HOMEOMORPHIC NEIGHBORHOODS IN μ^{n+1} -MANIFOLDS

В

YŪJI AKAIKE (IBARAKI)

- 1. Introduction. The notion of n-shape for compact spaces was introduced by Chigogidze [5]. Generalizing n-shape to locally compact spaces, the author [1] introduced the proper n-shape, which is defined by using embeddings of spaces into locally compact AR-spaces. In the case of dim $\leq n+1$, the proper n-shape of locally compact spaces can also be defined by using their embeddings into locally compact (n+1)-dimensional $LC^n \cap C^n$ -spaces (cf. [2]). In this paper, we prove a μ^{n+1} -manifold version of the result of [11], that is, if X and Y are Z-sets in μ^{n+1} -manifolds M and N respectively, and $n\operatorname{-Sh}_n(X) = n\operatorname{-Sh}_n(Y)$, then X and Y have arbitrarily small homeomorphic μ^{n+1} -manifold closed neighborhoods. As a corollary, if X is a connected Z-set in a μ^{n+1} -manifold and $X \in SUV^n$, then there exists a tree T such that X has arbitrarily small closed neighborhoods homeomorphic (\approx) to the Δ_{n+1} -product $T\Delta_{n+1}\mu^{n+1}$ of T and μ^{n+1} . Here, property SUV^n is a noncompact variant of property UV^n , and the Δ_{n+1} -product is defined in [10]; it plays the role of the Cartesian product in the category of μ^{n+1} -manifolds. For a locally finite polyhedron P, $P\Delta_{n+1}\mu^{n+1}$ is the μ^{n+1} -manifold having the same proper n-homotopy type of P.
- **2. Preliminaries.** In this paper, spaces are separable metrizable and maps are continuous. The (n+1)-dimensional universal Menger compactum is denoted by μ^{n+1} and a manifold modeled on μ^{n+1} is called a μ^{n+1} -manifold. We define $\mu_{\infty}^{n+1} = \mu^{n+1} \setminus \{*\}$, where $* \in \mu^{n+1}$. Recall that two proper maps $f, g: X \to Y$ are properly n-homotopic (written $f \simeq_p^n g$) if, for any proper map $\alpha: Z \to X$ from a space Z with dim $Z \le n$ into X, the compositions $f\alpha$ and $g\alpha$ are properly homotopic in the usual sense $(f\alpha \simeq_p g\alpha)$. A μ^{n+1} -manifold M lying in a μ^{n+1} -manifold N is said to be n-clean in N (cf. [8]) if M is closed in N and there exists a closed μ^{n+1} -manifold $\delta(M)$ in M such that
 - (i) $(N \setminus M) \cup \delta(M)$ is a μ^{n+1} -manifold;

Key words and phrases: μ^{n+1} -manifold, proper n-shape, n-clean, Δ_{n+1} -product.

¹⁹⁹¹ Mathematics Subject Classification: 54C56, 55P55.

246 Y. AKAIKE

- (ii) $\delta(M)$ is a Z-set in both M and $(N \setminus M) \cup \delta(M)$; and
- (iii) $M \setminus \delta(M)$ is open in N.

REMARK 2.1Let P be a PL-manifold and L a submanifold in P such that Bd $L = \text{Bd}(P \setminus L)$. By [7, Theorem 1.6], there exists a proper UV^n -surjection $f: N \to P$ from a μ^{n+1} -manifold N satisfying the following conditions:

(a) $f^{-1}(K)$ is a μ^{n+1} -manifold for any closed subpolyhedron K of P; and (b) $f^{-1}(Z)$ is a Z-set in $f^{-1}(K)$ for any Z-set Z in a closed subpolyhedron K of P.

Then it is easy to see that $M = f^{-1}(L)$ is an *n*-clean submanifold of N with $\delta(M) = f^{-1}(\mathrm{Bd}L)$.

LEMMA 2.2. Let Y be closed in a locally compact $C^n \cap LC^n$ -space N. Assume that $r: V_0 \to Y$ is a proper retraction of a closed neighborhood V_0 of Y in N. Then for each closed neighborhood V of Y in N there exists a closed neighborhood V' of Y in N such that $V' \subset V \cap V_0$ and $\mathrm{id}_{V'} \simeq_p^n r|_{V'}$ in V.

