AN ELEMENTARY PROOF OF THE WEITZENBÖCK THEOREM

ВЪ

ANDRZEJ TYC (TORUŃ)

Introduction. The main aim of this paper is to give an elementary and self-contained proof of the following classical result.

THEOREM (Weitzenböck [8]). Let \mathbb{C}^+ be the additive group of the complex field \mathbb{C} and let V be a finite-dimensional rational representation of \mathbb{C}^+ . Then the algebra $\mathbb{C}[V]^{\mathbb{C}^+}$ of invariant polynomial functions on V is finitely generated.

The first modern proof of the theorem is due to Seshadri [6] and it is geometric. Our proof is an algebraic version of Seshadri's proof.

As a consequence of our considerations and the main result of [5] for $G = \mathrm{SL}(2,\mathbb{C})$ we get the following.

Theorem. Let V be a finite-dimensional, rational, non-trivial representation of \mathbb{C}^+ determined by a nilpotent endomorphism f of the vector space V. Then

- 1. $\mathbb{C}[V]^{\mathbb{C}^+}$ is a Gorenstein ring.
- 2. $\mathbb{C}[V]^{\mathbb{C}^+}$ is a polynomial algebra if and only if $V = V_0 \oplus V'$ for some subrepresentations V_0 , V' of V such that V_0 is trivial (that is, $f(V_0) = 0$) and the Jordan matrix of $f_{|V'|}: V' \to V'$ is one of the following:

$$\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \quad \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}, \quad \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

This theorem is equivalent to the following.

THEOREM. Let $A = \mathbb{C}[X_1, \dots, X_n]$ and let $0 \neq d : A \to A$ be a locally nilpotent derivation such that $d(W) \subset W$, where $W = \mathbb{C}X_1 + \dots + \mathbb{C}X_n \subset A$. Then

¹⁹⁹¹ Mathematics Subject Classification: Primary 14A50.

- 1. A^d (= Ker d) is a Gorenstein ring.
- 2. A^d is a polynomial algebra if and only if $W = W_0 \oplus W'$ for some subspaces W_0 , W' of W such that $d(W_0) = 0$, $d(W') \subset W'$, and the Jordan matrix of the endomorphism $d_{|W'|}: W' \to W'$ is one of the above matrices.
- 1. Preliminaries and auxiliary lemmas. Throughout the paper all vector spaces, algebras, Lie algebras, and tensor products are defined over \mathbb{C} . All (associative) algebras are assumed to be commutative. We denote by L the simple Lie algebra $\mathrm{sl}(2,\mathbb{C}) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in M_2(\mathbb{C}) : a+d=0 \right\}$. Let

$$x = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \quad y = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \quad h = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$$

Then $\{x, y, h\}$ is a linear basis of L and [x, y] = h, [h, x] = 2x, [h, y] = -2y. It is known (see for instance [2, Chap. II]) that every finite-dimensional L-module is semisimple, and for each $m = 0, 1, \ldots$ there exists only one (up to isomorphism) simple L-module $V_m = \langle v_0, \ldots, v_m \rangle$ (= linear span of v_0, \ldots, v_m) of dimension m + 1 with

$$x.v_i = (m - i + 1)v_{i-1},$$

 $y.v_i = (i + 1)v_{i+1},$
 $h.v_i = (m - 2i)v_i$

for i = 0, ..., m $(v_{-1} = 0 = v_{m+1})$. In particular, it follows that if W is a finite-dimensional L-module, then the endomorphism $w \to x.w$ of W, as a vector space, is nilpotent.

By a trivial L-module we mean an L-module W such that t.w = 0 for all $t \in L$ and $w \in W$.

