COLLOQUIUM MATHEMATICUM

VOL. 78

1998

NO. 1

SQUARES IN LUCAS SEQUENCES HAVING AN EVEN FIRST PARAMETER

 $_{\rm BY}$

PAULO RIBENBOIM (KINGSTON, ONTARIO) AND WAYNE L. MCDANIEL (ST. LOUIS, MISSOURI)

1. Introduction. Let P and Q be non-zero relatively prime integers, α and β ($\alpha > \beta$) be the zeros of $x^2 - Px + Q$, and, for $n \ge 0$, let

(0) $U_n = U_n(P,Q) = \frac{\alpha^n - \beta^n}{\alpha - \beta},$ $V_n = V_n(P,Q) = \alpha^n + \beta^n.$

It is known that there exist only a finite number of integers n such that $U_n(P,Q)$ is a square $(= \Box)$; however, the bound on n, although effectively computable, is, in general, extremely large [6]. If P and Q are odd integers, the square terms of the sequence $\{U_n(P,Q)\}$ are known [8]. Much less is known when P is even: for an arbitrary even P, the square terms are only known when Q = 1 or Q = P - 1, and when Q = -1 it is known that $\{U_n(P,Q)\}$ has at most two square terms. These results are derived from W. Ljunggren's work concerning certain Diophantine equations (see [2], [3], [4], and, also, [5]).

If $Q \neq \pm 1$ or P - 1, and P is even, the best result in the effort to solve $U_n(P,Q) = \Box$ was obtained in 1983 when Rotkiewicz [10] showed that if P is even and $Q \equiv 1 \pmod{4}$, then $U_n(P,Q) = \Box$ only if n is an odd square or an even integer $\neq 2^{k+1}$ whose largest prime factor divides the discriminant D $(=P^2 - 4Q)$.

In this paper, we improve upon Rotkiewicz's results by showing that if P is even and $Q \equiv 1 \pmod{4}$, then, for n > 0, $U_n(P,Q) = \Box$ only if all the prime factors of n belong to a small known finite set: each is a prime factor of D. We show, further, that if p is a prime and $p^{2t} | n$, then $U_{p^{2u}}$ is a square for $u = 1, \ldots, t$. In addition, for even values of n, we show that $U_n = \Box$ only if $P = \Box$ or $2\Box$. Finally, we obtain corresponding results for $U_n = 2\Box$. At the end of the paper, we give several infinite sets of pairs (P,Q) for which $U_n(P,Q) \neq \Box$ for n > 2.

¹⁹⁹¹ Mathematics Subject Classification: Primary 11B39.

^[29]

MAIN THEOREM. Let n > 0. If P is even, $Q \equiv 1 \pmod{4}$, and $U_n = \Box$, then n is a square, or twice an odd square, and all prime factors of n divide D; if $p^t > 2$ is a prime divisor of n and $1 \le u \le t$, then $U_{p^u} = \Box$ if u is even and $U_{p^u} = p\Box$ if u is odd. If n is even, then $U_n = \Box$ only if, in addition, $P = \Box$ or $2\Box$.

2. Restrictions, notation and preliminary results. We shall assume throughout this paper that P is even, $Q \equiv 1 \pmod{4}$, gcd(P,Q) = 1 and $D = P^2 - 4Q > 0$.

We use the recursive relations $U_n = PU_{n-1} - QU_{n-2}$ and $V_n = PV_{n-1} - QV_{n-2}$ and the following properties. Let n and m be positive integers, q be an odd prime, and $\varrho(q)$ be the entry point of q (i.e., $q | U_{\varrho(q)}$ and $q \nmid U_n$ if $n < \varrho(q)$).

- (1) U_n is even iff n is even; V_n is even.
- (2) If $q | U_n$, then $\varrho(q) | n$.

(3) $q \mid U_q$ iff $q \mid D$.

- (4) If $q \mid U_k$, for some k > 0, and $q \nmid D$, then $q \mid U_{q-1}$ or $q \mid U_{q+1}$.
- (5) $\operatorname{gcd}(U_n, U_m) = U_{\operatorname{gcd}(n,m)}$, and $U_n | U_m$ iff n | m.
- (6) If $q^e || U_n$, then $q^{e+1} || U_{nq}$.

(7) $\operatorname{gcd}(U_n, Q) = \operatorname{gcd}(V_n, Q) = 1.$

(8) If n is odd, then $gcd(U_n, P) = 1$.

