A COUNTEREXAMPLE TO A CONJECTURE OF BASS, CONNELL AND WRIGHT

BY
PIOTR OSSOWSKI (TORUŃ)
Let $F=X-H: k^{n} \rightarrow k^{n}$ be a polynomial map with H homogeneous of degree 3 and nilpotent Jacobian matrix $J(H)$. Let $G=\left(G_{1}, \ldots, G_{n}\right)$ be the formal inverse of F. Bass, Connell and Wright proved in [1] that the homogeneous component of G_{i} of degree $2 d+1$ can be expressed as $G_{i}^{(d)}=\sum_{T} \alpha(T)^{-1} \sigma_{i}(T)$, where T varies over rooted trees with d vertices, $\alpha(T)=\operatorname{Card} \operatorname{Aut}(T)$ and $\sigma_{i}(T)$ is a polynomial defined by (1) below. The Jacobian Conjecture states that, in our situation, F is an automorphism or, equivalently, $G_{i}^{(d)}$ is zero for sufficiently large d. Bass, Connell and Wright conjecture that not only $G_{i}^{(d)}$ but also the polynomials $\sigma_{i}(T)$ are zero for large d.

The aim of the paper is to show that for the polynomial automorphism (4) and rooted trees (3), the polynomial $\sigma_{2}\left(T_{s}\right)$ is non-zero for any index s (Proposition 4), yielding a counterexample to the above conjecture (see Theorem 5).

1. Preliminaries. Throughout the paper k is a field of characteristic zero. A polynomial map from k^{n} to k^{n} is called a polynomial automorphism if it has an inverse that is also a polynomial map. The sequence $X=\left(X_{1}, \ldots, X_{n}\right)$ denotes the identity automorphism and $J(F)$ denotes the Jacobian matrix of F.

Conjecture 1 (Jacobian Conjecture). If $F=\left(F_{1}, \ldots, F_{n}\right): k^{n} \rightarrow k^{n}$ is a polynomial map and $\operatorname{det} J(F) \in k \backslash\{0\}$, then F is a polynomial automorphism.

For a historical survey and detailed introduction to the subject see [1]. The Jacobian Conjecture is still open for all $n \geq 2$.

Yagzhev [4] and Bass, Connell and Wright in [1] proved that it suffices to prove the Jacobian Conjecture for all $n \geq 2$ and polynomial maps of the

[^0]form $F_{i}=X_{i}-H_{i}$, where for $i=1, \ldots, n$ the polynomial H_{i} is homogeneous of degree 3 .

Note that if $F=X-H$, where H_{1}, \ldots, H_{n} are homogeneous of degree ≥ 2, then the condition $\operatorname{det} J(F) \in k \backslash\{0\}$ is equivalent to the nilpotency of $J(H)([1$, Lemma 4.1]).
2. The tree expansion of the formal inverse. We recall some definitions and facts from [1] (see also [3]).

Let $F: k^{n} \rightarrow k^{n}$ be a polynomial map of the form $F_{i}=X_{i}-H_{i}$, where each H_{i} is homogeneous of degree $\delta \geq 2(i=1, \ldots, n)$. It is well known ($[1$, Chapter III $]$) that for F there exist unique formal power series $G_{1}, \ldots, G_{n} \in k\left[\left[X_{1}, \ldots, X_{n}\right]\right]$ defined by the conditions $G_{i}\left(F_{1}, \ldots, F_{n}\right)=X_{i}$ for $i=1, \ldots, n$. We call $G=\left(G_{1}, \ldots, G_{n}\right)$ the formal inverse of F.

One can write $G_{i}=\sum_{d \geq 0} G_{i}^{(d)}$, where the component $G_{i}^{(d)}$ is a homogeneous polynomial of degree $d(\delta-1)+1$.

It is obvious that the Jacobian Conjecture is true if and only if G_{i} is a polynomial for $i=1, \ldots, n$.

If T is a non-directed tree, then $V(T)$ denotes its set of vertices and (the symmetric subset) $E(V) \subseteq V(T) \times V(T)$ is the set of edges. A rooted tree T is defined as a tree with a distinguished vertex $\mathrm{rt}_{T} \in V(T)$ called a root. We define, by induction on j, the sets $V_{j}(T)$ of vertices of height j. Let $V_{0}(T)=\left\{\mathrm{rt}_{T}\right\}$ and for $j>0$ let $v \in V_{j}(T)$ iff there exists $w \in V_{j-1}(T)$ such that $(w, v) \in E(T)$ and $v \notin V_{i}(T)$ for $i<j$.

