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A NOTE ON SCHRÖDINGER OPERATORS

WITH POLYNOMIAL POTENTIALS

BY

JACEK D Z I U B A Ń S K I (WROC LAW)

1. Introduction. In [DHJ] the authors apply methods of harmonic anal-
ysis on nilpotent Lie groups to study certain Schrödinger operators. This
article is a continuation of that work. Our aim is to investigate Schrödinger
operators with nonnegative polynomial potentials on R

d.
Let A be a Schrödinger operator on R

d which has the form

(1.1) A = −∆+ P,

where P (x) =
∑

γ≤α aγx
γ is a nonnegative nonzero polynomial on R

d, α =

(α1, . . . , αd) ∈ Z
d
+, Z+ = {0, 1, 2, . . .}. Without loss of generality we can

assume that minj αj ≥ 2. Let
T∞
0
λdEA(λ) be the spectral resolution of A.

For a bounded function φ on R+ we define the operator φ(A) by

φ(A) =

∞\
0

φ(λ) dEA(λ).

The most important part of this paper is to derive estimates for the
integral kernels of the operators φ(A) and the kernels of the semigroup
generated by −A. In order to obtain the estimates we use the idea which
relates the operator A = −∆+ P to an operator ΠH , where Π is a unitary
representation of a nilpotent Lie group and H is a special left-invariant
homogeneous operator on the group.

The estimates we obtain here enable us to prove the following result: For
all γ, γ′ ∈ Z

d
+ the operator

DγA−(|γ|+|γ′|)/2Dγ′

originally defined on C∞
c (Rd) is a Calderón–Zygmund operator; here Dγ =

Dγ1

1 . . . Dγd

d , Dj = ∂/∂xj . This result was obtained, using different methods,
by Zhong in the case where |γ| + |γ′| ≤ 2 (cf. [Z]).
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Moreover, for every q > 0 the operator

P q(x)DγA−q−(|γ|+|γ′|)/2Dγ′

can be extended to a bounded operator on Lp(Rd) for 1 ≤ p <∞ (cf. [Sh]).

In [E] the author considered the Hermite operator

H = − ∂2

∂x2
+ x2

and for κ ∈ R, 1 < p < ∞, and 1 < q ≤ ∞ defined Triebel–Lizorkin norms
‖ ‖Hκ,q

p
associated with the Hermite expansions by setting

‖f‖Hκ,q
p

=
∥∥∥
(∑

µ∈Z

(2µκ|φ(2−µH)f |)q
)1/q∥∥∥

Lp(R)
,

where φ(2−µH)f =
∑∞

k=0 φ(2−µ(2k + 1))〈f, hk〉hk, hk is the kth orthogo-
nal Hermite function, and φ is an appropriate bump function. He proved
using Mehler’s formula that the definition of the Triebel–Lizorkin space is
independent of φ. In this paper we show that the result holds in the case of
Schrödinger operators with nonnegative polynomial potentials, that is, for
κ ∈ R, 0 < p, q <∞, and suitable bump functions φ1 and φ2 the norms

‖f‖Aκ,q
p (φi) =

∥∥∥
[∑

µ∈Z

(2µκ|φi(2−µA)f |)q
]1/q∥∥∥

Lp(Rd)
, i = 1, 2,

are equivalent (see Section 5).

In a subsequent paper we shall study the Hardy spaces Hp
A associated

with A = −∆+P . We shall present several characterizations of these spaces.

2. A nilpotent Lie algebra and Schrödinger operators. Let G be
a homogeneous group, that is, a nilpotent Lie group equipped with a family
of dilations δt (cf. [FS]), and let g be the Lie algebra of G. We say that a
distribution H on G is a regular kernel of order r ∈ R if H coincides with a
smooth function away from the origin and

(2.1) 〈H, f ◦ δt〉 = tr〈H, f〉 for f ∈ C∞
c (G), t > 0.

