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A COUNTEREXAMPLE TO A CONJECTURE OF BASS,

CONNELL AND WRIGHT

BY

PIOTR OSSOWSK I (TORUŃ)

Let F = X −H : kn → kn be a polynomial map with H homogeneous
of degree 3 and nilpotent Jacobian matrix J(H). Let G = (G1, . . . , Gn)
be the formal inverse of F . Bass, Connell and Wright proved in [1] that
the homogeneous component of Gi of degree 2d + 1 can be expressed as

G
(d)
i =

∑

T α(T )−1σi(T ), where T varies over rooted trees with d vertices,
α(T ) = CardAut(T ) and σi(T ) is a polynomial defined by (1) below. The
Jacobian Conjecture states that, in our situation, F is an automorphism or,

equivalently, G
(d)
i is zero for sufficiently large d. Bass, Connell and Wright

conjecture that not only G
(d)
i but also the polynomials σi(T ) are zero for

large d.
The aim of the paper is to show that for the polynomial automorphism

(4) and rooted trees (3), the polynomial σ2(Ts) is non-zero for any index
s (Proposition 4), yielding a counterexample to the above conjecture (see
Theorem 5).

1. Preliminaries. Throughout the paper k is a field of characteristic
zero. A polynomial map from kn to kn is called a polynomial automor-

phism if it has an inverse that is also a polynomial map. The sequence
X = (X1, . . . ,Xn) denotes the identity automorphism and J(F ) denotes
the Jacobian matrix of F .

Conjecture 1 (Jacobian Conjecture). If F =(F1,. . . , Fn) : k
n→ kn is

a polynomial map and detJ(F ) ∈ k \ {0}, then F is a polynomial automor-
phism.

For a historical survey and detailed introduction to the subject see [1].
The Jacobian Conjecture is still open for all n ≥ 2.

Yagzhev [4] and Bass, Connell and Wright in [1] proved that it suffices
to prove the Jacobian Conjecture for all n ≥ 2 and polynomial maps of the
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form Fi = Xi−Hi, where for i = 1, . . . , n the polynomial Hi is homogeneous
of degree 3.

Note that if F = X −H, where H1, . . . ,Hn are homogeneous of degree
≥ 2, then the condition detJ(F ) ∈ k \{0} is equivalent to the nilpotency of
J(H) ([1, Lemma 4.1]).

2. The tree expansion of the formal inverse. We recall some defi-
nitions and facts from [1] (see also [3]).

Let F : kn → kn be a polynomial map of the form Fi = Xi − Hi,
where each Hi is homogeneous of degree δ ≥ 2 (i = 1, . . . , n). It is well
known ([1, Chapter III]) that for F there exist unique formal power series
G1, . . . , Gn ∈ k[[X1, . . . ,Xn]] defined by the conditions Gi(F1, . . . , Fn) = Xi

for i = 1, . . . , n. We call G = (G1, . . . , Gn) the formal inverse of F .

One can write Gi =
∑

d≥0 G
(d)
i , where the component G

(d)
i is a homoge-

neous polynomial of degree d(δ − 1) + 1.
It is obvious that the Jacobian Conjecture is true if and only if Gi is a

polynomial for i = 1, . . . , n.
If T is a non-directed tree, then V (T ) denotes its set of vertices and (the

symmetric subset) E(V ) ⊆ V (T ) × V (T ) is the set of edges. A rooted tree

T is defined as a tree with a distinguished vertex rtT ∈ V (T ) called a root .
We define, by induction on j, the sets Vj(T ) of vertices of height j. Let
V0(T ) = {rtT } and for j > 0 let v ∈ Vj(T ) iff there exists w ∈ Vj−1(T ) such
that (w, v) ∈ E(T ) and v 6∈ Vi(T ) for i < j.

For v ∈ Vj(T ) we set

v+ = {w ∈ Vj+1(T ) : (w, v) ∈ E(T )}.