Given an L-module W, the trivial submodule $\{w \in W : \forall t \in L \ t.w = 0\}$ of W is called the *module of invariants* of W and it is denoted by W^L . Notice that $W^L = \{w \in W : x.w = 0 = y.w\}$. If $f: W \to W'$ is a homomorphism of L-modules, then $f(W^L) \subset W'^L$, and $f^L: W^L \to W'^L$ will denote the restriction of f to W^L . If W is an L-module, then W^* denotes the dual vector space provided with the L-module structure given by $(t.w^*)(w) = w^*(-t.w), \ t \in L, \ w^* \in W^*, \ w \in W$.

An L-module W is said to be locally finite if W is a union of its finite-dimensional submodules. It is obvious that each locally finite L-module W is semisimple, that is, $W \cong \bigoplus_{i \in I} V_{m_i}$ for some set I. In particular, $W = W^L \oplus LW$, where $LW = \{\sum t_i.w_i : t_i \in L, w_i \in W\}$. Let $R_W : W \to W^L$ denote the natural projection. Then the R_W 's define the Reynold operator on the category of locally finite L-modules, which means that the following conditions hold.

- (i) For any locally finite L-module W, $R_W : W \to W^L$ is a surjective homomorphism of L-modules and $R_W(w) = w$ for $w \in W^L$.
- (ii) If $f: W \to W'$ is a homomorphism of locally finite L-modules, then $f^L \circ R_W = R_{W'} \circ f$.

In fact, (i) follows immediately from the definition of R_W , and (ii) holds because $f(LW) \subset LW'$.

An algebra A is an L-module algebra if A is an L-module and for each $t \in L$ the map $d_t : A \to A$, $d_t(a) = t.a$, is a derivation of A. If A is an L-module algebra, then A^L is a subalgebra of A called the algebra of invariants. An L-module algebra A is called locally finite if A is locally finite as an L-module. If this is the case, then we have the Reynold operator $R = R_A : A \to A^L$. It turns out that R is an A^L -linear map, that is, R(ay) = aR(y) for $a \in A^L$ and $y \in A$. To see this, it suffices to apply the condition (ii) of the Reynold operator to the homomorphism of L-modules $f: A \to A$ given by f(y) = ay.

Let W be an L-module. Then the symmetric algebra S(W) will be viewed as an L-module algebra via

$$t.(w_1...w_m) = \sum_{i=1}^m w_1...w_{i-1}(t.w_i)w_{i+1}...w_m$$

for $t \in L$ and $w_1, \ldots, w_m \in W \subset S(W)$. It is obvious that S(W) is locally finite if W is finite-dimensional. In particular, for any finite-dimensional L-module W we have the locally finite L-module algebra $S(W^*)$.

LEMMA 1. If W is a finite-dimensional L-module, then the algebra $S(W)^L$ of invariants is finitely generated.

Proof. Notice that $S(W)^L$ is a graded subalgebra of the graded algebra $S(W) = \bigoplus_{n=0}^{\infty} S^n(W)$. Therefore, in order to show that $S(W)^L$ is finitely generated it suffices to prove that the ring $S(W)^L$ is noetherian.

Let I be an ideal in $S(W)^L$. Since the ring S(W) is noetherian, there are $a_1, \ldots, a_n \in I$ such that $IS(W) = a_1S(W) + \ldots + a_nS(W)$. Our claim is that $I = (a_1, \ldots, a_n)$. Obviously $(a_1, \ldots, a_n) \subset I$. Let $a \in I$. Then $a = a_1 = a_1y_1 + \ldots + a_ny_n$ for some $y_i \in S(W)$. Hence $a = R(a) = a_1R(y_1) + \ldots + a_nR(y_n) \in (a_1, \ldots, a_n)$, because $R = R_A$ is A^L -linear. This implies that $I = (a_1, \ldots, a_n)$, which means that the ring $S(W)^L$ is noetherian. \blacksquare

From now on, given a finite-dimensional vector space V (respectively, a finite-dimensional L-module V), $\mathbb{C}[V]$ will stand for the algebra $S(V^*)$ (respectively, for the L-module algebra $S(V^*)$) considered as the algebra of polynomial functions on V.

Lemma 2. Let V be a finite-dimensional vector space.