(9) If d = gcd(m, n), then $\text{gcd}(V_m, V_n) = V_d$ if m/d and n/d are odd, and 2 otherwise.

(10) If $d = \gcd(m, n)$, then $\gcd(U_m, V_n) = V_d$ if m/d is even, and 1 or 2 otherwise.

 $(11) U_{2m} = U_m V_m.$

(12) If n is odd, then $U_n = \Box$ only if $n = \Box$.

Property (12) was proven by Rotkiewicz [10] and the other properties are well known (see e.g. [7], p. 44).

LEMMA 1. If q is an odd prime and each prime factor of the odd integer m is greater than q, then $q \nmid U_m$.

Proof. Assume each prime factor of m is greater than the odd prime q. By (3) and (4), if $q | U_m$, then q divides U_q , U_{q-1} , or U_{q+1} ; but then, by (2), $\varrho(q)$ divides q, q-1 or q+1, implying that each prime factor of $\varrho(q)$ is $\leq q < m$. However, this is impossible, since, by (2), $q | U_m$ implies that $\varrho(q) | m$.

Robbins [9] has shown that for all positive integers m and n, there exists an integer R such that $U_{mn}/U_m = [n(QU_{m-1})^{n-1} + U_m R]$. Since $gcd(U_m, QU_{m-1}) = 1$, we immediately have:

LEMMA 2. For all positive integers m and n, $gcd(U_m, U_{mn}/U_m) = gcd(U_m, n)$.

LEMMA 3. If $2 \parallel P$, then

$$V_n \equiv \begin{cases} P \pmod{8} & if \ n \ is \ odd, \\ 2 \pmod{8} & if \ n \ is \ even \end{cases}$$

If $4 \mid P$, then

$$V_n \equiv \begin{cases} P \pmod{8} & \text{if } n \text{ is odd,} \\ 2 \pmod{8} & \text{if } n \equiv 0,4 \pmod{8}, \\ -2 \pmod{8} & \text{if } n \equiv 2,6 \pmod{8}. \end{cases}$$

Proof. By (0), $V_0 = 2$, $V_1 = P$ and $V_2 = P \cdot P - Q \cdot 2 \equiv P^2 - 2$ (mod 8). Assume that $2 \parallel P$, and that the lemma holds for all integers < n. If $n \ge 2$ is odd, then

$$V_n = PV_{n-1} - QV_{n-2} \equiv \left\{ \begin{array}{c} 2P - QP \text{ or} \\ 2P - 5QP \end{array} \right\} \equiv P \text{ or } 5P \pmod{8},$$

and for $P \equiv \pm 2 \pmod{8}$ we have $5P \equiv P \pmod{8}$. If $n \ge 2$ is even, then

$$V_n = PV_{n-1} - QV_{n-2} \equiv 4 - Q \cdot 2 \equiv 2 \pmod{8}.$$

The proof for $4 \mid P$ is similar.

3. Proofs of the theorems

THEOREM 1. Let $n = 2^k m, k \ge 1$ and m odd.

- (a) If $2 \parallel P$, then $U_n = \Box$ only if k is even and $U_m = \Box$.
- (b) If 4 | P, then $U_n = \Box$ only if k = 1 and $U_m = \Box$.

Proof. Assume that $U_n = U_{2^k m} = \Box$. By (11),

 $U_n = U_m V_m V_{2m} V_{4m} \dots V_{2^{k-1}m},$

and since, by (9) and (10), $gcd(U_m, V_{2^jm}) = 1$, and $gcd(V_{2^im}, V_{2^jm}) = 2$ for $0 \le i < j \le k - 1$, each factor is \Box or $2\Box$; in particular, since U_m is odd, $U_m = \Box$. Now, if $2 \parallel P$, then, since, by Lemma 3, $V_{2^im} \equiv 2 \pmod{4}$ for $0 \le i \le k - 1$, it follows that $V_{2^im} = 2\Box$ and k is even. If, on the other hand, $4 \mid P$, then, by Lemma 3, $V_{2m} \equiv -2 \pmod{8}$, so $V_{2m} \neq \Box$ or $2\Box$, and it follows that k = 1.

LEMMA 4. Assume p is a prime, t is a positive integer, $p^t > 2$, and $U_{p^t} = \Box$. Then $p \mid D$, and if $1 \leq u \leq t$, then $U_{p^u} = \Box$ if u is even and $U_{p^u} = p\Box$ if u is odd.