Proof. Let \mathcal{W} be an open cover of $V \cap V_0$ such that if one of any two \mathcal{W} -close maps from an arbitrary locally compact space is proper, then the other is also proper. Since $\operatorname{int}(V \cap V_0)$ is LC^n , there exists an open cover \mathcal{U} of $\operatorname{int}(V \cap V_0)$ such that any two \mathcal{U} -close maps from a space with $\dim \leq n$ to $\operatorname{int}(V \cap V_0)$ are \mathcal{W} -homotopic. By the continuity of r, for any $U \in \mathcal{U} \cap Y = \{U \in \mathcal{U} \mid U \cap Y \neq \emptyset\}$ and $x \in U \cap Y$ there exists a closed neighborhood \overline{V}_x of x in N such that $\overline{V}_x \subset U$ and $r(\overline{V}_x) \subset U \cap Y$. Since Y is locally compact, $\{\overline{V}_x \mid x \in Y\}$ has a locally finite refinement \mathcal{V}' . Then $V' = \bigcup \mathcal{V}'$ is the desired neighborhood. \blacksquare

Let X and Y be closed sets in locally compact $C^n \cap LC^n$ -spaces M and N respectively. Recall that a proper n-fundamental net $\mathbf{f} = \{f_\lambda \mid \lambda \in \Lambda\} : X \to Y \text{ in } (M, N) \text{ is } generated \ by \text{ a proper map } f : X \to Y \text{ (or } f \text{ } generates \mathbf{f}) \text{ provided } f = f_\lambda|_X \text{ for all } \lambda \in \Lambda.$ The proper n-homotopy class $[\mathbf{f}]$ of \mathbf{f} is $generated \ by \ f \text{ if } f \text{ } generates \text{ some } \mathbf{f}' \in [\mathbf{f}].$

PROPOSITION 2.3. If Y is a locally compact LC^n -space, then the proper n-homotopy class of $\mathbf{f}: X \to Y$ in (M,N) is generated by a proper map $f: X \to Y$.

Proof. Since Y is LC^n , there exist a closed neighborhood V_0 of Y in N and a proper retraction $r:V_0\to Y$ by [3, Lemma 3.2]. By Lemma 2.2, for each closed neighborhood V of Y in N there exists a closed neighborhood V' of Y in N such that $r|_{V'}\simeq_p^n \operatorname{id}_{V'}$ in V. Then there exist a closed neighborhood U' of X in M and $\lambda_0\in \Lambda$ such that $f_{\lambda}|_{U'}\simeq_p^n f_{\lambda_0}|_{U'}$ in V' for all $\lambda\geq \lambda_0$. Let $r':N\to N$ be an extension of r and $f'_{\lambda}=r'f_{\lambda_0}$.

Note that $\mathbf{f}' = \{f'_{\lambda}\}$ is generated by $f = rf_{\lambda_0}|_X$, i.e., $f'_{\lambda}|_X = f$. Since $f'_{\lambda}|_{U'} = r'f_{\lambda_0}|_{U'} \simeq_p^n f_{\lambda_0}|_{U'} \simeq_p^n f_{\lambda}|_{U'}$ in V for all $\lambda \geq \lambda_0$, we have $\mathbf{f}' \simeq_p^n \mathbf{f}$.

3. Homeomorphic neighborhoods in μ^{n+1} -manifolds

LEMMA 3.1. Let X be a Z-set in a μ^{n+1} -manifold M. Then there exists a closed embedding $F: M \to \mu_{\infty}^{n+1}$ such that F(M) is a neighborhood of F(X) in μ_{∞}^{n+1} and F(M) is n-clean in μ_{∞}^{n+1} with $\delta(F(M)) \approx M$.

Proof. By [6, Theorem 9], there exists a proper (n+1)-invertible UV^n -surjection $f:M\to P$ from M to a locally finite (n+1)-dimensional polyhedron P. We can assume that P is a closed subpolyhedron in $(I^{2(n+1)+1}\times\{0\})\setminus\{*\}$, where $*=(0,\ldots,0)\in I^{2(n+1)+2}$. Then there exists a proper (n+1)-invertible UV^n -surjection $f:N\to I^{2(n+1)+2}\setminus\{*\}$ from a μ^{n+1} -manifold N as in Remark 2.1. Since $I^{2(n+1)+2}\setminus\{*\}\cong_p^n\mu_\infty^{n+1}$ and f is proper UV^n , we have $N\approx\mu_\infty^{n+1}$ (cf. [7, Theorem 1.3]).

