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1. Introduction. If K is a bounded subset of the Banach space X and
B(K) is the Banach space (sup norm) of all bounded real-valued functions
defined on K, then the natural evaluation map E : X∗ → B(K) defined by
E(x∗)(k) = x∗(k) has been used by many authors to study properties of K.
Specifically we mention Propositions 1 and 5 of Bator [4], Theorem 1 of
Saab [31], and Proposition 1 of Pe lczyński [27]. Similarly, if K is a bounded
subset of X∗, then one may define two natural evaluation maps: (1) EX :
X → B(K) and (2) EX∗∗ : X∗∗ → B(K). Properties of K are reflected in
both EX and EX∗∗ , as well as in the restriction of these operators to certain
subspaces. In this paper we study connections among certain compactness
properties of K, evaluation maps, and restriction operators. In particular,
we use the notion of bibasic sequences to study limited sets which fail certain
compactness conditions.

2. Definitions and terminology. Throughout the paper, X and Y
will denote real Banach spaces with continuous linear duals denoted by X∗

and Y ∗. The unit ball of X will normally be denoted by BX ; for simplicity,
we denote the unit ball of B(K)∗ by B∗. If T : X→Y is a bounded linear
transformation (= operator), then T ∗ will denote the adjoint of T . The space
of all bounded linear operators from X to Y will be denoted by B(X,Y ). A
subset K of X will be termed weakly precompact if every bounded sequence
in K has a weakly Cauchy subsequence. Thus a bounded weakly precompact
set is weakly conditionally compact. We denote the closed linear span of K
by [K]. Further, a subset K of X (resp. K of X∗) is called a V ∗-set (resp.
V -set) if

lim
n

(sup{|x∗n(x)| : x ∈ K}) = 0,

respectively

lim
n

(sup{|x∗(xn)| : x∗ ∈ K}) = 0,
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for each weakly unconditionally converging series
∑
x∗n in X∗ (resp.

∑
xn

in X).
A bounded subset K of the Banach space X is called a Dunford–Pettis

set (or DP-set) if

lim
n

(sup{|x∗n(x)| : x ∈ K}) = 0

for every weakly null sequence (x∗n) in X∗. The set K is called a limited
set if

lim
n

(sup{|x∗n(x)| : x ∈ K}) = 0

for each w∗-null sequence (x∗n) in X∗. Certainly, every relatively compact
subset of X is limited. We also remark that Kevin Andrews [2] showed that
a bounded subset K of X is a DP-set iff T (K) is relatively norm compact
for each weakly compact operator T : X → Y . We shall use this equivalent
formulation for Dunford–Pettis sets whenever it is convenient.

Closely related to the notions of DP-sets and limited sets is the idea of
an L-set, e.g., see Bator [4] and Emmanuele [17], [18]. A bounded subset K
of X∗ is called an L-set if

lim
n

(sup{|x∗(xn)| : x∗ ∈ K}) = 0

for each weakly null sequence (xn) in X.
Recall that the Banach space X is said to have the Dunford–Pettis prop-

erty (or DPP) if every weakly compact operator T : X → Y is completely
continuous, and X is said to have the reciprocal Dunford–Pettis property
(or RDPP) if every completely continuous operator T : X → Y is weakly
compact. We refer the reader to Diestel [12] or Diestel and Uhl [13] for any
unexplained notation or terminology.

3. Evaluation maps. The following theorem explicitly motivates our
consideration of evaluation maps. We use E to represent a generic evaluation
map.

Theorem 3.1. (i) A bounded subset K of X∗ is an L-set in X∗ iff E :
X → B(K) is completely continuous.

(ii) An operator T : X → Y is completely continuous iff T ∗(BY ∗) is an
L-set in X∗.

(iii) If K is a bounded subset of X∗, then K is an L-set iff T (K) is
relatively compact in Y for each (w∗, w)-continuous operator T : X∗ → Y .

(iv) A bounded subset K of X is a Dunford–Pettis set iff E : X∗ → B(K)
is completely continuous.

(v) A subset K of X is a Dunford–Pettis set iff there is a Banach space
Y and an operator T : Y → X so that T and T ∗ are completely continuous
and K ⊆ T (BY ).
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(vi) The Banach space X has RDPP iff each evaluation map EK : X →
B(K) which is completely continuous is also weakly compact.

(vii) A bounded subset K of X∗ is a V-set iff E : X → B(K) is uncon-
ditionally converging.

(viii) A bounded subset K of X is a V ∗-set iff E : X∗ → B(K) is uncon-
ditionally converging.

(ix) A bounded subset K of X is a limited set iff E : X∗ → B(K) is
(w∗, norm)-sequentially continuous.

P r o o f. (i) Suppose that K is a bounded subset of X∗. The evaluation
map E : X → B(K) is completely continuous iff ‖E(xn)‖ → 0 for each
weakly null sequence (xn) in X iff

lim
n

(sup{|x∗(xn)| : x∗ ∈ K}) = 0

for each weakly null sequence (xn) in X iff K is an L-set.
(ii) Suppose that T : X→Y is an operator. Clearly, T ∗(BY ∗) is an L-set

iff

lim
n

(sup{|〈T ∗(y∗), xn〉 : y∗ ∈ BY ∗})

= lim
n

(sup{|〈y∗, T (xn)〉 : y∗ ∈ BY ∗}) = lim ‖T (xn)‖ = 0

for each weakly null sequence (xn) in X, i.e., iff T is completely continuous.
(iii) Suppose that K is an L-subset of X∗ and T : X∗ → Y is (w∗, w)-

continuous. Therefore T is weakly compact and T ∗(Y ∗) ⊆ X. Moreover,
T ∗ is (w∗, w)-continuous.

