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EXTENDING MONOTONE MAPPINGS
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All spaces are assumed to be Tychonoff. A monotone map is a closed
continuous surjection with connected fibres. If A and B are subsets of a
space X then A is called locally connected rel B if for every a ∈ A and
every neighbourhood U of a in X there is a neighbourhood V of a such that
V ⊂ U and V ∩B is connected.

As far as extending monotone maps over compacta the following is
known:

Proposition 1. If f : X → Y is monotone and C is a compactification
of X such that f extends to a continuous f̃ : C → βY then f̃ is monotone.

Proposition 2. If f : X → Y is monotone, D is a compactification of
Y such that D \Y is locally connected rel Y , and C is a compactification of

X such that f extends to a continuous f̃ : C → D then f̃ is monotone.

The first proposition is folklore (see Hart [3, Lemma 2.1]) and the second
proposition can be found in Dijkstra [1]. The two propositions have the same
conclusion but very dissimilar premises: for instance, if Y is metric then its
Čech–Stone remainder is never locally connected rel Y . Our first theorem
unifies these propositions.

In this paper we will discuss functions f : X → Y and f̃ : C → D
such that X and Y are dense subsets of C and D respectively. Unless stated
otherwise, if A is a subset of X or Y respectively, then A and int(A) refer to
the closure and the interior of A in C or D respectively. Let I be the interval
[0, 1]. A zero set A in a space Y is the preimage of 0 for some continuous
α : Y → I. A perfect map is a closed continuous surjection with compact
fibres.

Theorem 3. If D is a compactification of a space Y then the following
statements are equivalent :
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(1) For every space X, every monotone map f : X → Y , and every

compactification C of X such that f extends to a continuous f̃ : C → D,
the map f̃ is monotone.

(2) There are a space X and a monotone map f̃ : βX → D such that

f̃(X) ⊂ Y .
(3) For any pair of disjoint zero sets A and B in Y we have A ∩ B ∩

int(A ∪B) = ∅.
(4) For any pair of disjoint closed subsets A and B of Y we have A ∩

B ∩ int(A ∪B) = ∅.

We obtain Theorem 3 as an immediate corollary of the following more
general statement.

Theorem 4. If Y is a dense subspace of a space D then the following
statements are equivalent :

(1) Let X be a dense subspace of a space C and let f̃ : C → D be a closed

continuous map such that f = f̃ |X is a monotone map from X onto Y . If

f̃ is perfect or if C is normal then f̃ is monotone.
(2) There are a space X, a space C with X ⊂ C ⊂ βX, and a monotone

map f̃ : C → D such that f̃(X) ⊂ Y .
(3) For any pair of disjoint zero sets A and B in Y we have A ∩ B ∩

int(A ∪B) = ∅.
(4) For any pair of disjoint closed subsets A and B of Y we have A ∩

B ∩ int(A ∪B) = ∅.
We need an elementary lemma:

Lemma 5. If f : C → Y is continuous and X is a dense subset of C
such that f |X : X → Y is closed then for every y ∈ Y we have f−1(y) =
f−1(y) ∩X.

P r o o f. Let x be an element of C that is not in f−1(y) ∩X. To prove
x 6∈ f−1(y), select a closed neighbourhood U of x that is disjoint from
f−1(y) ∩X. Since f |X is closed the set V = Y \ f(U ∩ X) is an open
neighbourhood of y. Note that f−1(V ) ∩ int(U) is an open set which is
disjoint from X. Since X is dense, f−1(V ) and int(U) are disjoint. Since
x ∈ int(U) we have f(x) 6= y.

Proof of Theorem 4. Statement (2) follows trivially from (1). We shall
prove: (2)⇒(3), (3)⇒(4), and (4)⇒(1).