- (i) If $f: V \to V$ is a nilpotent endomorphism of V, then there exists a unique (up to isomorphism) L-module structure $\psi: L \times V \to V$ on V such that f(v) = x.v, where $x.v = \psi(x,v)$. More precisely, (V,ψ) is isomorphic to $V_{m_1} \oplus \ldots \oplus V_{m_s}$, where $m_1 + 1, \ldots, m_s + 1$ are the dimensions of the Jordan cells of f.
- (ii) If $d: \mathbb{C}[V] \to \mathbb{C}[V]$ is a locally nilpotent derivation of $\mathbb{C}[V]$ with $d(V^*) \subset V^*$, then there exists a (unique) L-module structure $\psi: L \times V \to V$ on V such that $d = d_x: \mathbb{C}[(V, \psi)] \to \mathbb{C}[(V, \psi)]$.

Proof. (i) The Jordan matrix of f equals

$$\begin{pmatrix} A_1 & & 0 \\ & \ddots & \\ 0 & & A_s \end{pmatrix},$$

where all A_i 's (the Jordan cells of f) are of the form

$$\begin{pmatrix} 0 & 1 & & 0 \\ & \ddots & \ddots & \\ & & \ddots & 1 \\ 0 & & & 0 \end{pmatrix}.$$

Let $m_i = \dim A_i - 1$ for i = 1, ..., s. We can assume that $m_1 \leq ... \leq m_s$. Then $V = W_1 \oplus ... \oplus W_s$ and $f = f_1 \oplus ... \oplus f_s$ for some subspaces W_i of dimension $m_i + 1$ and nilpotent endomorphisms $f_i : W_i \to W_i$ with Jordan matrices A_i , i = 1, ..., s.

First assume that s=1. Then there exists a basis $v'_0, \ldots, v'_m, m=\dim V-1$, of V with $f(v'_i)=v'_{i-1}$ for $i=0,\ldots,m$ ($v'_{-1}=0$). Set $v_i=v'_i/(m-i)!$, $i=0,\ldots,m$. Then $f(v_i)=(m-i+1)v_{i-1}$, so that putting $\psi(x,v_i)=(m-i+1)v_{i-1}$, $\psi(y,v_i)=(i+1)v_{i+1}$, and $\psi(h,v_i)=(m-2i)v_i$, $i=0,\ldots,m$ ($v_{m+1}=0$), we get an L-module structure $\psi:L\times V\to V$ such that $(V,\psi)=V_m$.

If s is arbitrary, then we apply the above procedure to each f_i , $i=1,\ldots,s$. As a result one obtains an L-module structure $\psi:L\times V\to V$ such that $(V,\psi)=V_{m_1}\oplus\ldots\oplus V_{m_s}$.

It remains to prove the uniqueness of ψ . Suppose that $\psi': L \times V \to V$ makes V an L-module in such a way that $f(v) = \psi'(x, v)$ for all $v \in V$. Then $(V, \psi') \cong V_{n_1} \oplus \ldots \oplus V_{n_r}$ for some $0 \leq n_1 \leq \ldots \leq n_r$. But the relation $f(v) = \psi'(x, v), v \in V$, implies that r = s and $n_1 = m_1, \ldots, n_s = m_s$. This proves part (i).

(ii) Since the evaluation map $\text{ev}: V \to V^{**}$, $\text{ev}(v)(v^*) = v^*(v)$, $v^* \in V^*$, $v \in V$, is an isomorphism, there is an endomorphism f of V such that the following diagram commutes:

$$V \xrightarrow{f} V$$

$$\text{ev} \qquad \qquad \text{ev}$$

$$V^{**} \xrightarrow{g} V^{**}$$

where $g(s)(v^*) = -s(d(v^*))$, $s \in V^{**}$, $v^* \in V^*$. It is obvious that f is nilpotent because $d_{|V^*}: V^* \to V^*$ is nilpotent. So, applying (i) to f we get an L-module structure $\psi: L \times V \to V$ such that $f(v) = \psi(x, v)$ for all $v \in V$. In particular, we have the induced derivation $d_x: \mathbb{C}[(V, \psi)] \to \mathbb{C}[(V, \psi)]$. For $v^* \in V^*$, $v \in V$,