Proof. By Lemma 2,

$$d = \gcd(U_{p^u}, U_{p^t}/U_{p^u}) = \gcd(U_p, p^{t-u}),$$

so, for some s $(0 \le s \le t-1)$, $d = p^s$; hence, $\Box = U_{p^t} = U_{p^u} \cdot (U_{p^t}/U_{p^u})$ implies that $U_{p^u} = p^s \Box = \Box$ or $p\Box$. Since, by (12) if p is odd and by Theorem 1(a) if p = 2 (note that $p^t > 2$), U_{p^u} is a square only if u is even, we have $U_{p^u} = p\Box$ if u is odd, and in view of (6), $U_{p^u} = \Box$, if u is even. Since $U_p = p\Box$, it follows from (3) that $p \mid D$ if p is odd, and $p \mid D$ trivially if p = 2 since D is even.

THEOREM 2. Let n > 1 and assume that $U_n = \Box$. If p is a prime factor of n, then $p \mid D$. Further, if $p^t \mid n$ and $p^t > 2$, then, for $1 \le u \le t$, $U_{p^u} = \Box$ if u is even, and $U_{p^u} = p\Box$ if u is odd.

Proof. Let $n = m_0 m$, where m_0 is such that each prime divisor of m_0 is less than the least prime divisor of m. Let

 $d = \gcd(U_m, U_{mm_0}/U_m) = \gcd(U_m, m_0).$

Clearly, if $m_0 = 1$ then d = 1. If $m_0 > 1$ then m is odd (and U_m is odd) and either d = 1 or some odd prime factor p of m_0 divides U_m ; however, since each prime factor of m is > p, the latter is impossible by Lemma 1. So d = 1, and $\Box = U_n = U_m (U_{mm_0}/U_m)$ implies $U_m = \Box$.

Now, let $n = p_1^{t_1} p_2^{t_2} \dots p_r^{t_r}$, $p_i < p_j$ for i < j. We have just shown, in particular, that $U_{p_r^{t_r}} = \Box$, and therefore $p_r \mid D$, by Lemma 4. If r > 1, let a < r be such that $p_{a+1}, p_{a+2}, \dots, p_r$ divide D. Let $m = \prod_{i=a}^r p_i^{t_i}$, and set

$$d' = \gcd(U_{p_a^{t_a}}, U_m/U_{p_a^{t_a}}) = \gcd(U_{p_a^{t_a}}, m/p_a^{t_a}).$$

Now, if $a < k \leq r$, then $p_k \nmid U_{p_a^{t_a}}$, since, by (2) and (3), $\varrho(p_k) = p_k$. Hence, d' = 1 and $U_{p_a^{t_a}} = \Box$. By induction, we have $U_{p_i^{t_i}} = \Box$ for $i = 1, \ldots, r$. The theorem then follows from Lemma 4.

We now show that unless P or 2P is restricted to the set of perfect squares, $U_n \neq \Box$ for n an even positive integer.

LEMMA 5. For any fixed integer Q and every positive integer n, $V_n = f_n(P)$, where $f_n(P)$ is a polynomial in P; for each $k \ge 1$, the term of lowest degree of $f_{2k}(P)$ is $(-1)^k Q^k$, and of $f_{2k+1}(P)$ is $(-1)^k (2k+1)Q^k P$.

The proof is by induction on k.

By this lemma, if m is odd, $V_m/P = AP \pm mQ^{(m-1)/2}$, for some integer A. If, now, $U_m = \Box$, then, since each prime factor of m divides $D (= P^2 - 4Q)$ by Theorem 2, we have gcd(P,m) = gcd(D,m) = 1, and it follows that $gcd(P, V_m/P) = 1$. Hence, if $P \cdot V_m/P = V_m = \Box$, then $P = \Box$, and if $V_m = 2\Box$, then $P = 2\Box$.

THEOREM 3. Assume n > 0 is an even integer and $U_n = \Box$. If $2 \parallel P$, then $P = 2\Box$, and if $4 \mid P$, then $P = \Box$.

Proof. Let $n = 2^k m$, m odd. If $2 \parallel P$, then, as seen in the proof of Theorem 1, $V_m = 2\Box$, so, by the remarks preceding the theorem, $P = 2\Box$. If

 $4 \mid P$, then k = 1 by Theorem 1, so $U_n = U_{2m} = U_m V_m$, and since $U_m = \Box$, we have $V_m = \Box$, and $P = \Box$.

The Main Theorem incorporates the results of Theorems 1, 2 and 3. Similar results can be obtained for the sequence $\{2U_n(P,Q)\}$:

THEOREM 4. Let $n = 2^k m, k \ge 0$ and m odd.