Now let (x∗n) be a sequence in K, and (without loss of generality) suppose
that (T (x∗n)) → y weakly. In order to obtain a contradiction, we suppose
that (T (x∗n)) has no norm convergent subsequence. In fact, we suppose that
ε > 0 and ‖T (x∗n)− y‖ > ε for all n. For each n, choose y∗n ∈ BY ∗ so that

(∗) 〈y∗n, T (x∗n)− y〉 > ε.

We may (and do) assume that x ∈ X and (T ∗(y∗n)) → x weakly. Now let
y∗ be a w∗-cluster point of (y∗n). The (w∗, w)-continuity of T ∗ ensures that
T ∗(y∗) = x. Thus (T ∗(y∗n − y∗)) is weakly null, and

0 = lim〈x∗n, T ∗(y∗n − y∗)〉 = lim〈T (x∗n), y∗n − y∗〉
= lim(〈T (x∗n)− y, y∗n − y∗〉+ 〈y, y∗n − y∗〉)
= lim(〈T (x∗n)− y,−y∗〉+ 〈T (x∗n)− y, y∗n〉+ 〈y, y∗n − y∗〉).

Since (T (x∗n))→ y weakly, we appeal to (∗) above and conclude that

|〈y, y∗n − y∗〉| > ε/2

for sufficiently large n. This is a clear contradiction of the fact that y∗ is a
w∗-cluster point of (y∗n).



4 E. BATOR ET AL.

Conversely, suppose that if Y is a Banach space and T : X∗ → Y is a
(w∗, w)-continuous operator, then T (K) is relatively compact. Let (xn) be
a weakly null sequence in X, and define T : X∗ → c0 by T (x∗) = (x∗(xn)).
Then T is (w∗, w)-continuous, T (K) is relatively compact in c0, and

lim
n

(sup{|〈xn, x∗〉| : x∗ ∈ K}) = 0.

(iv) Suppose that K is a bounded subset of X and E : X∗ → B(K) is
completely continuous. Thus E∗ maps B∗, the unit ball of B(K)∗, to an
L-set in X∗∗. However, if k ∈ K and δk denotes the point mass at k, then

E∗({δk : k ∈ K}) = K,

and K is an L-set in X∗∗. Therefore K is a Dunford–Pettis set in X.

Conversely, suppose that K is a DP-set in X, and let E : X∗ → B(K)
be the evaluation map. If (x∗n)→ 0 weakly in X∗, then

lim(sup{|x∗n(x)| : x ∈ K}) = lim
n
‖E(x∗n)‖ = 0,

and E is completely continuous.

(v) Suppose that K is a Dunford–Pettis set, and let cach(K) denote the
closed absolutely convex hull of K. Note that cach(K) is also a DP-set. Let
Y = `1(K), and define T : Y → X by T (f) =

∑
k∈K f(k)k for f ∈ `1(K).

Then T is a bounded linear operator, and K ⊆ T (B`1(K)) ⊆ cach(K). Since
`1(K) is a Schur space, T is completely continuous. Further, T ∗ is the
evaluation map E : X∗ → B(K), and T ∗ is completely continuous by (iv).

As was noted in Section 2, the converse is immediate from the complete
continuity of T ∗.

(vi) If X has RDPP, then every completely continuous map on X is
weakly compact. Conversely, suppose that each evaluation map EK : X →
B(K) which is completely continuous is also weakly compact. Let T : X →
Y be completely continuous. Thus K = T ∗(BY ∗) is an L-set by (ii), EK :
X → B(K) is completely continuous by (i), and EK is weakly compact by
hypothesis. Hence E∗K : B(K)∗ → X∗ is a weakly compact operator, and,
as in (iii) above, K is relatively weakly compact. Consequently, T ∗ and T
are weakly compact, and X has RDPP.

(vii) Suppose that K is a V-subset of X∗, i.e.,

lim
n

(sup{|x∗(xn)| : x∗ ∈ K}) = 0

for each wuc series
∑
xn in X. However, since all rearrangements and all

subseries of a wuc series are wuc, the preceding equality implies that

lim
n

(
sup

{ ∞∑
i=n

|x∗(xi)| : x∗ ∈ K
})

= 0
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for each wuc series
∑
xn in X. Thus

∑
EK(xi) is bounded multiplier con-

vergent, and
∑
EK(xi) is unconditionally convergent whenever

∑
xi is wuc.

Conversely, if EK is an unconditionally converging operator and
∑
xn

is wuc in X, then certainly ‖EK(xn)‖ → 0 as n→∞. That is,

lim
n

(sup{|x∗(xn)| : x∗ ∈ K}) = 0.

(viii) The proof of (viii) is identical to that of (vii) and will be omitted.

(ix) A bounded subset K of X is a limited set iff

lim
n

(sup{|x∗n(x)| : x ∈ K}) = 0

for each w∗-null sequence (x∗n) in X∗ iff

lim
n

(sup{|〈y∗n − y∗, x〉| : x ∈ K}) = 0

whenever (y∗n) → y∗ in the w∗-topology of X∗ iff E : X∗ → B(K) is
(w∗, norm)-sequentially continuous.

