemma 1.5. For every f ∈ F the algebra A/Rf belongs to V (f).

P r o o f. If an identity ϕ ≈ ψ is of the form (1.iv), then the identity
qf (ϕ) ≈ qf (ψ) is of the form (0.i), so ϕ ≈ ψ holds in A/Rf . If ϕ ≈ ψ is of
the form (1.iii), then the identities qf (ϕ) ≈ qh(ϕ) and qf (ψ) ≈ qh(ψ) are of
the form (0.ii), so ϕ ≈ ψ holds in A/Rf .

We define a relation R0 on A putting, for a, b ∈ A,

aR0 b iff a = b or for some f1, f2 ∈ F we have

qAf1(a) = a and qAf2(b) = b.
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Lemma 1.6. The relation R0 is a congruence of A.

P r o o f. Clearly, R0 is an equivalence. It satisfies the superposition prop-
erty since for every s ∈ F and a1, . . . , aτ(s) ∈ A we have

qAs (sA(a1, . . . , aτ(s)))
V c,2

= sA(a1, . . . , aτ(s)).

We denote by V (0) the variety of 0-algebras of type τ , i.e. the variety
defined by all identities ϕ ≈ ψ of type τ with F (ϕ) 6= ∅ 6= F (ψ) (see [13]).
This means that in every algebra from V (0) the value of every fundamental
operation and every term function is equal to one fixed constant e0.

Lemma 1.7. If f ∈ F , then

qAf (A) = {x : x ∈ A, qAf (x) = x}

=
{
x :

∨
a1,...,aτ(f)∈A

fA(a1, . . . , aτ(f)) = x
}
.

P r o o f. If a ∈ qAf (A), then there is b ∈ A with qAf (b) = a. So

qAf (a) = qAf (qAf (b))
V c,2

= qAf (b) = a

by (0.iv). If qAf (a) = a, then since qf is a term different from a variable, the
outermost fundamental operation symbol occurring in qf is f . Thus the last
condition of the statement holds.

If a = fA(b1, . . . , bτ(f)), then

qAf (a) = qAf (fA(b1, . . . , bτ(f)))
V c,2

= fA(b1, . . . , bτ(f)) = a,

which completes the proof.

We define 0 =
⋃
f∈F q

A
f (A).

Lemma 1.8. The algebra A/R0 belongs to V (0).

P r o o f. This follows from the fact that by Lemma 1.7 one of the con-
gruence classes of R0 is 0 and the remaining classes are singletons.

Lemma 1.9. The congruence R∩ = Rh∩
⋂
f∈F Rf ∩R0 coincides with ω,

the equality in A.

P r o o f. Let a, b ∈ A. We assume

(1.1) a 6= b.

We show that one of the congruences Rh, Rf , R0 separates a and b.
If a, b ∈ A \ 0, or a ∈ A \ 0 and b ∈ 0, or a ∈ 0 and b ∈ A \ 0, then R0

separates a and b by Lemma 1.7.
Let

(1.2) a, b ∈ 0 and a, b ∈ qAf (A) for some f ∈ F.
Then by Lemma 1.7 we have
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(1.3) qAf (a) = a and qAf (b) = b.

We show that either 〈a, b〉 6∈ Rf or 〈a, b〉 6∈ Rh. We cannot have qAf (a) =

qAf (b) by (1.1) and (1.3). If qAf (a) = qAh (a) and qAf (b) = qAh (b), then 〈a, b〉 6∈
Rh by (1.3).

Let (1.1) hold and

(1.4) a ∈ qAf (A) and b ∈ qAg (A) \ qAf (A) for some distinct f, g ∈ F .

We show that 〈a, b〉 6∈ Rg. We cannot have qAg (a) = qAg (b) since qAg (b) = b ∈
qAg (A) \ qAf (A) by Lemma 1.7 and qAg (a) = qAg (qAf (a)) = qAf (qAg (a)) ∈ qAf (A).

Also, neither qAg (a) = qAh (a) nor qAg (b) = qAh (b) since qAg (b) = b ∈ qAg (A) \
qAf (A) and qAh (b) = qAf (qAg (b)) ∈ qAf (A). Thus 〈a, b〉 6∈ R∩, which completes
the proof.