$$d_x(v^*)(v) = v^*(-\psi(x,v)) = -v^*(f(v)) = -\operatorname{ev}(f(v))(v^*)$$

= $-g \circ \operatorname{ev}(v)(d(v^*)) = d(v^*)(v),$

which means that $d_x=d$ on $V^*\subset \mathbb{C}[V].$ This, however, implies that $d_x=d$. \blacksquare

Below, U will denote the vector space \mathbb{C}^2 provided with the natural L-module structure given by

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} z_1 \\ z_2 \end{pmatrix} = \begin{pmatrix} az_1 + bz_2 \\ cz_1 + dz_2 \end{pmatrix}.$$

Then $\mathbb{C}[U] = \mathbb{C}[X,Y]$, where $X,Y \in (\mathbb{C}^2)^*$, $X(z_1,z_2) = z_1$, $Y(z_1,z_2) = z_2$, and the *L*-module algebra structure on $\mathbb{C}[U]$ is determined by

(1)
$$d_x(X) = -Y$$
, $d_x(Y) = 0 = d_y(X)$, $d_y(Y) = -X$.

If A, B are L-module algebras, then the tensor product $A \otimes B$ is an L-module algebra via $t.(a \otimes b) = t.a \otimes b + a \otimes t.b$, where $t \in L$, $a \in A$, $b \in B$. In particular, for any L-module algebra A we have the L-module algebra $A[X,Y] = A \otimes \mathbb{C}[U]$. Observe that $A[X,Y] = \mathbb{C}[V \oplus U]$ whenever $A = \mathbb{C}[V]$ for some finite-dimensional L-module V.

LEMMA 3. Let A be a locally finite L-module algebra. Then the homomorphism of algebras $\Phi: A[X,Y] \to A$, $\Phi(f(X,Y)) = f(1,0)$, induces an isomorphism of algebras $\Phi: A[X,Y]^L \to A^x$, where $A^x = \{a \in A: x.a = 0\}$ = $\{a \in A: d_x(a) = 0\}$.

Proof. Let $f = \sum_{k=0}^{s} f_k(X) Y^k \in A[X,Y]$ and let $f_k(X) = \sum_{j\geq 0} a_j^{(k)} X^j$, $k=0,\ldots,s$. Using the formulas (1), we easily verify that $d_x(f)=0=d_y(f)$ if and only if the following conditions hold:

(2)
$$d_x(a_j^{(0)}) = 0 = f_s'(X), \quad d_x(a_j^{(k)}) = (j+1)a_{j+1}^{(k-1)}, \quad k = 1, \dots, s, \ j \ge 0,$$

(3) $d_y(a_0^{(k)}) = 0, \qquad k = 0, \dots, s,$
 $d_y(a_j^{(k)}) = (k+1)a_{j-1}^{(k+1)}, \quad k = 0, \dots, s-1, \ j \ge 1.$

From (3), by induction on k, we get

(4)
$$a_j^{(k+1)} = \frac{1}{(k+1)!} d_y^{k+1} (a_{j+k+1}^{(0)}), \quad k = 0, \dots, s-1, \ j \ge 0.$$

It turns out that also

(5)
$$d_h(a_j^{(0)}) = j a_j^{(0)} \quad \text{for } j \ge 0.$$

In fact, by (2) and (3), $d_h(a_j^{(0)}) = d_x d_y(a_j^{(0)}) - d_y d_x(a_j^{(0)}) = d_x d_y(a_j^{(0)}) = d_x d_y(a_j^{(0)}) = d_x d_y(a_j^{(0)}) = 0$ because $d_y(a_0^{(0)}) = 0$.