For a given Schrödinger operator A as above we shall build a homoge-
neous group G, a unitary representation Π of G, and a symmetric kernel H
of order 2 such that ΠH = A. In our construction we shall use ideas from
[DHJ] and the results of W. Hebisch [He]. The following theorem proved in
[He] plays an essential role in our construction.

Theorem 2.2. Let G be a homogeneous Lie group with dilations δt, and
let Γ be a closed subset of g∗ such that Ad∗(G)Γ ⊂ Γ , and δ∗t Γ ⊂ Γ for

every t > 0. Then for every r > 0 there exists a regular symmetric kernel R



SCHRÖDINGER OPERATORS 151

of order r such that

πl
R = 0 for all l ∈ Γ

and the operator πl
R is positive definite and injective on its domain for all

l 6∈ Γ . Here πl denotes an irreducible unitary representation of G which

corresponds to the functional l via the Kirillov correspondence.

Let VP = {x ∈ R
d : DxP ≡ 0}, Dx =

∑d
j=1 xjDj . There is no loss of

generality in assuming that VP = {(x′, 0) : x′ ∈ R
k}, 0 ≤ k < d. Therefore,

R
d = VP ⊕ R

m = R
k ⊕R

m, m = d− k. For ε > 0 we set

Pε(x) =

{
P (x) + ε(x21 + . . . + x2k) if VP 6= {0},
P (x) if VP = {0}.

We define a nilpotent Lie algebra g as follows. Let α ∈ Z
d
+. As a vector

space, g has a basis {X1, . . . ,Xd, Y
[β] : 0 ≤ β ≤ α}. Let X , Y denote the

spans of Xj ’s and Y [β]’s respectively. The nontrivial commutators are

(2.3) [Xk, Y
[β]] =

{
Y [β−ek] if β − ek ≥ 0,
0 otherwise,

where ek is the d-tuple consisting of zeros except for a 1 in the kth position.

For α as above we define

(2.4) Pα =
{
ω : ω(x) =

∑

β≤α

cβx
β , cβ ∈ R

}
.

For ω ∈ Pα we set Vω = {x ∈ R
d : Dxω ≡ 0}. Let C∞

c (Rd/Vω) denote the
smooth functions on R

d that are invariant under translations by elements
of Vω and compactly supported on any subspace complementary to Vω.
Denote by gω(Rd/Vω) (respectively gω(Rd)) for ω ∈ Pα the Lie algebra
of operators on C∞

c (Rd/Vω) (respectively C∞
c (Rd)) generated by the Dj ’s

and multiplication by iω, denoted by Miω. Define the mappings πω : g →
gω(Rd/Vω) and Πω : g → gω(Rd) by

(2.5) πω,Πω :





Xj 7→ Dj ,
Y [α] 7→Miω,
and, inductively, if Y [β] 7→Miωβ

then

[Xj , Y
[β]] 7→Mi(Djωβ),

and extend linearly to g.

With each ω ∈ Pα, we associate the linear functional ξω on g by setting

(2.6)

{ 〈ξω,Xj〉 = 0 for each 1 ≤ j ≤ d,

〈ξω, Y [β]〉 = ωβ(0) if πω(Y [β]) = Miωβ
.

Clearly 〈ξω, Y [β]〉 = Dα−βω(0). We set Xω = {X ∈ X : πω([X,Y [α]]) = 0}.

The following lemma was proved in [DHJ].
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Lemma 2.7. Xω + Y is the maximal subalgebra subordinate to the func-

tional ξω, and πω is the infinitesimal representation associated with ξω via

the Kirillov correspondence. In particular , if Vω 6= {0}, then Πω is reducible.

On the Lie algebra g let δt be the one-parameter group of dilations
determined by δtXi = tXi, δtY

[α] = t2Y [α], and, inductively, δt[X,Y
[β]] =

[δtX, δtY
[β]]. The corresponding dilations δ∗t on g∗ are given by duality,

that is, 〈δ∗t ξ, Z〉 = 〈ξ, δtZ〉. Let G be the connected simply connected Lie
group with Lie algebra g. Throughout this paper we shall identify G with
its Lie algebra g with the Campbell–Hausdorff multiplication (cf. [FS]).
Topologically G = R

d×R
D, where D = dimY = (α1+1)(α2+1) . . . (αd+1).