Assume (2) and let A and B be disjoint zero sets in Y such that for some

y ∈ D we have y ∈ A ∩ B ∩ int(A ∪B). Then y ∈ D \ Y and f̃−1(y) is a

connected subset of C \X. If W = int(A ∪B) then f̃−1(W ) \ f̃−1(A ∪B)
is an open subset of C that is disjoint from X. Since X is dense in C we



EXTENDING MONOTONE MAPPINGS 203

have f̃−1(W ) ⊂ f̃−1(A ∪B) and f̃−1(y) ⊂ f̃−1(A ∪B). Since f̃−1(A) and

f̃−1(B) are disjoint zero sets in f̃−1(Y ) and X ⊂ f̃−1(Y ) ⊂ C ⊂ βX we see

that f̃−1(A) and f̃−1(B) are a pair of disjoint closed sets in C that cover

f̃−1(y). So f̃−1(y) is disjoint from one of them, say f̃−1(A). Then y is not

in f̃(f̃−1(A)), which contains A′, because f̃ is closed and surjective. This is
a contradiction.

Assume (3) and let A and B be disjoint closed sets in Y such that for
some y ∈ D we have y ∈ A ∩ B ∩ int(A ∪B). Then y ∈ D \ Y . Put
W = int(A ∪B) and select a continuous α : D → [0, 1] such that α(y) = 1
and α|D \W = 0. We now define the continuous map γ : Y → [−1, 1] as
follows:

γ = (α|A ∪ (X \W )) ∪ (−α|B ∪ (X \W )).

Define the zero sets A′ = γ−1([1/2, 1]) and B′ = γ−1([−1,−1/2]) in Y . Note
that A′ ∪B′ = Y ∩α−1([1/2, 1]). Let O stand for the open set α−1((1/2, 1])
and observe that O ⊂ A′ ∪B′. So y is in the interior of A′ ∪B′. We show
that y ∈ A′ (and hence y ∈ B′ by symmetry). By assumption, y ∈ A and
since O is a neighbourhood of y we have y ∈ A ∩O. Note that A ∩O ⊂ A′
and hence y ∈ A′.

Assume (4) and let f : X → Y be a monotone map such that f̃ : C → D
is a closed continuous extension of f that is not monotone. Assume moreover
that f̃ is perfect or that C is normal. Let y be an element of D with a
disconnected fibre. If y ∈ Y then f̃−1(y) = f−1(y) by Lemma 5. Since f

is monotone this would imply that f̃−1(y) is connected and hence we know

that y ∈ D \ Y . Since f̃−1(y) is compact or C is normal we can find a

disjoint open cover {U, V } of f̃−1(y) in C such that both U and V intersect

the fibre. Then F = f̃(C \ (U ∪ V )) is a closed subset of D that does not
contain y. Let W be a closed neighbourhood of y in D that is disjoint from
F . Note that f̃−1(W ) ⊂ U ∪ V . Define A′ = U ∩ f−1(W ) = f−1(W ) \ V
and B′ = V ∩ f−1(W ) = f−1(W ) \ U .

Both A′ and B′ are saturated closed subsets of X. This can be seen as
follows: if b ∈ Y such that f−1(b) intersects for instance A′ then f−1(b) ⊂
A′ ∪ B′ since A′ ∪ B′ = f−1(W ) is saturated. Since f is monotone, f−1(b)
is connected and hence f−1(b) ⊂ A′. Since f is a closed map we see that
A = f(A′) and B = f(B′) are disjoint closed subsets of Y , whose union is
W ∩ Y . Observe that int(W ) ⊂ A ∪B. So y is in the interior of A ∪B and
by assumption (4), y 6∈ A or y 6∈ B. By symmetry we may assume that y is
outside A.

Let x be an element of U such that f̃(x) = y. Then U ∩ f̃−1(W ) \
f̃−1(A) is a neighbourhood of x and hence P = U ∩ f̃−1(W ) \ A′ is a

neighbourhood of x. Since A′ = U ∩ f̃−1(W ) ∩X we infer that P does not
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intersect X—a contradiction. So we may conclude that U is disjoint from
f̃−1(y), which contradicts our assumption that {U, V } separates f̃−1(y).
The proof is complete.