From (5) it follows that the set $\{a_j^{(0)}: j \geq 0\} \setminus \{0\}$ is linearly independent (over \mathbb{C}). From (2) we know that if $f \in A[X,Y]^L$, then $\Phi(f) = f(1,0) = f_0(1) = \sum_{j\geq 0} a_j^{(0)} \in A^x$. Therefore, the homomorphism of algebras Φ induces a homomorphism of algebras

$$\Phi: A[X,Y]^L \to A^x.$$

If $\Phi(f)=0$ for some $f\in A[X,Y]^L$, that is, $\sum_{j\geq 0}a_j^{(0)}=0$, then $a_j^{(0)}=0$ for all $j\geq 0$, because the set $\{a_j^{(0)}:j\geq 0\}\setminus\{0\}$ is linearly independent. In view of (4), this yields f=0.

It remains to prove that Φ is surjective. Since A is locally finite as an L-module, $A = \bigoplus_{i \in I} V_{m_i}$ for some set I. It follows that $A = \bigoplus_{j \in \mathbb{Z}} A_j$, where $A_j = \{a \in A : d_h(a) = ja\}$. Observe also that $\{v \in V_m : x.v = 0\} = \langle v_0 \rangle$ for each $m \geq 0$. Hence

(6)
$$A^x = \bigoplus_{j>0} A_j \cap A^x.$$

Now we show the following:

(7) If
$$a \in A_m \cap A^x$$
 for some $m \ge 0$, then $d_y^{m+1}(a) = 0$ and $d_x d_y^j(a) = (m-j+1)jd_y^{j-1}(a)$ for $j = 1, ..., m+1$.

Let $d_h(a) = ma$ and $d_x(a) = 0$ for some $a \in A$ and $m \ge 0$. We can assume that $a \in V_{m_i}$ for some $i \in I$. Then obviously $m_i = m$ and $a = \alpha v_0$ for an $\alpha \in \mathbb{C}$, whence $d_y^j(a) = \alpha j! v_j$ for all $j \ge 1$ ($v_j = 0$ if j > m). In particular, $d_y^{m+1}(a) = 0$. Furthermore, $d_x d_y^j(a) = d_x(\alpha j! v_j) = \alpha j! x. v_j = \alpha (m-j+1)j(j-1)! v_{j-1} = (m-j+1)j d_y^{j-1}(a), j = 1, \ldots, m+1$. So, the statement (7) is proved.

In order to prove that $\Phi: A[X,Y]^L \to A^x$ is surjective take an $a \in A^x$. By (6), we can assume that $a \in A_s \cap A^x$ for some $s \ge 0$. Set

$$f_k(X) = \frac{1}{k!} d_y^k(a) X^{s-k}, \quad k = 0, \dots, s,$$

and let

$$f(X,Y) = f_0(X) + f_1(X)Y + \dots + f_s(X)Y^s$$
.

Making use of (2), (3), and (7), one easily checks that $f \in A[X,Y]^L$. Moreover, $\psi(f) = f(1,0) = f_0(1) = a$. This completes the proof of Lemma 3.

Given a derivation d of an algebra B, B^d will denote the algebra of constants of d, i.e., $B^d = \operatorname{Ker} d$.

2. Results. Let \mathbb{C}^+ denote the additive group of the complex field \mathbb{C} . We consider \mathbb{C}^+ as an algebraic group with the algebra of regular functions $\mathbb{C}[X]$. Then a rational representation of \mathbb{C}^+ is a linear space V together with an action of \mathbb{C}^+ on V such that, given $z \in \mathbb{C}^+$, $v \in V$,

$$z.v = \sum_{i>0} \frac{f^i(v)}{i!} z^i$$

for some locally nilpotent endomorphism $f: V \to V$. The endomorphism f is uniquely determined by the action, and f is nilpotent whenever V is finite-dimensional.