We shall use the same symbol πω to denote the representation of G that
corresponds to the functional ξω via the Kirillov correspondence. Since δt
is an automorphism of G, πω ◦ δt is the representation associated with δ∗t ξω.
Moreover, δ∗t ξω = ξωt , where ωt(x) = t2ω(tx).

We choose and fix a homogeneous norm on G, that is, a continuous,
positive and symmetric function G ∋ g 7→ |g| which is smooth on G \ {0},
homogeneous of degree 1, and vanishes only at the origin.

The homogeneous dimension of G is the number Q defined by d(δtg) =
tQ dg, where dg is a bi-invariant Haar measure on G.

Let x = (xj) ∈ R
d and X =

∑d
j=1 xjXj . It was shown in [DHJ] that if

Πω
Y = MiV for ω ∈ Pα, then 〈Ad∗(expX)ξω , Y 〉 = V (x), and, consequently,

(2.8) Ad∗(expX)ξω = ξωx
, where ωx(x′) = ω(x+ x′), x, x′ ∈ R

d.

Set Γ = {ξω : ω ∈ Pα, ω(x) ≥ 0 for all x ∈ R
d} + Y⊥ ⊂ g∗, where

Y⊥ = {ξ ∈ g∗ : 〈ξ, Y 〉 = 0 for every Y ∈ Y}. One can check using
Lemma 1.5 of [DHJ] that Γ satisfies the assumptions of Theorem 2.2. Let

(2.9) W = −X2
1 −X2

2 − . . .−X2
d − iY [α].

Note that W is a regular symmetric kernel of order 2 and

(2.10) Πω
W f(x) = −∆f(x) + ω(x)f(x) for ω ∈ Pα.

Theorem 2.2 guarantees that there is a regular symmetric kernel R of order
4 such that πξ

R = 0 for ξ ∈ Γ and πl
R is positive definite and injective on

its domain for all l ∈ g∗ \ Γ . Set H =
√
R+W 2. We can verify that H is

a regular symmetric kernel of order 2 that satisfies the Rockland condition,
that is, πH is injective for every nontrivial irreducible unitary representation
π of G. Moreover,

ΠPε

H = πPε

H = −∆+ Pε(x), x ∈ R
d.

One can check that

(2.11) lim
ε→0

πPε

H f = ΠP
Hf = Af for f ∈ C∞

c (Rd).
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Applying [G1, Theorem 3.1 and Remark 3.14], we conclude that the follow-
ing maximal subelliptic estimates hold for H: for every regular kernel U of
order r and a positive integer k such that r ≤ 2k there is a constant C such
that

(2.12) ‖f ∗ U‖L2 ≤ C(‖f ∗Hk‖L2 + ‖f‖L2) for all f ∈ C∞
c (G).

Let
T∞
0
λdEH(λ) be the spectral resolution of the essentially self-adjoint

positive operator f 7→Hf= f∗H. For a bounded function φ on R we define
the operator φ(H)f =

T∞
0
φ(λ) dEH (λ)f . Obviously, by (2.11),

(2.13) φ(A) = ΠP
φ(H) for φ ∈ C∞

c ((0,∞)).

3. Estimates of kernels. Let {St}t>0 be the semigroup of linear oper-
ators on L2(G) generated by −H. The homogeneity of H and (2.12) imply
that the semigroup has the form

(3.1) Stf = f ∗ qt, qt(g) = t−Q/2q1(δt−1/2g),

where qt ∈ C∞(G) ∩ L2(G).