Remarks. We say that D is a monotone extension of Y if Y is a dense
subset of D and the pair (Y,D) satisfies the conditions (1)–(4) in Theorem 4.
If D is moreover compact then we call it a monotone compactification of Y .

Consider Theorem 3. It may be surprising that the criterion expressed
by statement (3) does only depend on Y and D and that the domain of the
monotone map does not seem to matter. In this context observe that

(5) The extension of the identity ı̃ : βY → D is monotone

is one of many statements that imply (2) and follow from (1).
If we substitute D = βY in Theorem 3 then (3) is obviously satisfied and

Proposition 1 follows. If D \ Y is locally connected rel Y and A and B are
disjoint closed sets in Y such that y ∈ A ∩B ∩ int(A ∪B) then we can find
a neighbourhood U ⊂ int(A ∪B) of y in D such that U ∩ Y is connected.
Then U ∩ A and U ∩ B are both nonempty, which means that A and B
separate the connected set U ∩ Y . So D is a monotone extension of Y and
Proposition 2 also follows from the theorem.

Example 1. As an illustration to Theorem 3 we give a simple example
of a monotone compactification that is not covered by Proposition 1 or 2.
Let I = [0, 1] and define the following subspaces of I × I:

D = ({0} ∪ {1/n : n ∈ N})× I and Y = D \ {(0, 0)}.
We verify that D is a monotone compactification of Y and hence Theorem
3 guarantees that for every space X which is the preimage of Y under a
perfect monotone map and every compactification C of X the remainder
C \X is a continuum.

Let A and B be disjoint closed subsets of Y such that A∩B∩ int(A ∪B)
6= ∅. Then A∩B∩ int(A ∪B) = {(0, 0)} and we can find an ε > 0 such that
([0, ε]× [0, ε])∩Y ⊂ A∪B. We may assume that (0, ε) is in A and hence not
in B. Since B is closed there is an N > 1/ε such that (1/n, ε) ∈ A for every
n ≥ N . Since for every n ≥ N , {1/n}×[0, ε] is a connected subset of A∪B we
have {1/n}× [0, ε] ⊂ A for n ≥ N . Consequently, ([0, 1/N ]× [0, ε])∩Y ⊂ A
and hence (0, 0) 6∈ B, which is a contradiction.

Example 2. Consider condition (1) in Theorem 4. A natural question

is whether the mild restriction that f̃ be perfect or C be normal is really
necessary. The following example shows that the answer is yes.

Let L be the “long halfline,” i.e. the space [0, ω1)×[0, 1) with the topology
generated by the lexicographic order. Let αL = L∪{ω1} be the compactifi-
cation of L. Let X = Y = L× [0, 1), C = (αL× I) \ {(ω1, 1)}, and let D be



EXTENDING MONOTONE MAPPINGS 205

the one-point compactification Y ∪{∞} of Y . We take for the monotone map

f : X → Y the identity and f̃ : C → D and f : αL× I → D are the exten-
sions of f . It is obvious that {∞} is locally connected rel Y so D is a mono-

tone compactification of Y . The fibre f̃−1(∞) = (L× {1}) ∪ ({ω1} × [0, 1))

has two components so f̃ is not monotone.

It remains to show that f̃ is closed. Let F be a closed subset of C and
let G denote the closure of F in αL×I. If∞ ∈ f̃(F ) then f̃(F ) equals f(G)

and hence is compact. If ∞ 6∈ f̃(F ) then αL × {1} and {ω1} × [0, 1) are
disjoint from F . Since [0, 1) is Lindelöf and ω1 has uncountable cofinality
there is a neighbourhood U of ω1 in αL such that F ∩ (U × [0, 1)) = ∅. So

F is disjoint from U × I and hence F and f̃(F ) are compact.