For $v \in V_{j}(T)$ we set

$$
v^{+}=\left\{w \in V_{j+1}(T):(w, v) \in E(T)\right\}
$$

Rooted trees form a category in which a morphism $T \rightarrow T^{\prime}$ is a map f : $V(T) \rightarrow V\left(T^{\prime}\right)$ such that $f\left(\mathrm{rt}_{T}\right)=\mathrm{rt}_{T^{\prime}}$ and $(f \times f)(E(T)) \subseteq E\left(T^{\prime}\right)$. For a rooted tree T we denote by $\operatorname{Aut}(T)$ the group of all automorphisms of T, and $\alpha(T)=\operatorname{Card} \operatorname{Aut}(T)$. Moreover, \mathbb{T}_{d} denotes the set of representatives of isomorphism classes of rooted trees with d vertices.

Suppose now that $H=\left(H_{1}, \ldots, H_{n}\right)$ and $H_{1}, \ldots, H_{n} \in k\left[X_{1}, \ldots, X_{n}\right]$ are homogeneous of degree $\delta \geq 2$. For a particular $i \in\{1, \ldots, n\}$, a rooted tree T and an i-rooted labeling f of T (that is, by definition, a function $f: V(T) \rightarrow\{1, \ldots, n\}$ such that $f\left(\mathrm{rt}_{T}\right)=i$) we define polynomials

$$
P_{T, f}=\prod_{v \in V(T)}\left(\left(\prod_{w \in v^{+}} D_{f(w)}\right) H_{f(v)}\right)
$$

and

$$
\begin{equation*}
\sigma_{i}(T)=\sum_{f} P_{T, f} \tag{1}
\end{equation*}
$$

(f varies over all i-rooted labelings of T).

Using the above assumptions and definitions we can quote the following theorem ([1, Ch. III, Theorem 4.1], [3, Theorem 4.3]).

Theorem 2 (Bass, Connell, Wright). If the matrix $J(H)$ is nilpotent, then $G_{i}^{(0)}=X_{i}$, and for $d \geq 1$,

$$
\begin{equation*}
G_{i}^{(d)}=\sum_{T \in \mathbb{T}_{d}} \frac{1}{\alpha(T)} \sigma_{i}(T) \tag{2}
\end{equation*}
$$

Let $\left[J(H)^{e}\right]$ denote the differential ideal of $k\left[X_{1}, \ldots, X_{n}\right]$ generated by all entries of $J(H)^{e}$, that is, the ideal generated by elements of the form $D_{1}^{p_{1}} \ldots D_{n}^{p_{n}} f$ for any $\left(p_{1}, \ldots, p_{n}\right) \in \mathbb{N}^{n}$ and any entry f of $J(H)^{e}$.

Let us formulate the following conjecture which is the main object of interest in our paper ([1, Ch. III, Conjecture 5.1], [4, 5.2]).

Conjecture 3 (Bass, Connell, Wright). If $e \geq 1$, then there is an integer $d(e)$ such that for all $d \geq d(e), T \in \mathbb{T}_{d}$ and $i=1, \ldots, n$ we have $\sigma_{i}(T) \in$ $\left[J(H)^{e}\right]$.

If Conjecture 3 is true for $\delta=3$, then the Jacobian Conjecture is also true. Indeed, if $F=X-H: k^{n} \rightarrow k^{n}$, $\operatorname{det} J(H)=1$ and H_{i} are homogeneous of degree 3, then the matrix $J(H)$ is nilpotent. Hence $J(H)^{n}=0$ and, by Conjecture 3, for all $T \in \mathbb{T}_{d}, d \geq d(n)$ and $i=1, \ldots, n$, we have $\sigma_{i}(T)=0$. Substituting this into (2) we get $G_{i}^{(d)}=0$ for $d \geq d(n)$, so G_{i} are polynomials and F is an automorphism.
3. A counterexample. Let us define the following sequence of rooted trees:

where always the lowest vertex is a root.
Proposition 4. For the polynomial endomorphism $F: k^{4} \rightarrow k^{4}$ defined by
(4) $\quad F=\left(X_{1}+X_{4}\left(X_{1} X_{3}+X_{2} X_{4}\right)\right.$,

$$
\left.X_{2}-X_{3}\left(X_{1} X_{3}+X_{2} X_{4}\right), X_{3}+X_{4}^{3}, X_{4}\right)
$$

and rooted trees $T_{s}, s \geq 0$, defined by (3), we have

$$
\begin{array}{ll}
\sigma_{1}\left(T_{s}\right)=0, & \sigma_{2}\left(T_{s}\right)=(-1)^{s+1} \cdot 6 \cdot X_{4}^{4 s+7}\left(X_{1} X_{3}+X_{2} X_{4}\right), \\
\sigma_{3}\left(T_{s}\right)=0, & \sigma_{4}\left(T_{s}\right)=0 .
\end{array}
$$