The results of P. G lowacki [G] (see also [D]) assert that for every homoge-
neous left-invariant (or right-invariant) differential operator ∂ on G and for
every nonnegative integer j there are constants C∂ , Cj,∂ such that

(3.2)
|∂qt(g)| ≤ C∂t(t

1/2 + |g|)−Q−|∂|−2,

|∂Hjqt(g)| ≤ Cj,∂(t1/2 + |g|)−Q−|∂|−2j ,

where |∂| is the degree of homogeneity of ∂.
Let us denote by S0([0,∞)) the subspace of all functions φ from the

Schwartz class S([0,∞)) such that

(3.3)
dk

dλk
φ(0+) = 0 for k = 1, 2, . . .

The following lemma was proved in [D1].

Lemma 3.4. If φ ∈ S0([0,∞)), then φ(H)f = f ∗ Φ, where Φ ∈ S(G).
Moreover , if φt(λ) = φ(tλ), then

φt(H)f = f ∗ Φt, where Φt(g) = t−Q/2Φ(δt−1/2g).

From (2.8) and (2.13) we deduce that for every F ∈ L1(G) and a polyno-
mial ω ∈ Pα the kernel Fω(x, u) of the operator Πω

F on L2(Rd) is expressed
by

Fω(x, u) =
\
Y

F (u− x, y) exp(i〈Ad∗
x ξω, y〉) dy(3.5)

= (FYF )(u− x, ω(x), . . . ,Dβω(x), . . .),

where FYF is the Fourier transform of F with respect to Y.
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Consequently, by (2.13) and Lemma 3.4, the kernels Qµ(x, u) of the
operators Qµ = φ(2−µA), where φ ∈ S0([0,∞)), are given by

(3.6) Qµ(x, u)

= 2dµ/2Ψ(2µ/2(u− x), 2−µP (x), . . . , 2−µ(|β|+2)/2DβP (x), . . .),

with Ψ = FYΦ ∈ S(Rd × Ŷ), |β| = |(β1, . . . , βd)| =
∑
βj .

For a multi-index γ ∈ Z
d we set Xγ = Xγ1

1 Xγ2

2 . . . Xγd

d . Then

(3.7) Dγ =
∂|γ|

∂xγ
= ΠP

Xγ .

Let us observe that ∂|γ|

∂xγ
∂|γ′|

∂uγ′Qµ(x, u) is the kernel corresponding to the op-
erator

(3.8) (−1)|γ
′|Dγφ(2−µA)Dγ′

f

= (−1)|γ
′|ΠP

XγΠP
Φ2−µ

ΠP
Xγ′f = (−1)|γ

′|2(|γ|+|γ′|)µ/2ΠP
(Xγ∗Φ∗Xγ′

)2−µ
f

for f ∈ C∞
c (Rd). Therefore

(3.9)
∂|γ|

∂xγ
∂|γ

′|

∂uγ′Qµ(x, u)

= (−1)|γ
′|2(d+|γ|+|γ′|)µ/2

× Ψ(γ,γ′)(2
µ/2(u− x), 2−µP (x), . . . , 2−µ(|β|+2)/2DβP (x), . . .),

where Ψ(γ,γ′) = FY(Xγ ∗ Φ ∗Xγ′

).
Thus we have proved

Proposition 3.10. For every b > 0 and every φ ∈ S0([0,∞)) the kernels

Qµ(x, u) of the operators Qµ = φ(2−µA) satisfy

|Qµ(x, u)| ≤ Cb2
dµ/2(1 + 2µ/2|x− u|)−b,(3.11)

∣∣∣∣
∂|γ|

∂xγ
∂|γ

′|

∂uγ′ Qµ(x, u)

∣∣∣∣ ≤ C(b,γ,γ′)2
(d+|γ|+|γ′|)µ/2(1 + 2µ/2|x− u|)−b.(3.12)

Let Kt(x, u) be the kernels of the operators
T∞
0
λe−tλ dEA(λ). The fol-

lowing proposition is a simple consequence of (3.1), (3.2), (3.5), and the fact
that if ‖g‖ is a Euclidean norm on G then ‖g‖ ≤ C(1+ |g|)ε′ for some ε′ > 0.