Corollary 3.2. (a) A limited subset of a separable Banach space X is
relatively compact.

(b) A limited subset of a reflexive Banach space X is relatively compact.

(c) If `1 does not embed in X∗, then a limited subset of X is relatively
compact.

(d) If X is any subspace of a weakly compactly generated Banach space,
then a limited subset of X is relatively compact.

(e) If X∗ has the Radon–Nikodym property , then a limited subset of X
is relatively compact.

(f) The subset K of X is relatively compact iff {xn : n ∈ N} is limited in
[xn : n ∈ N] for each sequence (xn) from K.

(g) If T : X → Y is a limited operator (i.e., T (BX) is limited in Y ),
then T is strictly cosingular.

P r o o f. The proofs of (a)–(e) are the same. In each case, each sequence
from BX∗ has a w∗-Cauchy subsequence. (Standard beginning techniques
from functional analysis handle (a) and (b), Rosenthal’s `1-theorem [29] fur-
nishes the subsequence in (c), results of Amir and Lindenstrauss [1] take care
of (d), and a theorem of Johnson and Hagler [22], [12, p. 230] provides the
subsequence in (e).) Therefore E and E∗ are compact. Since K ⊆ E∗(B∗),
K is relatively compact. Part (f) follows immediately from 3.1(ix). Finally,
the Josefson–Nissenzweig theorem [12, Chap. XII] and 3.1(ix) immediately
yield (g). Specifically, if Y is infinite-dimensional, T : X → Y is a surjection,
and K = T (BX), then let (y∗n) be a w∗-null sequence of norm one members
of Y ∗ and note that ‖E(y∗n)‖ 6→ 0.
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We remark that (a), (b), and (g) of 3.2 appeared in Bourgain and Diestel
[11] with much different proofs; the arguments above seem to be significantly
simpler.

We also note that (vii) of 3.1 was observed by Pe lczyński [27]. The proof
of (vii) presented here, however, uses an observation of Bombal [8].

If K is a bounded subset of X∗, E : X∗∗ → B(K) is the evaluation map,
and T = E|X , then certainly T ∗∗ is not necessarily E. However, if K is
an L-subset, then the restriction of T ∗∗ to the w∗-sequential extension of X
in X∗∗ is E. In the following theorem, let B1(X) = {x∗∗ ∈ X∗∗ : x∗∗ is a
w∗-limit of a sequence in X}.

Theorem 3.3. If K is an L-subset of X∗, E : X∗∗ → B(K) is the
evaluation map, and T = E|X , then

T ∗∗|B1(X) = E|B1(X).

P r o o f. Suppose that K is an L-subset of X∗. By 3.1(i), T : X → B(K)
is completely continuous. Let x∗∗ ∈ B1(X), and let (xn) be a sequence in X
so that (xn)→ x∗∗ in the w∗-topology. Certainly, (xn) is weakly Cauchy in
X, as well as in X∗∗. Therefore (T (xn)) is norm convergent. Let f ∈ B(K)
so that (E(xn)) = (T (xn))→ f . If k ∈ K, then

f(k) = lim〈T (xn), k〉 = k(xn) = x∗∗(k) = 〈E(x∗∗), k〉.

Consequently, f = E(x∗∗) and ‖E(xn)− E(x∗∗)‖ → 0.

Moreover, since adjoints are (w∗, w∗)-continuous,

T ∗∗(x∗∗) = w∗-limT (xn) = w∗-limE(xn) = E(x∗∗).

Thus T ∗∗(x∗∗) = E(x∗∗) for each x∗∗ ∈ B1(X).

An immediate corollary of 3.3 is that if B1(X) = X∗∗, then every
L-subset of X∗ is relatively weakly compact. In [26] Odell and Rosenthal
show that if X is separable, then B1(X) = X∗∗ iff `1 does not embed in X.
However, the proof that `1 does not embed in X if B1(X) = X∗∗ does
not use the separability of X. Thus if B1(X) = X∗∗, then `1 does not em-
bed in X, and every L-subset (and consequently every DP-subset) of X∗ is
relatively compact.

The following theorem continues our study of the connection between
L-subsets and DP-subsets of dual spaces.

Theorem 3.4. Every L-subset of X∗ is a Dunford–Pettis set in X∗ iff
T ∗∗ is completely continuous whenever Y is an arbitrary Banach space and
T : X → Y is a completely continuous operator.

P r o o f. Suppose that every L-subset of X∗ is Dunford–Pettis, and let
T : X → Y be a completely continuous operator. Therefore T ∗(BY ∗) is an
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L-set and hence a Dunford–Pettis set. Let (x∗∗n ) be a w-null sequence in
X∗∗. Therefore

sup{|〈T ∗(y∗), x∗∗n 〉| : y∗ ∈ Y ∗, ‖y∗‖ ≤ 1} = ‖T ∗∗(x∗∗n )‖, ‖T ∗∗(x∗∗n )‖ → 0,

and T ∗∗ is completely continuous.
Conversely, suppose that T ∗∗ is completely continuous whenever T is.

Let K be an L-subset of X∗, and let E : X → B(K) be the evaluation
map. Since E is completely continuous (Theorem 3.1(i)), E∗∗ is completely
continuous. Therefore E∗(B∗) is a Dunford–Pettis set. Since K ⊆ E∗(B∗),
K is a Dunford–Pettis set.

Corollary 3.5. If K is a compact Hausdorff space, then every L-subset
of C(K)∗ is a Dunford–Pettis set.

