COLLOQUIUM MATHEMATICUM

VOL. 78

1998

NO. 1

A HILBERT CUBE COMPACTIFICATION OF THE SPACE OF RETRACTIONS OF THE INTERVAL

BY

SHIGENORI UEHARA (TSUKUBA)

Introduction. In this paper, let all maps be continuous and $\mathbf{I} = [0, 1]$ be the closed interval. In [BS], it was proved that the space $R(\mathbf{I})$ of retractions $f : \mathbf{I} \to \mathbf{I}$ (i.e. $f \circ f = f$) is homeomorphic (\approx) to the pseudo-interior $s = (-1, 1)^{\omega}$ of the Hilbert cube $Q = [-1, 1]^{\omega}$, where $R(\mathbf{I})$ has the supmetric. Thus the Hilbert cube Q is a compactification of $R(\mathbf{I})$. Here we consider such a natural compactification of $R(\mathbf{I})$.

Equip the product $\mathbf{I}^2 = \mathbf{I} \times \mathbf{I}$ with the following metric:

$$d((x, y), (x', y')) = \max\{|x - x'|, |y - y'|\},\$$

and let $\exp(\mathbf{I}^2)$ be the hyperspace of nonempty compact subsets of \mathbf{I}^2 endowed with the Hausdorff metric:

$$l_{\rm H}(E,F) = \inf\{\varepsilon > 0 \mid E \subset N_d(F,\varepsilon), \ F \subset N_d(E,\varepsilon)\},\$$

where $N_d(F,\varepsilon)$ is the ε -neighborhood of F in \mathbf{I}^2 with metric d. In this paper, we always identify a map $f: \mathbf{I} \to \mathbf{I}$ with its graph $\operatorname{Gr}(f) \in \exp(\mathbf{I}^2)$. So we can regard $R(\mathbf{I})$ as a subset of $\exp(\mathbf{I}^2)$. Moreover, as is easily observed, the space $R(\mathbf{I})$ (with the sup-norm) is a subspace of $\exp(\mathbf{I}^2)$. Define $\overline{R}(\mathbf{I})$ as the closure of $R(\mathbf{I})$ in $\exp(\mathbf{I}^2)$ (cf. [Fe]). The following is our main result.

MAIN THEOREM. The pair $(\overline{R}(\mathbf{I}), R(\mathbf{I}))$ is homeomorphic to the pair (Q, s).

A related result is shown in $[SU_2]$: $(\overline{H}_{\partial}(\mathbf{I}), H_{\partial}(\mathbf{I})) \approx (Q, s)$, where $H_{\partial}(\mathbf{I})$ is the space of orientation preserving homeomorphisms of \mathbf{I} , and $\overline{H}_{\partial}(\mathbf{I})$ is the closure of $H_{\partial}(\mathbf{I})$ in $\exp(\mathbf{I}^2)$. Concerning the space $C(X, \mathbf{I})$ of maps from a compactum X to \mathbf{I} , it is shown in $[SU_1]$ that $(\overline{C}(X, \mathbf{I}), C(X, \mathbf{I})) \approx (Q, s)$ if X is locally connected and infinite, where $\overline{C}(X, \mathbf{I})$ is the closure of $C(X, \mathbf{I})$ in $\exp(X \times \mathbf{I})$. Moreover, in case X has no isolated points, $\overline{C}(X, \mathbf{I})$ coincides

¹⁹⁹¹ Mathematics Subject Classification: 57N20, 58D05.

Key words and phrases: The space of retractions, the hyperspace of non-empty compact sets, the Hausdorff metric, upper semi-continuous multi-valued function, the Hilbert cube, the pseudo-interior.

^[119]

with the space USCC(X, I) of upper semi-continuous (u.s.c.) multi-valued functions $\varphi : X \to I$ such that each $\varphi(x)$ is a closed interval (see [Fe]).