Proposition 3.13. There exist constants C > 0 and ε > 0 such that

(3.14) Kt(x, u)

= t−(2+d)/2Ξ(t−1/2(u− x), tP (x), . . . , t(|β|+2)/2DβP (x), . . .),

where

|Ξ(x, ξ)| ≤ C(1 + |x|)−d−2,(3.15)

|Ξ(x, ξ) − Ξ(x, 0)| ≤ C(1 + |x|)−d−1|ξ|ε.(3.16)
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We denote by Tt(x, u) the kernels of the semigroup generated by −A.

Proposition 3.17. For every b > 0 there exists a constant C > 0 such

that

0 ≤ Tt(x, u)(3.18)

≤ Ct−d/2 exp(−|u− x|2/(5t))
∏

β≤α

(1 + |t(|β|+2)/2DβP (x)|)−b.

P r o o f. On Y we consider the coordinates y = (yβ)β≤α =
∑
yβY

[β].
Since ∂/∂yβ = Y [β] +

∑
|γ|<|β| cγ,β(g)Y [γ], where cγ,β is a homogeneous

polynomial on G of degree |β| − |γ| (cf. [FS]), we conclude from (3.2) that

(3.19)

∣∣∣∣
(

∂

∂yβ(1)

)k1

. . .

(
∂

∂yβ(n)

)kn

q1(g)

∣∣∣∣

≤ C(k1, . . . , kn, β
(1), . . . , β(n))(1 + |g|)−Q−2.

This combined with (3.5) and (3.1) gives

(3.20) |Tt(x, u)|
≤ Cbt

−d/2(1 + t−1/2|u− x|)−d−2
∏

β≤α

(1 + |t(|β|+2)/2DβP (x)|)−b.

On the other hand, the Feynman–Kac formula implies

(3.21) 0 ≤ Tt(x, u) ≤ Ct−d/2 exp(−|u− x|2/(4t)).
Thus (3.18) follows from (3.20) and (3.21).

4. Applications. In this section we show some applications of the
estimates we derived in Section 3. Some results presented here are known
(see the remarks following Theorems 4.4 and 4.5) but we believe that the
methods can be used in other investigations.

An operator K defined on a dense set D of L2(Rd) by the formula

Kf(x) =
\
K(x, u)f(u) du,

where K(x, u) is a continuous function on {(x, u) ∈ R
d × R

d : x 6= u}, is a
Calderón–Zygmund operator if K can be extended to a bounded operator
on L2(Rd), that is,

(4.1) ‖Kf‖L2(Rd) ≤ C‖f‖L2(Rd) for f ∈ D,
and

|K(x, u)| ≤ C|x− u|−d, x 6= u,(4.2)

|∇xK(x, u)| + |∇uK(x, u)| ≤ C|x− u|−d−1, x 6= u.(4.3)

The smallest constant C such that (4.1)–(4.3) hold is called the bound of
the Calderón–Zygmund operator.
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Theorem 4.4. For every γ, γ′ ∈ Z
d
+ the operator

R = DγA−(|γ|+|γ′|)/2Dγ′

is a Calderón–Zygmund operator with bound that depends only on γ, γ′, and
the degree of the polynomial P .

Remark. For |γ| + |γ′| ≤ 2 Theorem 4.4 was proved by Zhong in [Z].

P r o o f. Fix γ and γ′. Without loss of generality, by taking α large if
necessary, we can assume that Q > |γ| + |γ′|, where Q is the homogeneous
dimension of the group G. Therefore the operator H−(|γ|+|γ′|)/2 has a con-
volution kernel, which is a regular kernel of order −|γ| − |γ′| on the group
G. Let ζ ∈ C∞

c (1/2, 2) be such that
∑

µ∈Z
ζ(2−µλ) = 1 for λ > 0.

Set

Θµ =

∞\
0

λ−(|γ|+|γ′|)/2ζ(2−µλ) dEH(λ).