Let N(P) be a regular neighborhood of P. By Remark 2.1, $M' = f^{-1}(N(P))$ and $M'' = f^{-1}(\operatorname{Bd} N(P))$ are μ^{n+1} -manifolds in N and M' is n-clean with $\delta(M') = M''$. Since P is a Z-set in N(P), it follows that $N(P) \simeq_p^n \operatorname{Bd} N(P)$. By [7, Theorem 1.4], there exist homeomorphisms $g: M \to M'$ and $g': M \to M''$. By the Z-set unknotting theorem [4], there exists a homeomorphism $h: M' \to M'$ such that $h(g(X)) \cap M'' = \emptyset$. Then F = hg is the desired closed embedding.

Theorem 3.2. Let X and Y be Z-sets in μ^{n+1} -manifolds M and N respectively, such that $n\text{-Sh}_p(X) \leq n\text{-Sh}_p(Y)$. Then, for each neighborhood U of X in M and each neighborhood V of Y in N, there exists an open neighborhood V' of Y such that for every μ^{n+1} -manifold closed neighborhood S of Y in $V' \cap V$, there exists a μ^{n+1} -manifold closed neighborhood S of S in S which is homeomorphic to S.

Proof. By Lemma 3.1, we can assume that $M=N=\mu_{\infty}^{n+1}$ and U is n-clean. Let $\mathbf{f}:X\to Y$ in $(\mu_{\infty}^{n+1},\mu_{\infty}^{n+1})$ and $\mathbf{g}=\{g_{\delta}\mid\delta\in\Delta\}:Y\to X$ in $(\mu_{\infty}^{n+1},\mu_{\infty}^{n+1})$ be proper n-fundamental nets such that $\mathbf{gf}\simeq_p^n\mathbf{i}_X$. Let U' be a closed neighborhood of X such that $U'\subset\mathrm{int}\,U$. Then there exist $\delta_0\in\Delta$, $\lambda_0\in\Lambda$ and a closed neighborhood W of Y with $W\subset V$ such that $g_{\delta}f_{\lambda}|_{X}\simeq_p^n\mathrm{id}_X$ in U', $g_{\delta}|_{W}\simeq_p^ng_{\delta_0}|_{W}$ in U' for each $\delta\geq\delta_0$, $\lambda\geq\lambda_0$. By the Z-set approximation theorem [4], there exists a Z-embedding $g'_{\delta_0}:W\to\mathrm{int}\,U$ approximating g_{δ_0} . Note that $g'_{\delta_0}|_{Y}$ is properly n-homotopic to the inclusion in μ_{∞}^{n+1} . By the Z-set unknotting theorem [4], there exists a homeomorphism $h:\mu_{\infty}^{n+1}\to\mu_{\infty}^{n+1}$ such that $hg'_{\delta_0}|_{Y}=\mathrm{id}_{Y}$.

Let V' = h(int U) and $S \subset V \cap V'$ be a closed μ^{n+1} -manifold neighborhood of Y. Then $S' = h^{-1}(S)$ is a μ^{n+1} -manifold closed neighborhood of

248 Y. AKAIKE

 $g'_{\delta_0}(Y)$ lying in int U. Let W' be a closed neighborhood of Y lying in int S so that $g'_{\delta_0}(W') \subset \operatorname{int} S'$. Then there exists $\lambda \geq \lambda_0$ such that $f_{\lambda}(X) \subset W'$. By the Z-set approximation theorem, we can assume that f_{λ} is a Z-embedding. Note that $g'_{\delta_0}f_{\lambda}(X) \subset g'_{\delta_0}(W') \subset \operatorname{int} S'$ and $g'_{\delta_0}f_{\lambda}|_X \simeq_p^n g_{\delta_0}f_{\lambda}|_X \simeq_p^n \operatorname{id}_X$ in $U' \subset \operatorname{int} U$. By the Z-set unknotting theorem, there exists a homeomorphism $h': \mu_{\infty}^{n+1} \to \mu_{\infty}^{n+1}$ such that $h'g'_{\delta_0}f_{\lambda}|_X = \operatorname{id}_X$ and $h'|_{\mu_{\infty}^{n+1}\setminus \operatorname{int} U} = \operatorname{id}_{\mu_{\infty}^{n+1}\setminus \operatorname{int} U}$. Then R = h'(S') is the desired neighborhood. \blacksquare

For the Δ_{n+1} -product, refer to [10].