Let D be a compactification of Y . Theorem 3 answers the question
when all “compactifications” with range D of monotone maps onto Y are
monotone. We now turn to the question when we can guarantee the existence
of monotone “compactifications” onto D of monotone maps onto Y . Before
presenting a criterion we discuss an illuminating example.

Example 3. Put D = I and Y = I \ {1/n : n ∈ N}. Consider the
following closed subspace of Y × I:

X = ({0} × I) ∪
∞⋃
n=1

((
1

2n
,

1

2n− 1

)
× {0}

)
∪
((

1

2n+ 1
,

1

2n

)
× {1}

)
.

The map f : X → Y is simply the restriction of the projection. Since X is
closed in Y ×I and I is compact we find that the projection f is perfect. Note
that every fibre of f is either a singleton or an interval so f is monotone.

Assume now that C is a compactification of X such that f extends to

a monotone f̃ : C → D. Since f̃ is monotone, f̃−1((0, 1/n]), n ∈ N, is a
decreasing sequence of continua in C. Consequently,

K =

∞⋂
n=1

f̃−1((0, 1/n])

is a continuum that is obviously contained in f̃−1(0) = {0} × I. Note that
both (0, 0) and (0, 1) are in K but that {0}×(0, 1) is an open locally compact
subspace of X and hence also open in C. This means that K and {0}×(0, 1)
are disjoint so the continuum K equals {(0, 0), (0, 1)}, a contradiction. We
may conclude that f does not have a monotone “compactification” whose
range is D.

We say that a space Y has ordered neighbourhood bases if every y ∈ Y
has a neighbourhood basis that is linearly ordered by the inclusion relation.
First countable spaces are obvious examples of such spaces.
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Theorem 6. If Y is a dense subspace of a space D and Y has ordered
neighbourhood bases then the following statements are equivalent :

(1) For every space X and every monotone map f : X → Y there exists
a space C such that X is dense in C and f extends to a monotone and
perfect f̃ : C → D.

(2) For every closed subspace X of Y × I such that the projection f :
X → Y is monotone there exists a space C such that X is dense in C and
f extends to a monotone f̃ : C → D.

(3) Every y ∈ Y has a neighbourhood U in D such that U is a monotone
extension of Y ∩ U .

(4) There exists an open O in D that is a monotone extension of Y .

P r o o f. Statement (2) follows trivially from (1). We shall prove: (4)⇒(1),
(3)⇒(4), and ¬(3)⇒¬(2).

Assume (4) and let f : X → Y be monotone. Extend f to f : βX → βD.
Put U = f−1(O) and C ′ = f−1(D). Note that f |U is a perfect map from U
onto O. Since O is a monotone extension of Y we see that f |U is monotone.
Consider the closed subspace F = C ′ \U of C ′ and the closed map p = f |F
from F onto G = D \ O. Let C be the adjunction space C ′ ∪p G and let

π : C ′ → C be the quotient map. Then we can define a function f̃ : C → D
such that f̃ ◦ π = f |C ′. The map f̃ obviously extends f and is closed and

continuous. If y ∈ O then f̃−1(y) is a fibre of the map f |U and hence

a continuum. If y ∈ D \ O = G then f̃−1(y) is a singleton. So we may

conclude that f̃ is monotone and perfect.

Assume (3). If we define

U = {U : U an open subset of D such that

U is a monotone extension of Y ∩ U}

then O =
⋃
U is an open set in D that contains Y . Let g : V → O be a

perfect extension of the identity on Y such that Y ⊂ V ⊂ βY . Note that by
Theorem 4, g|g−1(U) is monotone for each U ∈ U and hence g is monotone.
So O is a monotone extension of Y .