P r o o f. Suppose that K is a compact Hausdorff space, Y is a Banach
space, and T : C(K)→ Y is completely continuous. Therefore T is weakly
compact [6, Theorem 1] and T ∗∗ is weakly compact. Since C(K)∗∗ is also
a continuous function space, T ∗∗ is completely continuous, and L-subsets of
C(K)∗ are Dunford–Pettis by the preceding theorem.

Professor G. Emmanuele recently contributed significantly to the under-
standing of Dunford–Pettis sets and L-sets. In Theorem 3 of [19] he showed
that if X and Y contain no copies of `1 and all operators from X to Y ∗ are
compact, then X ⊗γ Y does not contain a copy of `1 either. A key step in
the proof of this theorem involves the following assertion about weak con-
vergence in the greatest crossnorm tensor product completion. If X and
Y are as above, (xn) is weakly null in X, and (yn) is bounded in Y , then
(xn ⊗ yn)∞n=1 is weakly null in X ⊗γ Y .

Bilyeu and Lewis [6] showed that if 1 ≤ p < ∞,
∑
xn is weakly p-

summable in X, and (yn) is bounded in Y , then
∑
xn ⊗ yn is weakly p-

summable in X ⊗λ Y , the least crossnorm tensor product completion of
X and Y . Consequently, it is natural to ask if Emmanuele’s result always
holds in the γ-norm. We first show that this assertion is false in general, and
then we investigate necessary and sufficient conditions which will ensure its
validity.

We recall that B(X,Y ) is certainly isometrically and isomorphically
contained in B(X,Y ∗∗), and B(X,Y ∗∗) is isometrically isomorphic to
(X ⊗ γY

∗)∗ in a natural way. (We refer the reader to Chapter VIII of Dies-
tel and Uhl [13] for a discussion of tensor products.) Now let X = Y = an
infinite-dimensional reflexive space. Apply the Josefson–Nissenzweig Theo-
rem [12] to obtain a sequence (x∗n) in X∗ so that ‖x∗n‖ = 1 for each n and
(x∗n)→ 0 in the w∗-topology on X∗. Let (xn) be a sequence in BX so that
x∗n(xn) = 1 for each n. Let I denote the identity map on X, and note that
〈x∗n⊗xn, I〉 = x∗n(xn) 6→ 0. Thus (x∗n⊗xn)∞n=1 is not weakly null in X⊗γ Y ∗
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in this case. The following theorem establishes necessary and sufficient con-
ditions (alluded to above) which ensure that (xn⊗yn)→ 0 weakly whenever
(xn) is bounded and (yn) is weakly null.

Theorem 3.6. The conditions that (xn) is bounded in X and (yn) is
weakly null in Y guarantee that (xn ⊗ yn) → 0 weakly in X ⊗γ Y iff T ∗|Y
is completely continuous for every operator T : X → Y ∗.

P r o o f. Suppose that T : X → Y ∗ is an operator and T ∗|Y is not
completely continuous. Let (yn) be a weakly null sequence in Y so that
‖T ∗(yn)‖ > 1 for all n. Choose a sequence (xn) in BX so that 〈T ∗(yn), xn〉
> 1 for each n. Therefore 〈T, xn⊗ yn〉 6→ 0, and (xn⊗ yn)∞n=1 is not weakly
null.

Conversely, suppose that if T : X → Y ∗ is an operator, then T ∗|Y
is completely continuous. If (xn) is bounded (with bound B) and (yn) is
weakly null in Y , then

|〈T, xn ⊗ yn〉| = |〈T ∗(yn), xn〉| ≤ B‖T ∗(yn)‖,
and B‖T ∗(yn)‖ → 0. Since (X⊗γ Y )∗ ∼= B(X,Y ∗), it follows that (xn ⊗ yn)
→ 0 weakly.

Corollary 3.7. If (y∗n) weakly null in Y ∗ and (xn) bounded in X guar-
antee that (xn ⊗ y∗n)∞n=1 is weakly null in X ⊗γ Y ∗, then T ∗ : Y ∗ → X∗ is
completely continuous for each operator T : X → Y .

P r o o f. Suppose the hypotheses are satisfied. By the previous theorem,
T ∗|Y ∗ is completely continuous for every operator T : X→Y ∗∗. Thus T ∗|Y ∗

is completely continuous for every operator T : X → Y .

4. Classes of sets and bibasic sequences. The bounded subset K of
X is defined to be a reciprocal Dunford–Pettis set (or RDP-set) if T (K) is
relatively weakly compact for each completely continuous operator T with
domain X. We begin this section with a sequential characterization of RDP-
sets similar in spirit to some of the results in Section 3.

Theorem 4.1. If K is a bounded subset of X , then the following are
equivalent :

(i) K is an RDP-set.
(ii) If M is a w∗-compact and convex L-subset of X∗ and (xn) is a

sequence from K , then there is a subsequence (xni
) of (xn) and a point

x∗∗ ∈ X∗∗ so that (x∗(xni)) → x∗∗(x∗) for x∗ ∈ M and x∗∗|(M,w∗) is con-
tinuous.

P r o o f. Suppose that K is an RDP-subset of X, and let M be a w∗-
compact and convex L-subset of X∗. Let C(M,w∗) denote the Banach space
(with sup norm) of all real-valued functions on M which are continuous with
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respect to the w∗-topology, and let E : X → C(M,w∗) be the evaluation
map. Then E is completely continuous, and E(K) is relatively weakly com-
pact. Let (xn) be a sequence in K and let (xni

) be a subsequence so that

(E(xni))→ φ ∈ C(M,w∗)

in the weak topology.