Proof. The endomorphism F has the form $X-H$, where

$$
\begin{array}{ll}
H_{1}=-X_{1} X_{3} X_{4}-X_{2} X_{4}^{2}, & H_{2}=X_{1} X_{3}^{2}+X_{2} X_{3} X_{4}, \\
H_{3}=-X_{4}^{3}, & H_{4}=0 . \tag{5}
\end{array}
$$

We proceed by induction on s.
Let $s=0$. Let $V\left(T_{0}\right)=\left\{\mathrm{rt}_{T_{0}}=0,1,2,3\right\}$. Then, for $i=1,2,3,4$,

$$
\begin{aligned}
\sigma_{i}\left(T_{0}\right) & =\sum_{\substack{f: V\left(T_{0}\right) \rightarrow\{1,2,3,4\} \\
f\left(\mathrm{rt}_{0}\right)=i}} \prod_{v \in V\left(T_{0}\right)}\left(\left(\prod_{w \in v^{+}} D_{f(w)}\right) H_{f(v)}\right) \\
& =\sum_{f:\{1,2,3\} \rightarrow\{1,2,3,4\}} D_{f(1)} D_{f(2)} D_{f(3)} H_{i} \cdot H_{f(1)} \cdot H_{f(2)} \cdot H_{f(3)} .
\end{aligned}
$$

It is obvious that $D_{a_{1}} D_{a_{2}} D_{a_{3}} X_{b_{1}} X_{b_{2}} X_{b_{3}}$ can be non-zero only if the sequences $\left(a_{1}, a_{2}, a_{3}\right)$ and $\left(b_{1}, b_{2}, b_{3}\right)$ have the same elements up to order. Hence, by (5), we have

$$
\begin{aligned}
\sigma_{1}\left(T_{0}\right) & =6 \cdot D_{1} D_{3} D_{4} H_{1} \cdot H_{1} H_{3} H_{4}+3 \cdot D_{2} D_{4} D_{4} H_{1} \cdot H_{2} H_{4}^{2}=0, \\
\sigma_{2}\left(T_{0}\right) & =3 \cdot D_{1} D_{3} D_{3} H_{2} \cdot H_{1} H_{3}^{2}+6 \cdot D_{2} D_{3} D_{4} H_{2} \cdot H_{2} H_{3} H_{4} \\
& =-6 \cdot X_{4}\left(X_{1} X_{3}+X_{2} X_{4}\right) \cdot\left(-X_{4}^{3}\right)^{2} \\
& =(-1)^{1} \cdot 6 \cdot X_{4}^{7}\left(X_{1} X_{3}+X_{2} X_{4}\right), \\
\sigma_{3}\left(T_{0}\right) & =D_{4} D_{4} D_{4} H_{3} \cdot H_{4}^{3}=0, \\
\sigma_{4}\left(T_{0}\right) & =0 .
\end{aligned}
$$

Let $s \geq 0$ and assume that the statement of the proposition holds for s. Then (it is a particular case of "tree surgery"; see [1] or [3])

$$
\sigma_{i}\left(T_{s+1}\right)=\sum_{a=1}^{4}\left(\sum_{j=1}^{4} D_{j} D_{a} H_{i} \cdot H_{j}\right) \cdot \sigma_{a}\left(T_{s}\right) .
$$

By assumption, $\sigma_{a}\left(T_{s}\right)=0$ for $a \neq 2$. Therefore

$$
\sigma_{i}\left(T_{s+1}\right)=\left(\sum_{j=1}^{4} D_{j} D_{2} H_{i} \cdot H_{j}\right) \cdot \sigma_{2}\left(T_{s}\right)
$$