In the sequel we adopt the usual notation (see [1], [3]). For two varieties
V1 and V2 of type τ the notation V1 ⊆ V2 means that Id(V2) ⊆ Id(V1).
V1 ∨V2 denotes the join of V1 and V2.

∨
i∈I Vi denotes the join of the family

{Vi}i∈I of varieties. Finally,
⊗

i∈I Vi is the class of all algebras isomorphic
to a subdirect product of the family {Ai}i∈I of algebras where Ai runs over
Vi for every i ∈ I.

For a variety V satisfying (0.iii) we put V = V (q) and let I = {q} ∪F ∪
{0}.
Theorem 1.10. If a variety V satisfies (0.iii), then∨

i∈I
V (i) = V c,2 =

⊗
i∈I

V (i).

P r o o f. It is easy to see that V ⊆ V c,2, V (f) ⊆ V c,2 for every f ∈ F
and V0 ⊆ V c,2. Thus

∨
i∈I V (i) ⊆ V c,2. By Lemmas 1.1–1.9 and the subdi-

rect decomposition theorem we have V c,2 ⊆
⊗

i∈I V (i). Then the inclusion⊗
i∈I V (i) ⊆

∨
i∈I V (i) is obvious.

2. Subdirectly irreducible algebras. An algebra A of type τ is said
to be subdirectly irreducible if for every family {Rt}t∈T of congruences of A
we have:

If
⋂
t∈T

Rt = ω, then there is t0 ∈ T with Rt0 = ω.

We shall not consider 1-element algebras to be subdirectly irreducible.
Theorem 1.10 is useful for finding subdirectly irreducible algebras in V c,2

since we have

Corollary 2.1. Let V be a variety of type τ satisfying (0.iii) and let A
be a subdirectly irreducible algebra. Then A belongs to V c,2 iff A belongs to
one of the varieties V , V (f) for some f ∈ F or V (0).
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P r o o f. This follows at once from Theorem 1.10.

Before studying subdirectly irreducible algebras we need some properties
of the varieties listed in Corollary 2.1.

Corollary 2.2. Let a variety V of type τ satisfy (0.iii) and for some
f ∈ F let V satisfy the semilattice identities: f(x, x) ≈ x, f(x, y) ≈ f(y, x),
f(f(x, y), z) ≈ f(x, f(y, z)). Then an algebra A belongs to V (f) iff it is a
semilattice with respect to fA, where ef is 1 if fA is the join semilattice
operation and ef is 0 if fA is the meet semilattice operation.

P r o o f. This follows from Lemma 1.4 since A satisfies f(x, ef ) ≈ ef for
every x from A.

Corollary 2.3. Under the assumptions of Corollary 2.2, a nontrivial
algebra A of type τ belongs to V (f) and is subdirectly irreducible iff A is
of the form ({a, ef};FA) where fA(a, a) = a, fA(x, y) = ef otherwise;
sA(x1, . . . , xτ(s)) = ef for every s ∈ F \ {f} and x1, . . . , xτ(s) ∈ {a, ef}.

P r o o f. The sufficiency follows from Corollary 2.2 and the fact that a
2-element algebra is always subdirectly irreducible. The necessity follows
from Corollary 2.2 where the proof that A must be 2-element is analogous
to the standard proof for common semilattices.

It was observed by I. Chajda (see [3]) that

Lemma 2.4. A 0-algebra A is subdirectly irreducible iff it is 2-element.

P r o o f. If A = (A;FA) is a 0-algebra of type τ with |A| > 2, then
take three different elements a, b, e0. Consider two partitions P1 and P2

of A where P1 contains the 2-element block {a, e0} and the remaining
blocks are singletons, and P2 contains the block {b, e0} and the remain-
ing blocks are singletons. Then P1 and P2 induce two nontrivial congru-
ences R1 and R2 of A such that R1 ∩ R2 = ω. Thus A is subdirectly
irreducible.