Next we choose x∗∗ ∈ X∗∗ so that x∗∗|M = φ. Therefore

(x∗(xni))→ x∗∗ = φ(x∗)

for all x∗ ∈M , and x∗|M is w∗-continuous.

Conversely, suppose that (ii) holds, and let T : X → Y be a completely
continuous operator. Thus M = T ∗(BY ∗) is a w∗-compact and convex L-
subset of X∗. Let (xn) be a sequence in K, and choose a subsequence (xni)
of (xn) and a point x∗∗ which satisfy (ii). Therefore

〈T (xni
), y∗〉 → 〈x∗∗, T ∗(y∗)〉

for each y∗ ∈ Y ∗.
Now suppose that ‖y∗α‖ ≤ 1 for each α and (y∗α)→ y∗ in the w∗-topology.

We have

〈T ∗∗(x∗∗), y∗α〉 = 〈x∗∗, T ∗(y∗α)〉 → 〈x∗∗, T ∗(y∗)〉 = 〈T ∗∗(x∗∗), y∗〉
by the w∗-continuity of x∗∗|M . Further, by V.5.6 or V.5.7 of Dunford
and Schwartz [15], the preceding convergence ensures that T ∗∗(x∗∗) is
w∗-continuous. Hence T ∗∗(x∗∗) ∈ Y , (T (xni

)) → T ∗∗(x∗∗) weakly, and
T (K) is relatively weakly compact.

The next result establishes containment relationships that exist among
some of the classes of sets that we have studied. These relationships will
be useful in subsequent theorems. We use obvious acronyms to denote the
classes.

Theorem 4.2. The limited sets, Dunford–Pettis sets, bounded weakly
precompact sets, reciprocal Dunford–Pettis sets, and the V ∗ sets form five
distinct classes of sets. More specifically , LS ⊆ DP ⊆ BWPC ⊆ RDP ⊆ V ∗,
and each containment is proper.

P r o o f. Since every weakly null sequence in X is w∗-null, the definitions
yield that every limited set is a DP-set. To see that the containment is
proper, note that if (ei) denotes the canonical basis of c0 then

(φn) =
( n∑
i=1

ei

)
, n ∈ N,

is a DP-set which is not a limited set in c0, i.e., the canonical basis (e∗n) of
`1 is w∗-null, and 〈φn, e∗n〉 = 1 for each n.
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Odell’s argument at the end of [30] shows that DP ⊆ BWPC. The unit
ball of any infinite-dimensional reflexive Banach space provides us with an
example of a bounded weakly precompact set which is not Dunford–Pettis.

Clearly, the very definition of the two classes guarantees that BWPC ⊆
RDP. Since every bounded subset of C[0, 1] is an RDP-set (completely con-
tinuous operators on C[0, 1] are weakly compact), this containment is also
proper.

To easily see that RDP ⊆ V∗, we note that F. Bombal [8, Proposition 1.1]
showed that a subset K of X is a V∗-set iff T (K) is relatively compact in `1

for each operator T : X → `1. Since relatively weakly compact subsets of a
Schur space are relatively norm compact and all operators with domain or
range a Schur space are completely continuous, Bombal’s result immediately
yields the desired containment.

It is more delicate to show that this last containment is proper. Let
X be the first of the two major examples constructed by Bourgain and
Delbaen in [10]. The space X is an infinite-dimensional Schur space with
the property that X∗ is weakly sequentially complete. Note that X does not
contain a complemented copy of `1. (If it did, X∗ would contain a copy of
the non-weakly sequentially complete Banach space `∞.)

Now let I be the identity map. Certainly, I is completely continuous.
Since BX is not relatively compact, BX is not an RDP-set. However, we
assert that BX is a V∗-set. For if L : X → `1 is an arbitrary operator, then
L must be compact by the “Pe lczyński theory” of [28] and Chapter VII of
Diestel [12]. Appealing to Bombal’s characterization again [8], we see that
BX is a V∗-set.

We remark that if Ω is any compact Hausdorff space then one cannot
use C(Ω) to differentiate between RDP-sets and V∗-sets: Every completely
continuous operator on C(Ω) is weakly compact and every bounded subset
of C(Ω) is an RDP-set. Further, Bombal showed in [9] that the RDP-sets
and the V∗-sets in the dual of C(Ω) coincide.

Recall that a sequence (xn, f
∗
n) in X × X∗ is called bibasic [32, p. 85]

if (xn) is basic in X, (f∗n) is basic in X∗, and f∗m(xn) = δmn. If (xn, f
∗
n)

is a bibasic sequence, then f∗n is an extension of the coefficient functional
x∗n ∈ [xi : i ∈ N]∗. If (xn) is a basic sequence, then in the remainder of
this section we shall denote the sequence of coefficient functionals by (x∗n),
and f∗n will be a continuous linear extension of x∗n to all of X for each n.
Further, the bibasic sequence (xn, f

∗
n) is said to be semi-normalized if there

are positive numbers p and q so that p ≤ ‖xn‖ ≤ q and p ≤ ‖f∗n‖ ≤ q for
each n.