Proof of Main Theorem. We identify each $\varphi \in \text{USCC}(\mathbf{I}, \mathbf{I})$ with its graph $\text{Gr}(\varphi) \subset \mathbf{I} \times \mathbf{I}$, and assume the first and second factor of the product $\mathbf{I} \times \mathbf{I}$ to be the domain and the range of φ , respectively. Let $p_1, p_2 : \mathbf{I} \times \mathbf{I} \to \mathbf{I}$ be the projections onto the first and second factor, respectively. Define maps $a, b : \exp(\mathbf{I}^2) \to [0, 1]$ by

$$a(\varphi) = \min p_2(\varphi), \quad b(\varphi) = \max p_2(\varphi)$$

Observe that $\varphi|_{[a(\varphi),b(\varphi)]} = id$ for every $\varphi \in R(\mathbf{I})$. Moreover, put

$$P = \{\varphi \in \mathrm{USCC}(\mathbf{I}, \mathbf{I}) \mid a(\varphi) \neq b(\varphi) \Rightarrow \varphi|_{(a(\varphi), b(\varphi))} = \mathrm{id}\}$$

Note that $\overline{R}(\mathbf{I}) \subset P$. In fact, P is closed in USCC(\mathbf{I}, \mathbf{I}), $R(\mathbf{I}) \subset P$ and USCC(\mathbf{I}, \mathbf{I}) is closed in exp(\mathbf{I}^2).

For $i \in \{0, 1\}$, put

$$USCC^{i}(\mathbf{I}, \mathbf{I}) = \{ \varphi \in USCC(\mathbf{I}, \mathbf{I}) \mid i \in \varphi(1-i) \},\$$
$$C^{i}(\mathbf{I}, \mathbf{I}) = C(\mathbf{I}, \mathbf{I}) \cap USCC^{i}(\mathbf{I}, \mathbf{I}).$$

For any $\varphi \in \text{USCC}^i(\mathbf{I}, \mathbf{I})$ and $\varepsilon > 0$, similarly to Theorem 1.9 in [Fe], we can take a map $f \in C^i(\mathbf{I}, \mathbf{I})$ such that $d_{\mathrm{H}}(\varphi, f) < \varepsilon$ and f(1) = 0, that is, the subset $C^i(\mathbf{I}, \mathbf{I})$ is dense in $\text{USCC}^i(\mathbf{I}, \mathbf{I})$. By the same method as in [SU₁, Lemma 2], we can construct a homotopy $G^i : \text{USCC}^i(\mathbf{I}, \mathbf{I}) \times [0, 1] \rightarrow \text{USCC}^i(\mathbf{I}, \mathbf{I})$ such that $G_0^i = \text{id}$ and $G_t^i(\text{USCC}^i(\mathbf{I}, \mathbf{I})) \subset C^i(\mathbf{I}, \mathbf{I})$ for each t > 0.

Each $\varphi \in \text{USCC}([a, b], [c, d])$ is linearly transferred to an element of $\text{USCC}(\mathbf{I}, \mathbf{I})$ by the function $T_{[a, b]}^{[c, d]} : \text{USCC}([a, b], [c, d]) \to \text{USCC}(\mathbf{I}, \mathbf{I})$, that is,

$$\mathbf{T}_{[a,b]}^{[c,d]}(\varphi) = \left\{ \left(\frac{x-a}{b-a}, \frac{y-c}{d-c}\right) \, \middle| \, (x,y) \in \varphi \right\}.$$

The inverse of $T_{[a,b]}^{[c,d]}$ is denoted by $T_{[a,b]}^{-1[c,d]}$: USCC(\mathbf{I}, \mathbf{I}) \rightarrow USCC([a,b], [c,d]). These functions will be used in the following lemma.

LEMMA 1. There exists a homotopy $F : P \times [0,1] \to P$ such that $F_0 = \text{id}$ and $F_t(P) \subset R(\mathbf{I})$ for t > 0 (that is, $R(\mathbf{I})$ is homotopy co-negligible in P).

 $\mathbf{P}\,\mathbf{r}\,\mathbf{o}\,\mathbf{o}\,\mathbf{f}.$ First, we will define a homotopy $H:P\times[0,1]\to P$ such that $H_0=\mathrm{id}$ and

$$H_t(P) \subset \{\varphi \in P \mid p_2(\varphi) \cap \{0,1\} = \emptyset \text{ or } a(\varphi) = b(\varphi)\}.$$