Clearly the convolution kernel Θµ(g) of the operator Θµ is given by

Θµ(g) = 2−µ(|γ|+|γ′|)/22µQ/2Θ0(δ2µ/2g),

where Θ0 ∈ S(G). Thus

(Xγ ∗Θµ ∗Xγ′

)(g) = 2µQ/2(Xγ ∗Θ0 ∗Xγ′

)(δ2µ/2g)

and
T
G
Xγ ∗Θ0 ∗Xγ′

dg = 0.
Therefore, by the almost orthogonality principle,

∑
µ∈Z

ΠP
Xγ∗Θµ∗Xγ′ f

converges in the norm L2(Rd) for every f ∈ C∞
c (Rd). Moreover, since the

spectrum of the operator A is strictly positive, the operator A−(|γ|+|γ′|)/2 is
bounded on L2(Rd), and the series converges in S ′(Rd) to Rf . Thus R is
bounded on L2(Rd) and

Rf =
∑

µ∈Z

ΠP
Xγ∗Θµ∗Xγ′f.

It follows from (3.5) that the kernel Rµ(x, u) of ΠP
Xγ∗Θµ∗Xγ′ is

Rµ(x, u) = 2µd/2Ξ(2µ/2(u− x), 2−µP (x), . . . , 2−µ(|β|+2)/2DβP (x), . . .),

where Ξ ∈ S(Rd ×R
D). It is now not difficult to check that the kernel of R

satisfies (4.2) and (4.3).

Theorem 4.5. For every q > 0 and every γ, γ′ ∈ Z
d
+ the operator

(4.6) R = P q(x)DγA−kDγ′

,

where k = q + (|γ| + |γ′|)/2, can be extended to a bounded operator on Lp

for 1 ≤ p <∞, that is,

‖Rf‖Lp ≤ Cp‖f‖Lp for f ∈ C∞
c (Rd).
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Remark. In the case where P satisfies a reverse Hölder inequality, and
k = 1

2 , 1, the boundedness of R on Lp spaces (for a certain range of p) was
shown by Shen (see [Sh] for details).

P r o o f (of Theorem 4.5). Let R(x, u) be the integral kernel of the oper-
ator R. It suffices to show that there exists a constant C such that

(4.7) sup
x∈Rd

\
|R(x, u)| du + sup

u∈Rd

\
|R(x, u)| dx ≤ C.

Let ζ be as in the proof of Theorem 4.4. Since the infimum of the spectrum
of A is strictly positive, there exists a constant B1 such that

(4.8) R(x, u) =
∑

µ>B1

Rµ(x, u),

where Rµ(x, u) is the kernel of the operator

Rµ = P q(x)Dγ
(∞\

0

λ−kζ(2−µλ) dEA(λ)
)
Dγ′

.

As in the proof of Theorem 4.4, we obtain

Rµ(x, u) = 2−µq2dµ/2P q(x)

× Ξ(2µ/2(u− x), 2−µP (x), . . . , 2−µ(|β|+2)/2DβP (x), . . . .),

where Ξ ∈ S(Rd × R
D).

It is easy to check that
∑

µ>B1

T
|Rµ(x, u)| du ≤ C with C independent

of x.
It remains to prove that supu∈Rd

T
|R(x, u)| dx ≤ C.

For a positive integer m we set

R[m]
µ (x, u) = 2dµ/22−µqP q(x)χ[−m,m](2

µ/2|u− x|)
×

∏

β≤α

χ[−m,m](2
−µ(|β|+2)/2DβP (x)).

We see that

(4.9) |Rµ(x, u)| ≤
∑

m≥2

bmR
[m]
µ (x, u),

where bm ≤ Clm
−l for every l > 0.

For fixed u ∈ R
d let n be an integer such that

(4.10) 2n/2 ≤
∑

β≤α

|DβP (u)|1/(|β|+2) < 2(n+1)/2.