We note that Dineen [14] and Diestel [12] have discussed the compact-
ness and weak compactness of limited sets in some detail. The remainder
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of this section deals with connections between bibasic sequences and the
compactness of such sets.

Theorem 4.3. Suppose that K is a limited subset of X. The set K fails
to be relatively compact if and only if there is a semi-normalized bibasic
sequence (xn, f

∗
n) in X×X∗ so that (xn) is in K−K and (f∗n) is equivalent

to the canonical unit vector basis (e∗n) of `1.

P r o o f. If (xn, f
∗
n) is a bibasic sequence which satisfies the first conclu-

sion, then there is an ε > 0 so that ‖xn − xm‖ > ε for m 6= n. Therefore
K − K is not relatively compact, and, consequently, K is not relatively
compact.

Conversely, suppose that K is not relatively compact. Let ε > 0 and (yn)
be a sequence in K so that ‖yn − ym‖ > ε for m 6= n. Let xn = yn − yn+1.
Moreover, since K is limited, by 4.2 we may (and do) assume that (xn)→ 0
weakly. By a classical result of Bessaga and Pe lczyński [5], [12, Chapter V],
some subsequence of (xn) is basic. Without loss of generality, suppose that
(xn) is basic, let (x∗n) be the coefficient functionals, and, for each n, let f∗n
be a Hahn–Banach extension of x∗n to all of X.

Suppose that (f∗ni
) is a weakly Cauchy subsequence of (f∗n), and let

z∗i = f∗ni
− f∗ni+1

for each i. Then (z∗i )→ 0 weakly, and

lim
i

(sup{|z∗i (y)| : y ∈ K −K}) = 0.

However, z∗i (xni
) = 1 for all i. Therefore no subsequence of (f∗n) is weakly

Cauchy. By Rosenthal’s `1-theorem, some subsequence (f∗ni
) is equivalent

to (e∗i ). The bibasic sequence (xni , f
∗
ni

) satisfies the conclusion of the theo-
rem.

If (xn, f
∗
n) is a bibasic sequence in X × X∗, then much of the latter

part of Section 1 of [32] is concerned with studying when (f∗n) is equivalent
to (x∗n) (i.e., (f∗n) ∼ (x∗n)). The following theorem completely resolves this
question when (xn, f

∗
n) is produced by Theorem 4.3. To simplify notation, let

BBS = BBS(K) be the set of all semi-normalized bibasic sequences (xn, f
∗
n)

so that (xn) is from K −K and (f∗n) ∼ (e∗n).

Theorem 4.4. If K is a non-relatively compact limited subset of X , then
there is an element (xn, f

∗
n) ∈ BBS(K) so that (f∗n) is equivalent to (x∗n) if

and only if there is an isomorphism T : c0 → X so that {T (en) : n ∈ N} ⊆
K −K.

P r o o f. Suppose that T : c0 → X is an isomorphism so that T (en) =
xn ∈ K−K for each n. Let (x∗n) be the corresponding sequence of coefficient
functionals, and for each n let f∗n be a Hahn–Banach extension of x∗n to all
of X. The proof of 4.3 shows that there is a subsequence of (xn, f

∗
n) which

belongs to BBS(K). Since every subsequence of (en) is equivalent to (en) and
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the corresponding coefficient functionals are equivalent to (e∗n), we assume
that (xn, f

∗
n) ∈ BBS. Therefore (x∗n) ∼ (e∗n) and (x∗n) ∼ (f∗n).

Conversely, suppose that (xn, f
∗
n) ∈ BBS and (f∗n) ∼ (x∗n). Let J be a

positive integer so that

1

J

∥∥∥ m∑
n=1

αnx
∗
n

∥∥∥ ≤ m∑
n=1

|αn| ≤ J
∥∥∥ m∑
n=1

αnx
∗
n

∥∥∥
for each finite sequence (α1, . . . , αm) of scalars. Let M be the basis constant
for (xn). If x ∈ [xn : n ∈ N] and x∗ ∈ [xn : n ∈ N]∗, then

x∗(x) = lim
k→∞

〈 k∑
n=1

x∗(xn)x∗n, x
〉

= lim
k→∞

〈P ∗k (x∗), x〉,

where (Pk) is the sequence of projections associated with the basic sequence
(xn). Therefore

‖x‖ ≤ sup
{∣∣∣〈 k∑

n=1

αnx
∗
n, x
〉∣∣∣ : k ∈ N,

∥∥∥ k∑
n=1

αnx
∗
n

∥∥∥ ≤M}.
Consequently, if x =

∑p
n=1 xn, then

‖x‖ ≤ sup
{∣∣∣〈 k∑

n=1

αnx
∗
n, x
〉∣∣∣ : k ∈ N,

∥∥∥ k∑
n=1

αnx
∗
n

∥∥∥ ≤M}
≤ sup

{ k∑
n=1

|αn| : k ∈ N,
∥∥∥ k∑
n=1

αnx
∗
n

∥∥∥ ≤M} ≤ JM.

Therefore by Johnson’s lemma [16], [12, p. 245], some subsequence of (xn)
is equivalent to (en). Hence there is an isomorphism T : c0 → X so that
T (en) ∈ K −K for each n.

Examples 1.3 and 1.4 on p. 89 of [32] produce bibasic sequences (xn, f
∗
n)

for which (f∗n) is not equivalent to (x∗n). Our next result shows that an ap-
plication of Pe lczyński’s version of the Eberlein–Shmul’yan theorem to non-
relatively weakly compact limited sets automatically produces such bibasic
sequences.