For each $\varphi \in P$ and each $t \in [0, 1]$, define numbers

$$a_t(\varphi) = \left(1 - \frac{t}{2}\right)a(\varphi) + \frac{t}{2}b(\varphi), \quad b_t(\varphi) = \left(1 - \frac{t}{2}\right)b(\varphi) + \frac{t}{2}a(\varphi)$$

and a retraction $r_{(\varphi,t)}: \mathbf{I} \to \mathbf{I}$ by

$$r_{(\varphi,t)}(y) = \begin{cases} a_t(\varphi) & \text{if } y \in [0, a_t(\varphi)], \\ y & \text{if } y \in [a_t(\varphi), b_t(\varphi)], \\ b_t(\varphi) & \text{if } y \in [b_t(\varphi), 1], \end{cases}$$

for every $y \in \mathbf{I}$. The homotopy $H: P \times [0,1] \to P$ is defined by

$$H_t(\varphi)(x) = r_{(\varphi,t)}(\varphi(x)) \subset \mathbf{I}$$

for every $\varphi \in P$, $t \in [0,1]$ and $x \in \mathbf{I}$. Observe that $H_t(\varphi) = \varphi$ for each $t \in [0,1]$ and each $\varphi \in P$ such that $a(\varphi) = b(\varphi)$.

Next, by using the homotopy G^i , we approximate the multi-valued functions $H_t(\varphi)$ by (single-valued) continuous maps. Let

$$L_t(\varphi) = (\mathrm{T}^{-1}{}^{[a_t(\varphi), b_t(\varphi)]}_{[0, a_t(\varphi)]} \circ G_t^0 \circ \mathrm{T}^{[a_t(\varphi), b_t(\varphi)]}_{[0, a_t(\varphi)]})(H_t(\varphi)|_{[0, a_t(\varphi)]}) \subset \mathbf{I}^2,$$

$$R_t(\varphi) = (\mathrm{T}^{-1}{}^{[a_t(\varphi), b_t(\varphi)]}_{[b_t(\varphi), 1]} \circ G_t^1 \circ \mathrm{T}^{[a_t(\varphi), b_t(\varphi)]}_{[b_t(\varphi), 1]})(H_t(\varphi)|_{[b_t(\varphi), 1]}) \subset \mathbf{I}^2,$$

for every $t \in (0,1]$ and for every $\varphi \in P$ such that $a(\varphi) \neq b(\varphi)$. Now we define the desired homotopy $F : P \times [0,1] \to P$ as follows:

$$F_t(\varphi) = \begin{cases} \varphi & \text{if } t = 0 \text{ or } a(\varphi) = b(\varphi), \\ L_t(\varphi) \cup \operatorname{id}|_{[a_t(\varphi), b_t(\varphi)]} \cup R_t(\varphi) & \text{otherwise.} \end{cases}$$

We call a closed set A in Y a Z-set if any map $f : Q \to Y$ can be approximated by maps $g : Q \to Y \setminus A$. A countable union of Z-sets is called a Z_{σ} -set. To prove the Main Theorem, we use the following characterization of the pseudo-boundary $B(Q) = Q \setminus s$ of Q (cf. [An], [Ch, Lemma 8.1]).

LEMMA 2. For a subset $M \subset Q$, we have $(Q, M) \approx (Q, B(Q))$ if and only if M is a Z_{σ} -set in Q and satisfies the following condition:

(*) for any pair (A, B) of compact in Q such that $B \subset M$ and for any $\varepsilon > 0$, there exists a closed embedding $h : A \to M$ such that $h|_B = \text{id}$ and h is ε -close to id.

Proof of Main Theorem. Since P is closed in $\exp(\mathbf{I}^2)$, it follows from Lemma 1 that $\overline{R}(\mathbf{I}) = P$. Because $R(\mathbf{I})$ is homotopy co-negligible in $\overline{R}(\mathbf{I})$ (Lemma 1) and $R(\mathbf{I}) \approx s$ ([BS]), we can easily verify that $\overline{R}(\mathbf{I})$ is an AR and has the disjoint cells property, hence $\overline{R}(\mathbf{I}) \approx Q$ by Toruńczyk's [To] characterization of Q. For convenience, we identify $\overline{R}(\mathbf{I})$ with Q, and assume $R(\mathbf{I}) \subset Q$. It is easily seen by Lemma 1 that $Q \setminus R(\mathbf{I})$ is a Z_{σ} -set in Q.