Let V be a finite-dimensional rational representation of \mathbb{C}^+ determined by the endomorphism $f:V\to V$. Then we have the induced action of \mathbb{C}^+ on the algebra $\mathbb{C}[V]$ defined by (z.a)(v)=a(-z.v) for $a\in\mathbb{C}[V],\ z\in\mathbb{C}^+,$ $v\in V$. It is easy to check that this action is given by

$$z.a = \sum_{i>0} \frac{d^i(a)}{i!} z^i,$$

where d is the derivation of $\mathbb{C}[V]$ determined by $d(v^*) = -v^* \circ f$ for $v^* \in V^* \subset \mathbb{C}[V]$. This implies that $\mathbb{C}[V]^{\mathbb{C}^+} = \{a \in \mathbb{C}[V] : \forall z \in \mathbb{C}^+ \ z.a = a\} = \mathbb{C}[V]^d$. Notice also that d is locally nilpotent and $d(V^*) \subset V^*$.

THEOREM 1. If V is a finite-dimensional rational representation of \mathbb{C}^+ , then the algebra $\mathbb{C}[V]^{\mathbb{C}^+}$ is finitely generated.

Proof. As stated above, the action of \mathbb{C}^+ on $\mathbb{C}[V]$ is given by (*), where $d: \mathbb{C}[V] \to \mathbb{C}[V]$ is a locally nilpotent derivation such that $d(V^*) \subset V^*$ and $\mathbb{C}[V]^{\mathbb{C}^+} = \mathbb{C}[V]^d$.

Using Lemma 2(ii) we see that there exists an L-module structure on V such that $d = d_x$. Applying Lemma 3 to $A = \mathbb{C}[V]$ and taking into account that $A[X,Y] = \mathbb{C}[V \oplus U]$ we obtain

$$\mathbb{C}[V]^{\mathbb{C}^+} = \mathbb{C}[V]^d = \mathbb{C}[V]^{d_x} \cong \mathbb{C}[V \oplus U]^L.$$

Now from Lemma 1 it follows that $\mathbb{C}[V]^{\mathbb{C}^+}$ is a finitely generated algebra.

For the proof of the next theorem we have to recall some well-known links between locally finite L-modules and rational G-modules (= rational representations of G), where $G = \mathrm{SL}(2,\mathbb{C}) = \{M \in M_2(\mathbb{C}) : \det M = 1\}$. Since L is the Lie algebra of the algebraic group G, for any rational G-module

structure $\varphi: G \times V \to V$ on a vector space V we have the associated locally finite L-module structure $\widetilde{\varphi}: L \times V \to V$ on V (analytically, $\widetilde{\varphi}(t,v) = (\partial/\partial s) \varphi(\exp(st), v)_{|s=0}$ for $t \in L, v \in V$). The map $\widetilde{\varphi}$ uniquely determines φ and $(V, \varphi)^G = \{v \in V' : \forall g \in G \ \varphi(g, v) = v\} = \{v \in V : \forall t \in L \ \widetilde{\varphi}(t, v) = 0\} = (V, \widetilde{\varphi})^L$. Moreover, if (V, φ) is a rational G-module and $\Phi: G \times S(V) \to S(V)$ is the induced action of G on the symmetric algebra S(V), then $\widetilde{\Phi}: L \times S(V) \to S(V)$ is the previously defined L-module algebra structure on S(V). In particular, $S(V, \varphi)^G = S(V, \widetilde{\varphi})^L$.

It is known ([7, Chap. 3]) that every rational G-module is semisimple and that for any $m \geq 0$ there exists a unique (up to isomorphism) simple rational G-module ϱ_m of dimension m+1. It is not difficult to show that the L-module associated with ϱ_m is isomorphic to V_m for all $m \geq 0$. As a consequence of the above facts we get the following.

COROLLARY 4. Let V be a finite-dimensional vector space. Then for any L-module structure $\psi: L \times V \to V$ on V there exists a unique rational G-module structure $\varphi: G \times V \to V$ on V such that the following conditions hold.