Theorem 4.5. If K is a non-relatively weakly compact limited subset of
X , then there is a bibasic sequence (xn, f

∗
n) in X ×X∗ so that (xn) is from

K and (f∗n) is not equivalent to (x∗n).

P r o o f. Suppose that K is limited and not relatively weakly compact,
and let (yn) be a sequence in K with no weakly convergent subsequence. Ap-
ply Pe lczyński’s version of the Eberlein–Shmul’yan theorem [12, p. 41], and
let (zn) be a basic subsequence of (yn). Let (z∗n) be the associated sequence
of coefficient functionals, and for each n let h∗n be a Hahn–Banach extension
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of z∗n to all of X. Use the proof of 4.3, and let (h∗ni
) be a subsequence of (h∗n)

so that (h∗ni
) ∼ (e∗i ). Certainly, (xi, f

∗
i ) = (zni

, h∗ni
) is a bibasic sequence.

If (f∗i ) were equivalent to (x∗i ), then the proof of 4.4 would show that some
subsequence of (xi) would be equivalent to (en). Therefore, this subsequence
would converge weakly to 0, and this would contradict the initial choice of
(yn).

We remark that if the application of the Eberlein–Shmul’yan theorem
to the sequence in 4.5 produces an unconditional basic sequence (zn), then
there exists no bounded sequence (f∗n) in X such that f∗n is a continuous
linear extension of x∗n for each n and (f∗n) ∼ (x∗n). For suppose that (xn) is an
unconditional basic sequence in the limited subset K of X, and suppose that
no subsequence of (xn) converges weakly to a point of X. Let (x∗n) be the
sequence of coefficient functionals, and for each n let f∗n be a Hahn–Banach
extension of x∗n.

Now suppose (to the contrary) that (f∗n) ∼ (x∗n). From the preceding
arguments, we know that some subsequence of (f∗n) is equivalent to (e∗i ).
Suppose that (f∗ni

) ∼ (e∗i ), and let M be the unconditional basis constant
for (xn). Since the restriction of an isomorphism is an isomorphism, (f∗ni

) ∼
(x∗ni

), and (x∗ni
), as a sequence in [xn : n ∈ N]∗, is equivalent to (e∗i ). If p is

a positive integer and (αi)
p
i=1 is a finite sequence of real numbers, then

1

M

∥∥∥ p∑
i=1

αix
∗
ni

∣∣∣
[xn]

∥∥∥ ≤ ∥∥∥ p∑
i=1

αix
∗
ni

∣∣∣
[xnj

:j∈N]

∥∥∥ ≤ ∥∥∥∑αix
∗
ni

∣∣∣
[xn]

∥∥∥.
Therefore (x∗ni

), as a sequence of functionals in [xni
]∗, is equivalent to (e∗i ).

By the proof of 4.4 (an application of Johnson’s lemma), some subsequence
of (xni

) is equivalent to (en) in c0, and thus this subsequence must converge
weakly to 0. This contradiction shows that (f∗n) is not equivalent to (e∗n).

The reader might want to compare this remark with Corollary 1.13,
p. 102, of [32].

5. Global properties and duality. In Section 3 and the first part of
Section 4 of this paper, we dealt primarily with localized properties, e.g.,
DP-sets, V-sets, V∗-sets and RDP-sets. In this section we study how these
localized notions can be used to study more global structure properties. For
example, Pe lczyński [27] showed that a Banach space X is reflexive iff X has
properties V and V∗. (The space X has property V if every V-subset of X∗

is relatively weakly compact, and X has property V ∗ if every V∗-subset of
X is relatively weakly compact.) In this same paper, Pe lczyński also noted
that if X has property V then X∗ has V∗ and if X∗ has property V then X
has V∗.
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In [25] Leavelle introduced the property RDP ∗: the Banach space X has
RDP∗ provided that every Dunford–Pettis subset of X is relatively weakly
compact. Motivated by 3.1(vi) and the preceding observations, we obtain
the following characterization of RDP∗. If K is a bounded subset of X,
we let K̃ be the weak closure of K and equip K̃ with the weak topology.
Furthermore, BC(K̃) will denote the Banach space (with sup norm) of all

bounded and continuous real-valued functions on K̃.

Theorem 5.1. The Banach space X has RDP ∗ iff each evaluation map
E : X∗ → BC(K̃) which is completely continuous is also weakly compact.

P r o o f. Suppose that X has RDP∗. Suppose also that K is a bounded
subset of X so that E : X∗ → BC(K̃) is completely continuous. Thus K is a

DP-subset of X, and BC(K̃) = C(K̃). For convenience, denote the unit ball

of the dual of BC(K̃) by C∗. Of course, E is weakly compact iff E∗ is weakly
compact iff E∗(C∗) is relatively weakly compact. Now ext(C∗) = {±δk :

k ∈ K̃}. Since E∗(δk) = k and the weakly closed absolutely convex hull
of K is weakly compact, it follows that E∗(C∗) is contained in the weakly
closed absolutely convex hull ofK inX∗∗. However, this is a weakly compact
set, and E is weakly compact.

Conversely, suppose that E is weakly compact whenever E : X∗ →
BC(K̃) is completely continuous. Let K be a Dunford–Pettis subset of X.

Therefore K̃ is Dunford–Pettis, E : X∗ → BC(K̃) is completely continuous
and consequently weakly compact, and E∗(C∗) is relatively weakly compact.
Since K ⊆ E∗(C∗), K is relatively weakly compact.