Rooted trees form a category in which a morphism T → T ′ is a map f :
V (T ) → V (T ′) such that f(rtT ) = rtT ′ and (f × f)(E(T )) ⊆ E(T ′). For a
rooted tree T we denote by Aut(T ) the group of all automorphisms of T ,
and α(T ) = CardAut(T ). Moreover, Td denotes the set of representatives
of isomorphism classes of rooted trees with d vertices.

Suppose now that H = (H1, . . . ,Hn) and H1, . . . ,Hn ∈ k[X1, . . . ,Xn]
are homogeneous of degree δ ≥ 2. For a particular i ∈ {1, . . . , n}, a rooted
tree T and an i-rooted labeling f of T (that is, by definition, a function
f : V (T ) → {1, . . . , n} such that f(rtT ) = i) we define polynomials

PT,f =
∏

v∈V (T )

((

∏

w∈v+

Df(w)

)

Hf(v)

)

and

(1) σi(T ) =
∑

f

PT,f

(f varies over all i-rooted labelings of T ).
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Using the above assumptions and definitions we can quote the following
theorem ([1, Ch. III, Theorem 4.1], [3, Theorem 4.3]).

Theorem 2 (Bass, Connell, Wright). If the matrix J(H) is nilpotent ,

then G
(0)
i = Xi, and for d ≥ 1,

(2) G
(d)
i =

∑

T∈Td

1

α(T )
σi(T ).

Let [J(H)e] denote the differential ideal of k[X1, . . . ,Xn] generated by
all entries of J(H)e, that is, the ideal generated by elements of the form
D

p1

1 . . . Dpn

n f for any (p1, . . . , pn) ∈ N
n and any entry f of J(H)e.

Let us formulate the following conjecture which is the main object of
interest in our paper ([1, Ch. III, Conjecture 5.1], [4, 5.2]).

Conjecture 3 (Bass, Connell, Wright). If e≥1, then there is an integer
d(e) such that for all d ≥ d(e), T ∈ Td and i = 1, . . . , n we have σi(T ) ∈
[J(H)e].

If Conjecture 3 is true for δ = 3, then the Jacobian Conjecture is also
true. Indeed, if F =X−H : kn→kn, det J(H) = 1 and Hi are homogeneous
of degree 3, then the matrix J(H) is nilpotent. Hence J(H)n = 0 and, by
Conjecture 3, for all T ∈ Td, d ≥ d(n) and i = 1, . . . , n, we have σi(T ) = 0.

Substituting this into (2) we get G
(d)
i = 0 for d ≥ d(n), so Gi are polynomials

and F is an automorphism.

3. A counterexample. Let us define the following sequence of rooted
trees:

(3)

T0 = r%%reer r 2 T4

Ts = rJJr 

rJJ

r � � � 


rJJr 

r%%reer r

= rJJr 

Ts�1 2 T2s+4 for s � 1;
where always the lowest vertex is a root.

Proposition 4. For the polynomial endomorphism F : k4 → k4 defined

by

(4) F = (X1 +X4(X1X3 +X2X4),

X2 −X3(X1X3 +X2X4),X3 +X3
4 ,X4)
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and rooted trees Ts, s ≥ 0, defined by (3), we have

σ1(Ts) = 0, σ2(Ts) = (−1)s+1 · 6 ·X4s+7
4 (X1X3 +X2X4),

σ3(Ts) = 0, σ4(Ts) = 0.

P r o o f. The endomorphism F has the form X −H, where

(5)
H1 = −X1X3X4 −X2X

2
4 , H2 = X1X

2
3 +X2X3X4,

H3 = −X3
4 , H4 = 0.

We proceed by induction on s.

Let s = 0. Let V (T0) = {rtT0
= 0, 1, 2, 3}. Then, for i = 1, 2, 3, 4,

σi(T0) =
∑

f :V (T0)→{1,2,3,4}
f(rtT0

)=i

∏

v∈V (T0)

((

∏

w∈v+

Df(w)

)

Hf(v)

)

=
∑

f :{1,2,3}→{1,2,3,4}

Df(1)Df(2)Df(3)Hi ·Hf(1) ·Hf(2) ·Hf(3).