We will prove that $R(\mathbf{I})$ satisfies condition (*). Let $\alpha : A \to [0,1]$ be the map defined by $\alpha(\varphi) = \frac{1}{3}\min\{\varepsilon, d_{\mathrm{H}}(\varphi, B)\}$. By using Lemma 1, we can define a map $f : A \to Q$ such that $f(A \setminus B) \subset R(\mathbf{I}), f|_B = \mathrm{id}$ and $d_{\mathrm{H}}(f(\varphi), \varphi) < \alpha(\varphi)$ for each $\varphi \in A \setminus B$. Since $R(\mathbf{I}) \approx s$ and $A \setminus B$ is completely metrizable, we have a closed embedding $g : A \setminus B \to R(\mathbf{I})$ such that $d_{\mathrm{H}}(g(\varphi), f(\varphi)) < \alpha(\varphi)$ for each $\varphi \in A \setminus B$. We may assume that g(A) S. UEHARA

does not intersect the subset $R_{c}(\mathbf{I})$ consisting of all constant maps because $R_{c}(\mathbf{I}) \approx \mathbf{I}$ is a compact subset of $R(\mathbf{I}) \approx s$, whence it is a Z-set in $R(\mathbf{I})$. Now we define $h : A \setminus B \to Q \setminus R(\mathbf{I})$ as follows:

$$h(\varphi)(x) = \begin{cases} [g(\varphi)(x), \min\{b(\varphi), g(\varphi)(x) + \alpha(\varphi)\}] & \text{if } x = a(\varphi) \\ g(\varphi)(x) & \text{otherwise} \end{cases}$$

(recall that $a(\varphi) = \min \bigcup_{x \in \mathbf{I}} \varphi(x)$ and $b(\varphi) = \max \bigcup_{x \in \mathbf{I}} \varphi(x)$). As is easily observed, h is continuous and injective. For each $\varphi \in A \setminus B$,

$$\begin{aligned} d_{\mathrm{H}}(h(\varphi),\varphi) &\leq d_{\mathrm{H}}(h(\varphi),g(\varphi))d_{\mathrm{H}}(g(\varphi),f(\varphi)) + d_{\mathrm{H}}(f(\varphi),\varphi) \\ &< \alpha(\varphi) + \alpha(\varphi) + \alpha(\varphi) = 3\alpha(\varphi) \leq d_{\mathrm{H}}(\varphi,B). \end{aligned}$$

Hence we can extend h to a map $\tilde{h} : A \to Q$ by $\tilde{h}|_B = \text{id. Since } d_H(\varphi, h(\varphi)) < d_H(\varphi, B)$ for each $\varphi \in A \setminus B$, we see that $\tilde{h}(A \setminus B) = h(A \setminus B)$ does not meet h(B). Then it follows that \tilde{h} is injective, whence it is an embedding since A is compact. Thus we have the desired embedding \tilde{h} . By Lemma 2, we have the result. \blacksquare

Acknowledgements. The author wishes to thank Professor K. Sakai for his helpful comments.

REFERENCES

- [An] R. D. Anderson, A characterization of apparent boundaries of the Hilbert cube, Notices Amer. Math. Soc. 16 (1969), 429, Abstract #697–G17.
- [BS] V. N. Basmanov and A. G. Savchenko, *Hilbert space as the space of retractions of an interval*, Math. Notes 40 (1988), 563–566.
- [Ch] T. A. Chapman, Dense sigma-compact subsets of infinite-dimensional manifolds, Trans. Amer. Math. Soc. 154 (1971), 399–426.
- [Fe] V. V. Fedorchuk, Completions of spaces of functions on compact spaces with respect to the Hausdorff uniformity, Trudy Sem. Petrovsk. 18 (1995), 213–235 (in Russian); English transl.: J. Math. Sci. 80 (1996), 2118–2129.
- [SU₁] K. Sakai and S. Uehara, A Hilbert cube compactification of the Banach space of continuous functions, Topology Appl., to appear.
- [SU₂] —, —, A Q-manifold compactification of the homeomorphism group of a graph, Bull. Polish Acad. Sci. Math. 45 (1997), 281–286.
- [To] H. Toruńczyk, On CE-images of the Hilbert cube and characterization of Qmanifolds, Fund. Math. 106 (1980), 31-40.

Institute of Mathematics University of Tsukuba Tsukuba 305-8571, Japan E-mail: uehara@math.tsukuba.ac.jp

> Received 1 July 1997; revised 4 February 1998