The following proposition demonstrates additional connections that exist
among some of the properties that we have discussed.

Proposition 5.2. (i) If X has property V , then X has RDPP.

(ii) If X has property V ∗, then X has RDP ∗.

(iii) If X has RDPP , then X∗ has RDP ∗.

(iv) If X∗ has RDPP , then X has RDP ∗.

Moreover , none of these implications can be reversed.

P r o o f. (i) If T : X → Y is completely continuous, then T ∗(BY ∗) is an
L-set and T ∗(BY ∗) is a V-set. Thus T ∗ and T are weakly compact.

(ii) Since every DP-subset of X is a V∗-set and every V∗-set is relatively
weakly compact, X has RDP∗.

(iii) If K is a DP-subset of X∗, then K is an L-subset of X∗, and 3.1(i)
and the hypothesis tell us that K is relatively weakly compact.

(iv) If K is a DP-subset of X, then K is an L-subset of X∗∗, and, again
by 3.1, K is relatively weakly compact.



EVALUATION MAPS, RESTRICTION MAPS, AND COMPACTNESS 15

To see that none of these implications can be reversed, we begin with a
dual space X∗ which does not contain `1. Thus X itself does not contain `1,
and every completely continuous map on X or X∗ is even compact. Thus X
and X∗ both have RDPP, and both X and X∗ have RDP∗ by the preceding
argument.

Now let J be the original James space [23]. Since J is separable and
1-codimensional in J∗∗, all duals of J are separable and `1 fails to embed
in any of them. Moreover, none of these spaces can be weakly sequentially
complete. Thus J and all of its duals have RDPP and RDP∗, and neither
J nor any of its duals have property V∗. Hence none of these spaces has
property V. Thus (i) and (ii) cannot be reversed.

Next let Y be a Banach space so that Y ∗∗ is separable and contains a
complemented copy of `1; see e.g. James [24]. Let X = Y ∗. Since `1 does
not embed in Y , Y has RDPP, and X (= Y ∗) has RDP∗. However, the
projection from X∗ onto `1 is completely continuous and certainly is not
weakly compact. Therefore X∗ does not have RDPP.

To see that (iv) cannot be reversed, we again consider the first Bourgain–
Delbaen space [10]. Since X has the Schur property and is plainly not
reflexive, the identity map on X is completely continuous and is not
weakly compact. Thus X does not have RDPP. However, as was noted
earlier, X∗ is weakly sequentially complete. Since DP ⊆ BWPC (Theo-
rem 4.2), every DP-subset of X∗ is relatively weakly compact, and X∗ has
RDP∗.

In view of Proposition 5.2, the following theorem appears to formally
strengthen Proposition 7 of Pe lczyński [27].

Theorem 5.3. The following are equivalent :

(i) X is reflexive.

(ii) X has RDPP and V ∗.

(iii) X has V and RDP ∗.

P r o o f. (ii)⇒(i). Since X has RDPP, every bounded set is an RDP-
set. Since X has property V∗, every V∗-set is relatively weakly compact.
Therefore by Theorem 4.2 every bounded subset of X is relatively weakly
compact, and X is reflexive.

(iii)⇒(i). Since X has RDP∗ and c0 contains DP-sets which are not
relatively weakly compact, X does not contain c0. Therefore the identity
map I on X is unconditionally converging. By Proposition 1 of Pe lczyński
[27], I is weakly compact. Thus X is reflexive.

Certainly, (i) implies (ii) and (ii) implies (iii).
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[8] F. Bombal, On (V ∗) sets and Pe lczyński’s property (V ∗), Glasgow Math. J. 32
(1990), 109–120.

[9] —, On (V ) and (V ∗) sets in vector-valued function spaces, preprint.
[10] J. Bourga in and F. Delbaen, A class of special L∞ spaces, Acta Math. 145

(1981), 155–176.
[11] J. Bourga in and J. Dieste l, Limited operators and strict cosingularity , Math.

Nachr. 119 (1984), 55–58.
[12] J. Dieste l, Sequences and Series in Banach Spaces, Grad. Texts in Math. 92,

Springer, 1984.
[13] J. Dieste l and J. J. Uhl, Jr., Vector Measures, Math. Surveys 15, Amer. Math.

Soc., Providence, R.I., 1977.
[14] S. Dineen, Complex Analysis in Locally Convex Spaces, North-Holland Math. Stud.

57, North-Holland, New York, 1981.
[15] N. Dunford and J. T. Schwartz, Linear Operators. I. General Theory , Pure and

Appl. Math. 7, Interscience, New York, 1958.
[16] J. Elton and E. Odel l, The unit ball of every infinite-dimensional normed linear

space contains a (1 + ε)-separated sequence, Colloq. Math. 44 (1981), 105–109.
[17] G. Emmanuele, A dual characterization of Banach spaces not containing `1, Bull.

Polish Acad. Sci. Math. 34 (1986), 155–160.
[18] —, On the reciprocal Dunford–Pettis property in projective tensor products, Math.

Proc. Cambridge Philos. Soc. 109 (1991), 161–166.
[19] —, Banach spaces on which Dunford–Pettis sets are relatively compact , Arch. Math.

(Basel) 58 (1992), 477–485.
[20] —, personal communication.
[21] A. Grothendieck, Sur les applications linéaires faiblement compactes d’espaces
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