- (a) If k = 0 (i.e., n is odd), then $U_n \neq 2\Box$.
- (b) If $2 \parallel P$, then $U_n = 2\Box$ only if k is odd, $U_m = \Box$ and $P = 2\Box$.
- (c) If $4 \mid P$, then $U_n = 2\Box$ only if k = 1, $U_m = \Box$ and $P = 2\Box$.

Proof. Assume that $U_n = U_{2^k m} = 2\Box$. Trivially, if k = 0, then $U_n \neq 2\Box$ since U_n is odd. Thus $k \ge 1$. Then $U_n = U_m V_m V_{2m} \dots V_{2^{k-1}m}$ implying that $U_m = \Box$. The remainder of the proof parallels that of Theorems 1 and 3.

EXAMPLE 1. Let r be a positive odd integer, P = 2r, and $Q = r^2 - 4$. Then gcd(P,Q) = 1 and $Q \equiv 1 \pmod{4}$. Since $D = P^2 - 4Q = 4r^2 - 4(r^2 - 4)$ = 16, the only prime factor of 2D is p = 2. Now, $U_4 = P(P^2 - 2Q) = \Box$ only if $P^2 - 2Q = 2\Box$. But

$$P^{2} - 2Q = 4r^{2} - 2(r^{2} - 4) = 2(r^{2} + 4) \neq 2\Box.$$

By Theorems 1 and 2, then, the only squares in $\{U_n(2r, r^2 - 4)\}$ are U_0 and U_1 .

EXAMPLE 2. Let r be a positive integer, $3 \nmid r$, P = 4r, and $Q = 4r^2 - 3$. Then gcd(P,Q) = 1, $Q \equiv 1 \pmod{4}$ and $D = 16r^2 - 4(4r^2 - 3) = 12$. Now

$$U_3 = P^2 - Q = 16r^2 - (4r^2 - 3) = 3(4r^2 + 1) \neq 3\Box,$$

so $U_n = \Box \Rightarrow 3 \nmid n$. By Theorems 1, 2 and 3, $U_n = \Box$ iff n = 0, 1, or 2, with $U_2 = \Box$ iff $r = \Box$.

No example is known of a pair P, Q and an odd prime p such that $U_{p^2} = \Box$ (and none exists if P and Q are odd). It is our conjecture that none exists if P is even and $Q \equiv 1 \pmod{4}$; that is, that the only odd value of n such that $U_n = \Box$ is n = 1. It appears highly probable that, in practice, one can easily determine all n such that $U_n(P,Q) = \Box$ for any given P and Q such that U_{p^2} is computable for the largest prime factor p of $P^2 - 4Q$ —and know that all have been found.

REFERENCES

- J. H. E. Cohn, Squares in some recurrent sequences, Pacific J. Math. 41 (1972), 631–646.
- [2] W. Ljunggren, Über die unbestimmte Gleichung $Ax^2 By^4 = C$, Arch. Math. Naturvid. 41 (1938), 3–18.

- [3] W. Ljunggren, Zur Theorie der Gleichung $x^2 + 1 = Dy^4$, Avh. Norske Vid. Akad. Oslo. I, No. 5 (1942), 1-26.
- [4] -, New propositions about the indeterminate equation $\frac{x^n 1}{x 1} = y^q$, Norske Mat. Tidskr. 25 (1943), 17–20.
- [5] L. J. Mordell, *Diophantine Equations*, Pure Appl. Math. 30, Academic Press, London, 1969.
- [6] A. Pethő, Perfect powers in second order linear recurrences, J. Number Theory 15 (1982), 5–13.
- [7] P. Ribenboim, The Book of Prime Number Records, Springer, New York, 1989.
- [8] P. Ribenboim and W. L. McDaniel, The square terms in Lucas sequences, J. Number Theory 58 (1996), 104–123.
- [9] N. Robbins, Some identities and divisibility properties of linear second-order recursion sequences, Fibonacci Quart. 20 (1982), 21-24.
- [10] A. Rotkiewicz, Applications of Jacobi's symbol to Lehmer's numbers, Acta Arith.
 42 (1983), 163–187.

Department of Mathematics Department of Mathematics and Computer Science University University of Missouri-St. Louis Kingston, Ontario St. Louis, Missouri 63121 Canada K7L 3N6 U.S.A. E-mail: mcdaniel@arch.umsl.edu

Received 30 December 1997