LEMMA 3.3. Let P be a locally finite polyhedron embedded in μ_{∞}^{n+1} as a closed set and U a neighborhood of P in μ_{∞}^{n+1} . Then there exists a μ^{n+1} -manifold closed neighborhood V of P such that $V \subset U$, V is n-clean in μ_{∞}^{n+1} and $V \approx \delta(V) \approx P \Delta_{n+1} \mu^{n+1}$.

Proof. We can assume that $P \subset (I^{2(n+1)+1} \times \{0\}) \setminus \{*\} \subset I^{2(n+1)+2} \setminus \{*\} = M$ as a closed subpolyhedron and μ_{∞}^{n+1} is obtained from M by the Lefschetz construction [9, 2.1, II]. Let \mathcal{L} be a combinatorial triangulation of M and \widetilde{U} be a neighborhood of P in M such that $U = \mu_{\infty}^{n+1} \cap \widetilde{U}$. By Whitehead's theorem [12], there exists a subdivision \mathcal{L}' of \mathcal{L} such that \mathcal{L}' refines $\{M \setminus P\} \cup \{\widetilde{U}\}$.

Let $N(P,\operatorname{sd} \mathcal{L}')$ be a regular neighborhood of P obtained from the barycentric subdivision $\operatorname{sd} \mathcal{L}'$ of \mathcal{L}' and let V be a μ^{n+1} -manifold obtained from $N(P,\operatorname{sd} \mathcal{L}')$ by the Lefschetz construction. Then V is n-clean in μ^{n+1}_{∞} and such that $\delta(V) = \mu^{n+1}_{\infty} \cap \operatorname{Bd} N(P,\operatorname{sd} \mathcal{L}')$ and $V \setminus \delta(V) = \mu^{n+1}_{\infty} \cap \operatorname{int} N(P,\operatorname{sd} \mathcal{L}')$. Now there exists a proper deformation retraction $r: N(P,\operatorname{sd} \mathcal{L}') \to P$, and we have a proper UV^n -retraction $r|_V: V \to P$. Since there exists a proper UV^n -surjection $P\Delta_{n+1}\mu^{n+1} \to P$ (see [10]), and by [7, Theorem 1.4], V and $P\Delta_{n+1}\mu^{n+1}$ are homeomorphic. Since P is a Z-set in $N(P,\operatorname{sd} \mathcal{L}')$, we have $N(P,\operatorname{sd} \mathcal{L}') \simeq_p^n \operatorname{Bd} N(P,\operatorname{sd} \mathcal{L}')$, which implies $\delta(V) \approx V$ by [7, Theorem 1.4] again. \blacksquare

THEOREM 3.4. Let X be a Z-set in a μ^{n+1} -manifold M and P an (n+1)-dimensional locally finite polyhedron such that $n\text{-Sh}_p(X) \leq n\text{-Sh}_p(P)$. Then X has arbitrarily small closed neighborhoods U_{α} , $\alpha \in A$, such that

- (1) each U_{α} is n-clean in M;
- (2) $U_{\alpha} \approx \delta(U_{\alpha}) \approx P\Delta_{n+1}\mu^{n+1}$; and
- (3) for each $\alpha, \beta \in A$ there exists a homeomorphism $h: U_{\alpha} \to U_{\beta}$ fixing X.

Proof. By Lemma 3.1, we can assume that X and P are closed sets in μ_{∞}^{n+1} . Let $\mathbf{f}: X \to P$ and $\mathbf{g}: P \to X$ be proper n-fundamental nets in

 $(\mu_{\infty}^{n+1}, \mu_{\infty}^{n+1})$ such that $\mathbf{gf} \simeq_p^n \mathbf{i}_X$. By Proposition 2.3, \mathbf{f} is generated by a proper map $f: X \to P$. Let $A = \{\alpha \mid \alpha \text{ is a closed neighborhood of } X \text{ in } \mu_{\infty}^{n+1} \}$. For each $\alpha \in A$, there exist $\delta_{\alpha} \in \Delta$ and a closed neighborhood W of P which is homeomorphic to $P\Delta_{n+1}\mu^{n+1}$, such that $g_{\delta}|_{W} \simeq_p^n g_{\delta_{\alpha}}|_{W}$ and $g_{\delta}f \simeq_p^n \mathrm{id}_X$ in α for all $\delta \geq \delta_{\alpha}$ by Lemma 3.3. By the same argument as in Theorem 3.2, we may assume that $g_{\delta_{\alpha}}|_{W}$ is a Z-embedding of $P\Delta_{n+1}\mu^{n+1}$ into α and $X \subset g_{\delta_{\alpha}}(W)$. Then $g_{\delta_{\alpha}}^{-1}|_{X} \simeq_p^n g_{\delta_{\alpha}}^{-1}g_{\delta_{\alpha}}f|_{X} \simeq_p^n f$ in $P\Delta_{n+1}\mu^{n+1}$. Let $\alpha, \beta \in A$. Since $g_{\delta_{\alpha}}^{-1}|_{X} \simeq_p^n f \simeq_p^n g_{\delta_{\beta}}^{-1}|_{X}$ in $P\Delta_{n+1}\mu^{n+1}$, by the Z-set