Assume that condition (3) is false, i.e. there is a y ∈ Y such that no
neighbourhood U in D is a monotone extension of Y ∩U . Let {Vα : α < κ}
be a neighbourhood basis for y in Y where κ is some regular cardinal and
Vα ⊂ Vβ for β < α < κ. Define Ṽα = D \ (Y \ Vα) for each α and note that

{Ṽα : α < κ} is a neighbourhood basis for y in D because Y is dense and D
is regular.

We construct by induction for each α < κ an ordinal γ(α) < κ, a point
yα ∈ D \Y , an open subset Uα of D, and disjoint closed subsets Aα and Bα
of Y such that
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(i) γ(β) < γ(α) for β < α,

(ii) yα ∈ Uα ∩Aα ∩Bα,

(iii) Uα ⊂ (Aα ∪Bα) ∩ Ṽγ(α) \ Ṽγ(α+1).

Let α < κ. If α is a successor ordinal then we assume that γ(α) has already
been selected, if α = 0 then we put γ(α) = 0, and if α is a limit ordinal then

we put γ(α) = supβ<α γ(β). We can find a yα ∈ Ṽγ(α) and disjoint closed

subsets Aα and Bα of Y such that yα ∈ Aα ∩ Bα ∩ int(Aα ∪Bα). Select a

γ(α+ 1) > γ(α) such that yα 6∈ Ṽ γ(α+1). Then define

Uα = int(Aα ∪Bα) ∩ Ṽγ(α) \ Ṽ γ(α+1).

Note that the Uα’s are pairwise disjoint. Put O =
⋃
α<κ Uα and define

the subset X of Y × I by

X = ((Y \O)× I) ∪
⋃
α<κ

((Aα ∩ Uα)× {0}) ∪ ((Bα ∩ Uα)× {1}).

Let f : X → Y be the projection. Since {Aα ∩ Uα, Bα ∩ Uα : α < κ} is a
pairwise disjoint open covering of O ∩ Y , we see that X is closed in Y × I
and that every fibre of f is a singleton or an interval. Since X is closed we
find that f is perfect by the compactness of I. Consequently, f is monotone.

Let C be a space such that X is dense in C and f extends to a monotone
f̃ : C → D. Define the following closed subsets of C:

A = (Y × {0}) ∩X and B = (Y × {1}) ∩X.

We show that f̃−1(O) is contained in A∪B. If x∈ f̃−1(O) and V is a

neighbourhood of x that is contained in f̃−1(O) then we can find a z ∈ V ∩X.
Since f(z) ∈ O we have z ∈ (Y × {0, 1}) ∩X. Hence z is in A ∪ B and so
is x.

Since f̃ is closed f̃(A) is closed in D. For each α < κ, Aα∩Uα is a subset

of f̃(A). Since yα ∈ Aα ∩ Uα we have yα ∈ f̃(A). So f̃−1(yα) ∩ A 6= ∅ and

by symmetry f̃−1(yα) ∩B 6= ∅.
Let U and V be disjoint open sets in C such that (y, 0) ∈ U , (y, 1) ∈ V ,

and U∩B = V∩A = ∅. Since f is perfect we have f̃−1(y) = f−1(y) = {y}×I.

Note that this fact implies that F = f̃(A \ U) ∪ f̃(B \ V ) is a closed subset
of D that does not contain y. Since supα<κ γ(α) = κ there is an α < κ with

Ṽγ(α) ∩ F = ∅. So yα ∈ D \ F by (ii) and (iii). Since yα ∈ Uα ⊂ O we have

f̃−1(yα) ⊂ A∪B. Consequently, f̃−1(yα) ⊂ U∪V and since f̃−1(yα)∩A 6= ∅
and f̃−1(yα)∩B 6= ∅ we have f̃−1(yα)∩A∩U 6= ∅ and f̃−1(yα)∩B∩V 6= ∅.
Since U and V are disjoint open sets they separate the fibre f̃−1(yα) and

hence f̃ is not monotone, a contradiction.
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Remarks. Note that the condition that Y has ordered neighbourhood
bases is only used to prove (2)⇒(3). Without any restrictions on Y we have
(3)⇔(4)⇒(1)⇒(2). One can think of other conditions that would make
Theorem 6 true. For instance, if Y is an ordered space then the proof can
easily be adapted. The question is whether the implications (1)⇒(3) or
(2)⇒(3) are true in general.