- (a) $\widetilde{\varphi} = \psi$.
- (b) $(V, \varphi) \cong \varrho_{m_1} \oplus \ldots \oplus \varrho_{m_s}$ for some m_1, \ldots, m_s if and only if $(V, \psi) \cong V_{m_1} \oplus \ldots \oplus V_{m_s}$.

(c) $S(V,\psi)^L \cong S(V,\varphi)^G$.

The G-module (V, φ) is called the *lifting* of the L-module (V, ψ) .

Theorem 2. Let V be a finite-dimensional rational representation determined by a non-zero nilpotent endomorphism f of the vector space V. Then

- 1. $\mathbb{C}[V]^{\mathbb{C}^+}$ is a Gorenstein ring.
- 2. $\mathbb{C}[V]^{\mathbb{C}^+}$ is a polynomial algebra if and only if $V = V_{(0)} \oplus V'$ for some subrepresentations $V_{(0)}$, V' of V such that \mathbb{C}^+ acts trivially on $V_{(0)}$ (i.e., $f(V_{(0)}) = 0$) and the Jordan matrix of $f' : V' \to V'$, f'(v) = f(v), is one of the following:

$$\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \quad \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}, \quad \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

Proof. As in the proof of Theorem 1, $\mathbb{C}[V]^{\mathbb{C}^+} \cong \mathbb{C}[V \oplus U]^L$ for some L-module structure $\psi: L \times V \to V$ such that $\psi(x,v) = f(v)$ for $v \in V$. But U, being a simple L-module of dimension 2, is isomorphic to V_1 , so that $\mathbb{C}[V]^{\mathbb{C}^+} \cong \mathbb{C}[V \oplus V_1]^L$. According to Corollary 4, there exists a unique rational $G = \mathrm{SL}(2,\mathbb{C})$ -module structure φ on V such that $\widetilde{\varphi} = \psi$. This implies

that $\mathbb{C}[V]^{\mathbb{C}^+} \cong \mathbb{C}[(V,\varphi) \oplus \varrho_1]^G$, because ϱ_1 is the lifting of V_1 . Now part 1 of the theorem follows, because, as is well known, $\mathbb{C}[W]^G$ is a Gorenstein ring for any finite-dimensional rational G-module W (see [1, Remark 6.5.5]).

For part 2, in view of [5, Example following Thm. 3], $\mathbb{C}[V]^{\mathbb{C}^+} \cong \mathbb{C}[(V,\varphi) \oplus \varrho_1]^G$ is a polynomial algebra if and only if there exists a trivial submodule V_t of the G-module (V,φ) such that $(V,\varphi) \oplus \varrho_1$ is isomorphic to one of the G-modules: $V_t \oplus \varrho_1 \oplus \varrho_1$, $V_t \oplus \varrho_2 \oplus \varrho_1$, $V_t \oplus \varrho_1 \oplus \varrho_1 \oplus \varrho_1$. It follows that $\mathbb{C}[V]^{\mathbb{C}^+}$ is a polynomial algebra if and only if (V,φ) is isomorphic to one of the G-modules: $V_t \oplus \varrho_1$, $V_t \oplus \varrho_2$, $V_t \oplus \varrho_1 \oplus \varrho_1$. By Corollary 4(b), this in turn implies that $\mathbb{C}[V]^{\mathbb{C}^+}$ is a polynomial algebra if and only if the L-module (V,ψ) is isomorphic to one of the L-modules: $V_{(0)} \oplus V_1$, $V_{(0)} \oplus V_2$, $V_{(0)} \oplus V_1 \oplus V_1$, where $V_{(0)}$ is the trivial L-module structure on V_t as a vector space. The conclusion now follows from Lemma 2(i) applied to $f: V \to V$. The theorem is proved. \blacksquare

Remark. Part 1 of the theorem was announced in [4].

COROLLARY 5. Let $A = \mathbb{C}[X_1, \dots, X_n]$ and let $d \neq 0$ be a locally nilpotent derivation of A with $d(W) \subset (W)$, where $W = \mathbb{C}X_1 + \dots + \mathbb{C}X_n \subset A$.