Since P is a nonzero polynomial, there exists a constant B2 such that n > B2

for every u. If R
[m]
µ (x, u) 6= 0 then |x − u| ≤ 2−µ/2m and |DβP (x)| ≤

2µ(|β|+2)/2m for every β ≤ α. Applying the Taylor formula we obtain

|DβP (u)| ≤ C2µ(|β|+2)/2m|α|+1
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for every β ≤ α. It follows from (4.10) that there exists β ≤ α such that
2(|β|+2)n/2 ≤ C|DβP (u)|. Therefore

(4.11) 2n/2 ≤ C2µ/2m|α|+1.

On the other hand, (4.10) implies

(4.12) |P (x)| ≤ C
∑

β≤α

|DβP (u)| · |x− u||β| ≤ C0m
|α|2n

∑

β≤α

2|β|(n−µ)/2.

Finally, by (4.9), (4.11) and (4.12), we obtain\
|R(x, u)| dx ≤

∑

µ>B1

\
|Rµ(x, u)| dx

≤
∑

µ>B1

∑

m≥2

bm
\
|R[m]

µ (x, u)| dx

≤
∑

m≥2

∑

µ>n−C log2 m

C1bm2dµ/22−µqmcq2nq

×
∑

β≤α

2q|β|(n−µ)/2
\
χB(0,m)(2

µ/2(u− x)) dx ≤ C ′.

5. Triebel–Lizorkin spaces associated with A. For a smooth func-
tion φ such that

(5.1) suppφ ⊂ [1/2, 2], |φ(λ)| ≥ c > 0 for λ ∈ [3/4, 7/4],

and for κ ∈ R, 0 < p, q < ∞, we define a Triebel–Lizorkin norm ‖ ‖Aκ,q
p (φ)

associated with A = −∆+ P by

(5.2) ‖f‖Aκ,q
p (φ) =

∥∥∥
[∑

µ∈Z

(2µκ|Qµf |)q
]1/q∥∥∥

Lp(Rd)
,

where

(5.3) Qµf = φ(2−µA)f =

∞\
0

φ(2−µλ) dEA(λ)f.

Observe that if P ≡ 0 then the Triebel–Lizorkin norm ‖ ‖(−∆)κ,q
p

is
equivalent to the classical homogeneous norm ‖ ‖F 2κ,q

p
.

In the present section we shall show that different φ’s give equivalent
Triebel–Lizorkin norms, that is,

Theorem 5.4. Let κ ∈ R, 0 < p < ∞, 0 < q < ∞. If φ(1) and φ(2) are

two C∞ functions satisfying (5.1), then there is a constant C > 0 such that

(5.5) C−1‖f‖Aκ,q
p (φ(1)) ≤ ‖f‖Aκ,q

p (φ(2)) ≤ C‖f‖Aκ,q
p (φ(1)).

The proof uses ideas of Peetre [P] (see also Epperson [E]).
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For a > 0 and a fixed C∞ function φ for which (5.1) holds define the
maximal function Aµ by

(5.6) Aµf(x) = sup
y∈Rd

|Qµf(y)|
(1 + 2µ/2|x− y|)a ,

where Qµ = φ(2−µA). We also consider

(5.7) Bµf(x) = sup
y∈Rd

|∇Qµf(y)|
(1 + 2µ/2|x− y|)a .

Lemma 5.8. For every a > 0 there is a constant C > 0 such that for all

µ ∈ Z, x ∈ R
d, f ∈ L2(Rd),

(5.9) Bµf(x) ≤ C2µ/2Aµf(x).

P r o o f. The proof is essentially the same as that of Lemma 2.1 in [E]. Let
ψ be a C∞

c function on R such that suppψ ⊂ [1/2, 2],
∑

j∈Z
ψ(2jλ)φ(2jλ)

= 1. Set ζ(λ) =
∑1

j=−1 ψ(2jλ)φ(2jλ) Obviously, (3.11) and (3.12) hold for

the kernels M2−µ(x, s) of the operators ζ(2−µA). Therefore
∣∣∣∣
∂

∂xj
Qµf(x)

∣∣∣∣ =

∣∣∣∣
∂

∂xj
ζ(2−µA)Qµf(x)

∣∣∣∣ =

∣∣∣∣
\∂

∂xj
M2−µ(x, s)Qµf(s) ds

∣∣∣∣

≤ Cb

\
2(d+1)µ/2(1 + 2µ/2|x− s|)−b

× (1 + 2µ/2|s− u|)a(1 + 2µ/2|s− u|)−a|Qµf(s)| ds
≤ C2µ/2Aµf(u)(1 + 2µ/2|x− u|)a,

which gives (5.9).