Let $\alpha, \beta \in A$. Since $g_{\delta_{\alpha}}^{-1}|_{X} \simeq_{p}^{n} f \simeq_{p}^{n} g_{\delta_{\beta}}^{-1}|_{X}$ in $P\Delta_{n+1}\mu^{n+1}$, by the Z-set unknotting theorem, there exists a homeomorphism $G: P\Delta_{n+1}\mu^{n+1} \to P\Delta_{n+1}\mu^{n+1}$ such that $Gg_{\delta_{\alpha}}^{-1}|_{X} = g_{\delta_{\beta}}^{-1}|_{X}$. Then $h = g_{\delta_{\beta}}Gg_{\delta_{\alpha}}^{-1}$ is the desired homeomorphism. \blacksquare

In [1], it is proved that if X is connected, then $X \in SUV^n$ if and only if $n\text{-Sh}_p(X) = n\text{-Sh}_p(T)$ for some tree T. So we have the following:

COROLLARY 3.5. Let X be a connected Z-set in a μ^{n+1} -manifold and $X \in SUV^n$. Then X has an arbitrarily small closed μ^{n+1} -manifold neighborhood V such that $V \approx T\Delta_{n+1}\mu^{n+1}$ for some tree T.

Acknowledgments. The author wishes to thank Professor K. Sakai for his helpful comments.

REFERENCES

- Y. Akaike, Proper n-shape and property SUVⁿ, Bull. Polish Acad. Sci. Math. 45 (1997), 251–261.
- [2] —, Proper n-shape and the Freudenthal compactification, Tsukuba J. Math., to appear.
- [3] B. J. Ball and R. B. Sher, A theory of proper shape for locally compact metric spaces, Fund. Math. 86 (1974), 163–192.
- [4] M. Bestvina, Characterizing k-dimensional universal Menger compacta, Mem. Amer. Math. Soc. 380 (1988).
- [5] A. Chigogidze, Compacta lying in the n-dimensional Menger compactum and having homeomorphic complements in it, Mat. Sb. 133 (1987), 481–496 (in Russian); English transl.: Math. USSR-Sb. 61 (1988), 471–484.
- [6] —, The theory of n-shape, Uspekhi Mat. Nauk 44 (5) (1989), 117–140 (in Russian); English transl.: Russian Math. Surveys 44 (5) (1989), 145–174.
- [7] —, Classification theorem for Menger manifolds, Proc. Amer. Math. Soc. 116 (1992), 825–832.
- $[8] \quad \ --, \ Finding \ a \ boundary \ for \ a \ Menger \ manifold, \ ibid. \ 121 \ (1994), \ 631–640.$
- [9] A. Chigogidze, K. Kawamura and E. D. Tymchatyn, *Menger manifolds*, in: Continua, H. Cook *et al.* (eds.), Lecture Notes in Pure and Appl. Math. 170, Marcel Dekker, New York, 1995, 37–88.
- [10] Y. Iwamoto, Infinite deficiency in Menger manifolds, Glas. Mat. Ser. III 30 (50) (1995), 311–322.
- [11] R. B. Sher, Proper shape theory and neighborhoods of sets in Q-manifolds, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 23 (1975), 271–276.

250 Y. AKAIKE

[12] J. H. C. Whitehead, Simplicial spaces, nuclei, and m-groups, Proc. London Math. Soc. (2) 45 (1939), 243–327.

Institute of Mathematics University of Tsukuba 305, Ibaraki, Japan

E-mail: akaike@math.tsukuba.ac.jp

Received 2 December 1996; revised 15 December 1997