Let τl : {+, ·} → N be a type of algebras with τl(+) = τl(·) = 2. Let us
consider three algebras A+, A. and A0 defined as follows:

• A+ = ({a, e+}; +, ·) where

(2.1)
x+ y =

{
x if x = y,
e+ otherwise,

x · y = e+ for x, y ∈ {a, e+};
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• A. = ({a, e.}; +, ·) where

(2.2)
x · y =

{
x if x = y,
e. otherwise,

x+ y = e. for x, y ∈ {a, e.};

• A0 = ({a, e0}; +, ·) where

(2.3) x+ y = x · y = e0 for x, y ∈ {a, e0}.

Theorem 2.5. Let L be a variety of lattices of type τl and let A be a
subdirectly irreducible algebra of type τl. Then A belongs to Lc,2 iff A belongs
to L or A is isomorphic to one of the algebras A+, A. or A0.

P r o o f. The variety L satisfies (0.iii) since it satisfies

(2.4) x+ x ≈ x · x ≈ x.

By Corollary 2.1 it is enough to show that the algebras listed in the state-
ment are all subdirectly irreducible algebras from L+, L., L0. But thisi fol-
lows from Corollary 2.3 and Lemma 2.4, respectively.

Corollary 2.6. Let D be the variety of distributive lattices of type τl
and let A be a subdirectly irreducible algebra of type τl. Then A belongs to
Dc,2 iff A is a 2-element lattice or A is isomorphic to one of the algebras
A+, A. or A0.

P r o o f. This follows from Theorem 2.5 and from the fact that a non-
trivial subdirectly irreducible distributive lattice must be 2-element.

For a variety V of type τ we denote by Vr the variety of type τ defined
by all regular identities from Id(V ). In [6] the notion of a supalgebra of an
algebra A was defined as follows: let A = (A;FA) be an algebra of type τ
and let b 6∈ A. The algebra A? = (A ∪ {b};FA?) is a supalgebra of A if for
every f ∈ F we have

fA
?

(a1, . . . , aτ(f)) =

{
fA(a1, . . . , aτ(f)) if a1, . . . , aτ(f) ∈ A,
b otherwise.

In [7] the following was proved.

Lemma 2.7. Let V be a variety of type τ such that for some term ϕ(x, y)
the identity ϕ(x, y) ≈ x belongs to Id(V ). Moreover , let A be a subdirectly
irreducible algebra of type τ . Then A belongs to Vr iff A belongs to V or
A is a supalgebra of a 1-element algebra from V, or A is a supalgebra of a
subdirectly irreducible algebra from V .

Corollary 2.8. Let A be a subdirectly irreducible algebra of type τl.
Then A belongs to Dc,2

r iff one of the following cases holds:
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(d1) A is a 2-element lattice,
(d2) A is a supalgebra of a 1-element lattice,
(d3) A is a supalgebra of a 2-element lattice,
(d4) A is isomorphic to one of the algebras A+, A., A0.

P r o o f. In fact, Dr satisfies (0.iii) since it satisfies (2.4). Now our corol-
lary follows from Corollary 2.1, Lemma 2.7, Corollary 2.3 and Lemma 2.4
since D |= x+ x · y ≈ x.

Let τb : {+, ·,′ } → N be a type of algebras where τb(+) = τb(·) = 2 and
τb(
′) = 1. Let B be the variety of Boolean algebras of type τb.
Let us consider the following two algebras B1

′ and B2
′ of type τb:

• B1
′ = ({a, b, e′}; +, ·,′ ) where a′ = b, b′ = a, (e′)

′ = e′, x+y = x ·y = e′
for every x, y ∈ {a, b, e′};
• B2

′ = ({a, e′}; +, ·,′ ) where a′ = a, (e′)
′ = e′, x + y = x · y = e′ for

every x, y ∈ {a, e′}.
Lemma 2.9. Let A be a subdirectly irreducible algebra of type τb. Then

A belongs to B(′) iff A is of the form B1
′ or B2

′ .

P r o o f. By Lemma 1.4 the variety B(′) satisfies (x′)′ ≈ x and the value
of the operations + and · in every algebra A from B(′) is equal to e′.