Proposition 1 implies that every monotone map can be “compactified” to
a monotone map by using the Čech–Stone compactifications. For separable
metric spaces that result is not very satisfactory, especially since we were
motivated to look at monotone maps by a problem formulated in Dijkstra
and Mogilski [2], which concerns extendibility of cell-like decompositions of
Hilbert space. To address the metric case we have the following

Theorem 7. If f : X → Y is a monotone map between separable metric
spaces then there exist metric compactifications C and D of X and Y such
that f extends to a monotone f̃ : C → D.

P r o o f. The proof uses the Wallman compactification whose definition
we now recall. We call a closed basis W for the topology of a space X a
Wallman basis for X if W is closed under finite intersections and if W is
normal (i.e. if A and B are disjoint members of W then there are V,W ∈W
such that V∪W = X and V∩B = A∩W = ∅). If W is a Wallman basis for X
then the underlying set for the Wallman compactification ω(W) ofX relative
W is the set of W-ultrafilters. If W ∈W then W = {F ∈ ω(W) : W ∈ F}.
The collection {W : W ∈ W} functions as a closed basis for the topology
on ω(W). Since W is normal ω(W) is Hausdorff and if W is countable then
ω(W) is metrizable. We shall use the following well-known fact: if f : X→Y
is a map and X and Y are Wallman bases on X and Y respectively such
that f−1[Y] ⊂ X then f extends to a map f : ω(X)→ ω(Y). See Walker [5]
for more information about Wallman compactifications.

Let f : X → Y be a monotone map between separable metric spaces.
Select a countable Wallman basis C0 for X. Expand f [C0], which is a count-
able collection of closed subsets of Y , to a countable Wallman basis D0 for
Y . Next, expand f−1[D0]∪C0 to a countable Wallman basis C1. Continuing
this back-and-forth process we find an increasing sequence (Cn)∞n=0 of count-
able Wallman bases for X and an increasing sequence (Dn)∞n=0 of countable
Wallman bases for Y such that f [Cn] ⊂ Dn and f−1[Dn] ⊂ Cn+1 for each
n ≥ 0. So C =

⋃∞
n=0 Cn and D =

⋃∞
n=0 Dn are countable Wallman bases

for X and Y respectively with the properties f−1[D] ⊂ C and f [C] = D.
If we define the metric compactifications C = ω(C) and D = ω(D) then f

extends to a continuous f̃ : C → D.
Let y be an element of D with a disconnected fibre. If y ∈ Y then

f̃−1(y) = f−1(y) by Lemma 5. Since f is monotone this would imply that
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f̃−1(y) is connected and hence we may assume that y∈D \Y . Write f̃−1(y)
as a disjoint union of two nonempty compacta A and B. Select from C two
disjoint elements F and G such that F is a neighbourhood of A and G is a
neighbourhood of B. Then P = f̃(C\int(F∪G)) is a closed set that does not
contain y. Let W be an element of D such that W is a neighbourhood of y
that is disjoint from P . Note that f−1(W ) ⊂ F∪G. Define F ′ = F∩f−1(W )
and G′ = G ∩ f−1(W ) and note that both sets are in C. Also, both F ′

and G′ are saturated subsets of X. This can be seen as follows: if b ∈ Y
such that f−1(b) intersects for instance F ′ then f−1(b) ⊂ F ′ ∪ G′ because
F ′ ∪ G′ = f−1(W ) is saturated. Since f is monotone, f−1(b) is connected
and hence f−1(b) ⊂ F ′. Note that U = f(F ′) and V = f(G′) are disjoint
elements of D and that their union is W . Since D = ω(D) we see that U and
V are also disjoint so that one of them does not contain y, say y 6∈ U . Then
f̃−1(y) is disjoint from f̃−1(U) and hence disjoint from F ′. Consequently,

A = f̃−1(y) ∩ F ′ is empty, which is a contradiction.