Lemma 5.10. There is a constant C such that for all µ ∈ Z, x ∈ R
d,

f ∈ L2(Rd),

(5.11) Aµf(x) ≤ C[M(|Qµf |)r(x)]1/r,

where a = d/r and M is the Hardy–Littlewood maximal operator.

P r o o f (cf. [P]). For δ1 > 0 set δ = 2−µ/2δ1. By the mean value theorem
there is a constant C > 0 such that for every δ > 0,

|Qµf(x− u)| ≤ Cδ−d/r

( \
|x−u−y|<δ

|Qµf(y)|r dy
)1/r

+ Cδ sup
|x−u−y|<δ

|∇Qµf(y)|

≤ Cδ−d/r(δ + |u|)d/r[M(|Qµf |r)(x)]1/r

+ CδBµf(x)(1 + 2µ/2δ + 2µ/2|u|)a.
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Applying (5.9), we obtain

|Qµf(x− u)| ≤ C2µd/(2r)δ
−d/r
1 (2−µ/2δ1 + |u|)d/r[M(|Qµf |r)(x)]1/r

+ Cδ1(Aµf)(x)(1 + δ1 + 2µ/2|u|)a

≤ Cδ
−d/r
1 (1 + δ1 + 2µ/2|u|)d/r [M(|Qµf |r)(x))]1/r

+ Cδ1(Aµf)(x)(1 + δ1 + 2µ/2|u|)a.

By the above, there exists a constant C > 0 such that for every 0<δ1<1,

|Qµf(x− u)|(1 + 2µ/2|u|)−a ≤ Cδ
−d/r
1 [M(|Qµf |r)(x)]1/r +Cδ1Aµf(x).

Taking δ1 small enough, we get (5.11).

Proof of Theorem 5.4. Let 0 < r < min{p, q} and a = d/r, and let ψ(2)

be a smooth function satisfying (5.1) such that

(5.12)
∑

µ∈Z

ψ(2)(2−µλ)φ(2)(2−µλ) = 1 for λ > 0.

If R
(2)
ν = ψ(2)(2−νA), then

(5.13) Q(1)
µ = φ(1)(2−µA) =

µ+1∑

ν=µ−1

Q(1)
µ R(2)

ν Q(2)
ν .

By Proposition 3.10,

|Q(1)
µ f(x)| ≤ Cb

µ+1∑

ν=µ−1

\
Rd

2dν/2(1 + 2ν/2|x− y|)−b|Q(2)
ν f(y)| dy

≤ Cb

µ+1∑

ν=µ−1

\
Rd

2dν/2(1 + 2ν/2|x− y|)a−bA(2)
ν f(x) dy

≤ Cb

µ+1∑

ν=µ−1

A(2)
ν f(x).

From Lemma 5.10, we conclude

|Q(1)
µ f(x)| ≤ C

µ+1∑

ν=µ−1

[M(|Q(2)
ν f |r)(x)]1/r .

Finally, using the Fefferman–Stein vector-valued maximal inequality [FeS],
we have

‖f‖Aκ,q
p (φ(1)) ≤ C

∥∥∥
( ∞∑

µ=−∞

(2µκ[M(|Q(2)
µ f |r)(x)]1/r)q

)1/q∥∥∥
Lp
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≤ C
∥∥∥
( ∞∑

µ=−∞

(
2µκr[|Q(2)

µ f |r(x)]
)q/r)r/q∥∥∥

1/r

Lp/r

≤ C‖f‖Aκ,q
p (φ(2)).
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