It is obvious that Da1
Da2

Da3
Xb1Xb2Xb3 can be non-zero only if the

sequences (a1, a2, a3) and (b1, b2, b3) have the same elements up to order.
Hence, by (5), we have

σ1(T0) = 6 ·D1D3D4H1 ·H1H3H4 + 3 ·D2D4D4H1 ·H2H
2
4 = 0,

σ2(T0) = 3 ·D1D3D3H2 ·H1H
2
3 + 6 ·D2D3D4H2 ·H2H3H4

= − 6 ·X4(X1X3 +X2X4) · (−X3
4 )

2

= (−1)1 · 6 ·X7
4 (X1X3 +X2X4),

σ3(T0) = D4D4D4H3 ·H
3
4 = 0,

σ4(T0) = 0.

Let s ≥ 0 and assume that the statement of the proposition holds for s.
Then (it is a particular case of “tree surgery”; see [1] or [3])

σi(Ts+1) =
4

∑

a=1

(

4
∑

j=1

DjDaHi ·Hj

)

· σa(Ts).

By assumption, σa(Ts) = 0 for a 6= 2. Therefore

σi(Ts+1) =
(

4
∑

j=1

DjD2Hi ·Hj

)

· σ2(Ts)
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and hence, by (5) and the assumption,

σ1(Ts+1) = D4D2H1 ·H4 · σ2(Ts) = 0,

σ2(Ts+1) = (D3D2H2 ·H3 +D4D2H2 ·H4) · σ2(Ts)

= X4 · (−X3
4 ) · (−1)s+1 · 6 ·X4s+7

4 (X1X3 +X2X4)

= (−1)(s+1)+1 · 6 ·X
4(s+1)+7
4 (X1X3 +X2X4),

σ3(Ts+1) = 0,

σ4(Ts+1) = 0,

which completes the proof.

Remark. A. van den Essen [2] proved that the endomorphism F : C4 →
C

4 defined by (4) is a counterexample to a conjecture of Meisters.

Theorem 5. Conjecture 3 is false for δ = 3 and e ≥ 4.

P r o o f. Let F be the endomorphism defined by (4). Then F = X −H,
where H is homogeneous of degree δ = 3. One can verify that F is an
automorphism and its inverse is

F−1 = G = X +H +G(2) +G(3),

where

G(2) = (X1X
4
4 ,−X3

4 (2X1X3 +X2X4), 0, 0), G(3) = (0,X1X
6
4 , 0, 0).

Therefore G(d) = 0 for d ≥ 4.

Moreover, J(H)3 6= 0 and J(H)4 = 0. Hence [J(H)e] = 0 for e ≥ 4.

On the other hand, by Proposition 4, we have σ2(Ts) 6= 0 for s ≥ 0.
Therefore σ2(Ts) 6∈ [J(H)e] for s ≥ 0 and e ≥ 4.

Since Ts ∈ T2s+4 and lims→∞(2s+4) = ∞, for e ≥ 4 there is no d(e) as
in Conjecture 3.

4.Final remarks. In [1, Proposition 5.3] it was shown that Conjecture 3
is true for e=1 with d(1)=1 and for e=2 with d(2)=2. We have proved in
Theorem 5 that Conjecture 3 is false for e ≥ 4. The case e = 3 remains open
but the author’s computer calculations show that the following conjecture
is plausible.

Conjecture 6. There is an integer d(3) with the following property. If
H = (H1, . . . ,Hn), the polynomials H1, . . . ,Hn ∈ k[X1, . . . ,Xn] are homo-
geneous of degree 3, and J(H)3 = 0, then for d ≥ d(3), a rooted tree T ∈ Td

and all i = 1, . . . , n, the polynomial σi(T ) equals zero.

It is evident that for e = 3 Conjecture 3 implies Conjecture 6.

Computer calculations show that d(3) ≥ 19.
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