Corollary 8. Let C and D be separable metric spaces, let f̃ : C → D
be a closed and continuous map, and let X and Y be dense subsets of C and

D respectively such that f = f̃ |X is a monotone map from X onto Y . Then

there is a Gδ-subset G of D such that Y ⊂ G and f̃ |f̃−1(G) : f̃−1(G)→ G
is monotone.

So every extension of a monotone map over metric compactifications
restricts to a perfect monotone extension over completions.

P r o o f. Note that f̃ is surjective because it is closed and its range con-
tains Y . Let Ĉ and D̂ be metric compactifications of C and D such that
f̃ extends to a continuous f̂ : Ĉ → D̂. If we define X̆ = f̂−1(Y ) then by

Lemma 5, f̆ = f̂ |X̆ is a perfect monotone map from X̆ to Y . With Theo-
rem 7 we find metric compactifications X ′ and Y ′ of X̆ and Y respectively
such that f̆ extends to a monotone f ′ : X ′→ Y ′. According to Lavrentiev [4]

there exist Gδ-sets A ⊂ Ĉ, A′ ⊂ X ′, B ⊂ D̂, B′ ⊂ Y ′, and homeomorphisms
α : A → A′ and β : B → B′ such that X̆ ⊂ A, X̆ ⊂ A′, Y ⊂ B, Y ⊂ B′,
and α|X̆ and β|Y are identity mappings. Let G′ = B′ \f ′(X ′ \A′) and note
that G′ is a Gδ-set in Y ′ that contains Y . Define the Gδ-sets F ′ = f ′−1(G′),

F̂ = α−1(F ′), and Ĝ = β−1(G′). Since f̂ |X = β−1 ◦f ′ ◦α|X and X is dense

we have f̂ |F̂ = β−1◦f ′◦α|F̂ . Since f ′|F ′ is perfect and monotone so is f̂ |F̂ .

Put F = F̂ ∩ C and G = Ĝ ∩D. Consider the map g = f̃ |F = f̂ |F from F
to G.

It is obvious that f̃−1(G) = F and that g is closed and surjective. It
remains to verify that g has connected fibres. If y ∈ Y then g−1(y) is con-

nected by Lemma 5. Let y ∈ G \ Y and x ∈ F̂ such that f̂(x) = y. Select
a sequence x1, x2, . . . in X that converges to x. If x 6∈ C then {xn : n ∈ N}
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is closed in C. Since f̃ : C → D is closed we see that {f(xn) : n ∈ N} is
closed in D. This contradicts the fact that f(x1), f(x2), . . . is a sequence in
Y that converges to y ∈ D \ Y . So we may conclude that if y ∈ G \ Y then

g−1(y) = f̂−1(y). Since f̂ is monotone, g is monotone.

Example 4. In view of Theorems 3 and 7 it is natural to ask the following
question: does every separable metric spaceY have a metric compactification
D with the property that whenever f : C→D is a map with compact metric
domain such that f |X : X→Y is monotone for some dense X⊂C, then f is
monotone as well?

The answer is easily seen to be no. Consider a metric compactification D
of the natural numbers N and let ı̃ : βN→ D be the extension of the identity.
Since |D \N| ≤ c and |βN \N| = 2c we can pick a y ∈ D \N with nontrivial
fibre. Pick a subset A of N such that both A and its complement in βN
intersect ı̃−1(y). Let B1 be the closure of A in D and let B2 be the closure
of N \ A in D. If C is the topological sum of B1 and B2 then the natural
map from C to D is an extension of the identity that is not monotone.
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Math. 6 (1924), 149–160.
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