and hence, by (5) and the assumption,

$$
\begin{aligned}
\sigma_{1}\left(T_{s+1}\right) & =D_{4} D_{2} H_{1} \cdot H_{4} \cdot \sigma_{2}\left(T_{s}\right)=0, \\
\sigma_{2}\left(T_{s+1}\right) & =\left(D_{3} D_{2} H_{2} \cdot H_{3}+D_{4} D_{2} H_{2} \cdot H_{4}\right) \cdot \sigma_{2}\left(T_{s}\right) \\
& =X_{4} \cdot\left(-X_{4}^{3}\right) \cdot(-1)^{s+1} \cdot 6 \cdot X_{4}^{4 s+7}\left(X_{1} X_{3}+X_{2} X_{4}\right) \\
& =(-1)^{(s+1)+1} \cdot 6 \cdot X_{4}^{4(s+1)+7}\left(X_{1} X_{3}+X_{2} X_{4}\right), \\
\sigma_{3}\left(T_{s+1}\right) & =0, \\
\sigma_{4}\left(T_{s+1}\right) & =0,
\end{aligned}
$$

which completes the proof.
Remark. A. van den Essen [2] proved that the endomorphism $F: \mathbb{C}^{4} \rightarrow$ \mathbb{C}^{4} defined by (4) is a counterexample to a conjecture of Meisters.

Theorem 5. Conjecture 3 is false for $\delta=3$ and $e \geq 4$.
Proof. Let F be the endomorphism defined by (4). Then $F=X-H$, where H is homogeneous of degree $\delta=3$. One can verify that F is an automorphism and its inverse is

$$
F^{-1}=G=X+H+G^{(2)}+G^{(3)},
$$

where

$$
G^{(2)}=\left(X_{1} X_{4}^{4},-X_{4}^{3}\left(2 X_{1} X_{3}+X_{2} X_{4}\right), 0,0\right), \quad G^{(3)}=\left(0, X_{1} X_{4}^{6}, 0,0\right) .
$$

Therefore $G^{(d)}=0$ for $d \geq 4$.
Moreover, $J(H)^{3} \neq 0$ and $J(H)^{4}=0$. Hence $\left[J(H)^{e}\right]=0$ for $e \geq 4$.
On the other hand, by Proposition 4, we have $\sigma_{2}\left(T_{s}\right) \neq 0$ for $s \geq 0$. Therefore $\sigma_{2}\left(T_{s}\right) \notin\left[J(H)^{e}\right]$ for $s \geq 0$ and $e \geq 4$.

Since $T_{s} \in \mathbb{T}_{2 s+4}$ and $\lim _{s \rightarrow \infty}(2 s+4)=\infty$, for $e \geq 4$ there is no $d(e)$ as in Conjecture 3.
4. Final remarks. In [1, Proposition 5.3] it was shown that Conjecture 3 is true for $e=1$ with $d(1)=1$ and for $e=2$ with $d(2)=2$. We have proved in Theorem 5 that Conjecture 3 is false for $e \geq 4$. The case $e=3$ remains open but the author's computer calculations show that the following conjecture is plausible.

Conjecture 6. There is an integer $d(3)$ with the following property. If $H=\left(H_{1}, \ldots, H_{n}\right)$, the polynomials $H_{1}, \ldots, H_{n} \in k\left[X_{1}, \ldots, X_{n}\right]$ are homogeneous of degree 3 , and $J(H)^{3}=0$, then for $d \geq d(3)$, a rooted tree $T \in \mathbb{T}_{d}$ and all $i=1, \ldots, n$, the polynomial $\sigma_{i}(T)$ equals zero.

It is evident that for $e=3$ Conjecture 3 implies Conjecture 6.
Computer calculations show that $d(3) \geq 19$.

REFERENCES

[1] H. Bass, E. H. Connell and D. Wright, The Jacobian conjecture: Reduction of degree and formal expansion of the inverse, Bull. Amer. Math. Soc. (N.S.) 7 (1982), 287-330.
[2] A. van den Essen, A counterexample to a conjecture of Meisters, in: Automorphisms of Affine Spaces, Proc. Internat. Conf. on Invertible Polynomial Maps (Curaçao, 1994), Kluwer, 1995, 231-233.
[3] D. Wright, Formal inverse expansion and the Jacobian conjecture, J. Pure Appl. Algebra 48 (1987), 199-219.
[4] A. V. Yagzhev, On Keller's problem, Sibirsk. Mat. Zh. 21 (1980), no. 5, 141-150 (in Russian).

Faculty of Mathematics and Informatics
Nicholas Copernicus University
Chopina 12/18
87-100 Toruń, Poland
E-mail: ossowski@mat.uni.torun.pl

[^0]: 1991 Mathematics Subject Classification: Primary 13B25; Secondary 13B10, 14E09, 05 C 05 .