- 1. A^d is a Gorenstein ring.
- 2. A^d is a polynomial algebra if and only if $W = W_0 \oplus W'$ for some subspaces W_0 , W' of W such that $d(W_0) = 0$, $d(W') \subset W'$, and the Jordan matrix of $d_{|W'|}: W' \to W'$ is one of the three matrices appearing in Theorem 2.

Proof. We can consider A as the algebra $\mathbb{C}[V]$, where $V=\mathbb{C}^n$. Then $W=V^*$, and hence there exists an endomorphism $f:V\to V$ such that $-f^*=d_{|W}:W\to W$. Since $d_{|W}$ is nilpotent, the endomorphism f is also nilpotent. Therefore, the formula

$$z.v = \sum_{i>0} \frac{f^i(v)}{i!} z^i, \quad z \in \mathbb{C}^+, \ v \in V,$$

makes V a rational representation of \mathbb{C}^+ such that $\mathbb{C}[V]^{\mathbb{C}^+} = \mathbb{C}[V]^d = A^d$. Now, the corollary is a consequence of Theorem 2, because the Jordan matrices of f and $\pm f^*$ coincide.

Remark 6. It is easy to see that the corollary is equivalent to Theorem 2.

REMARK 7. Let $M = (a_{ij}) \in M_n(\mathbb{C})$ be a nilpotent matrix and let $d: A \to A, A = \mathbb{C}[X_1, \ldots, X_n]$, be the locally nilpotent derivation defined by

$$d(X_i) = \sum_{i=1}^{n} a_{ij} X_j, \quad i = 1, \dots, n.$$

Essentially, the implication \Leftarrow in part 2 of Corollary 5 says that A^d is a polynomial algebra if M is one of the three matrices appearing in Theorem 2. But this follows also from [3], where it was shown that

- $A^d = \mathbb{C}[X_1]$ if n = 2 and $M = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ (this is obvious), $A^d = \mathbb{C}[X_1, X_2^2 2X_1X_3]$ if n = 3 and $M = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$ [3, Ex. 6.8.1], and

•
$$A^d = \mathbb{C}[X_1, X_3, X_2 X_3 - X_1 X_4]$$
 if $n = 4$ and $M = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$ [3, Prop. 6.9.5].

In fact, since $\operatorname{tr} \operatorname{deg}_{\mathbb{C}} A^D = n-1$ for any locally nilpotent derivation $D:A\to A,\ D\neq 0$, the generators of A^d in the above three cases are algebraically independent.

REFERENCES

- W. Bruns and J. Herzog, Cohen-Macaulay Rings, Cambridge Stud. Adv. Math. 39, Cambridge Univ. Press, 1993.
- J. E. Humphreys, Introduction to Lie Algebras and Representation Theory, Grad. Texts in Math. 9, Springer, New York, 1972.
- A. Nowicki, Polynomial Derivations and Their Rings of Constants, University Press, Toruń, 1994.
- N. Onoda, Linear actions of G_a on polynomial rings, in: Proc. 25th Sympos. Ring Theory (Matsumoto, 1992), Okayama Univ., Okayama, 1992, 11–16.
- V. L. Popov, Finiteness theorem for representations with a free algebra of invariants, Izv. Akad. Nauk SSSR Ser. Mat. 46 (1982), 347–370 (in Russian).
- C. S. Seshadri, On a theorem of Weitzenböck in invariant theory, J. Math. Kyoto Univ. 1 (1961), 403–409.
- T. A. Springer, Invariant Theory, Lecture Notes in Math. 585, Springer, New York,
- R. Weitzenböck, Über die Invarianten von linearen Gruppen, Acta Math. 58 (1932), 230-250.

Faculty of Mathematics and Informatics Nicholas Copernicus University Chopina 12/18 87-100 Toruń, Poland E-mail: atyc@mat.uni.torun.pl

> Received 8 January 1998; revised 10 February 1998