Let A = (A; +, ·,′ ) be an algebra from B(′). The set generated in A by
an element p ∈ A by means of the operation ′ will be called the ′-component
generated by p and denoted by [p]. Observe that every ′-component is 1- or
2-element and B(′) satisfies x · y ≈ (x · y)′ (see (1.iii)). If there are at least
three components in A, say [e′], C1 and C2, then consider two partitions P1

and P2 of A where the blocks of P1 are C1 ∪ [e′], and the other blocks are
singletons; the blocks of P2 are C2∪ [e′], and the other blocks are singletons.
Then P1 and P2 induce two congruences R1 and R2 of A which are nontrivial
and R1 ∩ R2 = ω. Thus A is subdirectly irreducible. Obviously, B1

′ and
B2
′ are subdirectly irreducible and they are the only possible ones up to

isomorphism.

Let us consider the following three algebras B+, B., B0, of type τb:

• B+ = ({a, e+}; +, ·,′ ) where + is defined by (2.1) and x · y = x′ = e+
for every x, y ∈ {a, e+};
• B. = ({a, e.}; +, ·,′ ) where · is defined by (2.2) and x+ y = x′ = e. for

every x, y ∈ {a, e.};
• B0 = ({a, e0}; +, ·,′ ) where x + y = x · y = x′ = e0 for every x, y ∈

{a, e0}.
Theorem 2.10. Let A be a subdirectly irreducible algebra of type τb. Then

A belongs to Bc,2 iff it is a 2-element Boolean algebra or is of the form B+,
B., B

1
′ , B

2
′ or B0.
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P r o o f. Obviously B satisfies (0.iii) since it satisfies

(2.5) x+ x ≈ x · x ≈ (x′)′ ≈ x.

Now, the theorem holds by Corollary 2.1, Corollary 2.3, Lemma 2.9 and
Corollary 2.4.

Corollary 2.11. Let A be a subdirectly irreducible algebra of type τb.
Then A belongs to Bc,2r iff one of the following cases holds:

(k1) A is a 2-element Boolean algebra,

(k2) A is a supalgebra of a 2-element Boolean algebra,

(k3) A is a supalgebra of a 1-element algebra of type τb,

(k4) A is isomorphic to one of the algebras B+, B., B
1
′ , B

2
′ , B0.

P r o o f. Obviously, Br satisfies (0.iii) since it satisfies (2.5). Now, our
theorem follows from Corollary 2.1, Lemma 2.7, Corollaries 2.3 and 2.4, and
Lemma 2.9.

Let τg : {·,−1 } → N be a type of algebras with τg(·) = 2 and τg(
−1) = 1.

Let Gn be the variety of groups of type τg satisfying xn ≈ yn for some n > 2.
We have

Lemma 2.12. The variety Gn(·) is trivial.

P r o o f. In Gn(·) we have x ≈ x · xn ≈ x · yn ≈ x · (y−1)
n ≈ y−1.

Let us consider the following two algebras G1
−1 and G2

−1 of type τg:

• G1
−1 = ({a, b, e−1}; ·,−1 ) where a−1 = b, b−1 = a, (e−1)−1 = e−1 and

x · y = e−1 for every x, y ∈ {a, b, e−1};
• G2

−1 = ({a, e−1}; ·,−1 ) where a−1 = a, (e−1)−1 = e−1 and x · y = e−1
for every x, y ∈ {a, e−1}.

Lemma 2.13. Let A be a subdirectly irreducible algebra of type τg. Then
A belongs to Gn(−1) iff A is isomorphic to G1

−1 or to G2
−1.

The proof is quite similar to that of Lemma 2.9.

Theorem 2.14. Let A be a subdirectly irreducible algebra of type τg.
Then A belongs to Gc,2n iff A belongs to Gn or A is isomorphic to one of the
algebras G1

−1, G2
−1, or A is a 2-element 0-algebra of type τg.

P r o o f. Gn satisfies (0.iii) since it satisfies xn+1 ≈ (x−1)
−1 ≈ x. Now,

the theorem follows from Corollary 2.1, Corollary 2.3, Lemma 2.13 and
Corollary 2.4.

By means of subdirectly irreducible algebras of some variety one can
describe the lattice of its subvarieties. For V c,2 this will be done elsewhere.
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