SQUARES IN LUCAS SEQUENCES HAVING AN EVEN FIRST PARAMETER
BY
PAULO RIBENBOIM (KINGSTON, ONTARIO) and WAYNE L. MCDANIEL (ST. LOUIS, MISSOURI)

1. Introduction. Let P and Q be non-zero relatively prime integers, α and $\beta(\alpha>\beta)$ be the zeros of $x^{2}-P x+Q$, and, for $n \geq 0$, let

$$
\begin{align*}
& U_{n}=U_{n}(P, Q)=\frac{\alpha^{n}-\beta^{n}}{\alpha-\beta} \tag{0}\\
& V_{n}=V_{n}(P, Q)=\alpha^{n}+\beta^{n}
\end{align*}
$$

It is known that there exist only a finite number of integers n such that $U_{n}(P, Q)$ is a square $(=\square)$; however, the bound on n, although effectively computable, is, in general, extremely large [6]. If P and Q are odd integers, the square terms of the sequence $\left\{U_{n}(P, Q)\right\}$ are known [8]. Much less is known when P is even: for an arbitrary even P, the square terms are only known when $Q=1$ or $Q=P-1$, and when $Q=-1$ it is known that $\left\{U_{n}(P, Q)\right\}$ has at most two square terms. These results are derived from W. Ljunggren's work concerning certain Diophantine equations (see [2], [3], [4], and, also, [5]).

If $Q \neq \pm 1$ or $P-1$, and P is even, the best result in the effort to solve $U_{n}(P, Q)=\square$ was obtained in 1983 when Rotkiewicz [10] showed that if P is even and $Q \equiv 1(\bmod 4)$, then $U_{n}(P, Q)=\square$ only if n is an odd square or an even integer $\neq 2^{k+1}$ whose largest prime factor divides the discriminant D $\left(=P^{2}-4 Q\right)$.

In this paper, we improve upon Rotkiewicz's results by showing that if P is even and $Q \equiv 1(\bmod 4)$, then, for $n>0, U_{n}(P, Q)=\square$ only if all the prime factors of n belong to a small known finite set: each is a prime factor of D. We show, further, that if p is a prime and $p^{2 t} \mid n$, then $U_{p^{2 u}}$ is a square for $u=1, \ldots, t$. In addition, for even values of n, we show that $U_{n}=\square$ only if $P=\square$ or $2 \square$. Finally, we obtain corresponding results for $U_{n}=2 \square$. At the end of the paper, we give several infinite sets of pairs (P, Q) for which $U_{n}(P, Q) \neq \square$ for $n>2$.

[^0]Main Theorem. Let $n>0$. If P is even, $Q \equiv 1(\bmod 4)$, and $U_{n}=\square$, then n is a square, or twice an odd square, and all prime factors of n divide D; if $p^{t}>2$ is a prime divisor of n and $1 \leq u \leq t$, then $U_{p^{u}}=\square$ if u is even and $U_{p^{u}}=p \square$ if u is odd. If n is even, then $U_{n}=\square$ only if, in addition, $P=\square$ or $2 \square$.
2. Restrictions, notation and preliminary results. We shall assume throughout this paper that P is even, $Q \equiv 1(\bmod 4), \operatorname{gcd}(P, Q)=1$ and $D=P^{2}-4 Q>0$.

We use the recursive relations $U_{n}=P U_{n-1}-Q U_{n-2}$ and $V_{n}=P V_{n-1}-$ $Q V_{n-2}$ and the following properties. Let n and m be positive integers, q be an odd prime, and $\varrho(q)$ be the entry point of q (i.e., $q \mid U_{\varrho(q)}$ and $q \nmid U_{n}$ if $n<\varrho(q))$.
(1) U_{n} is even iff n is even; V_{n} is even.
(2) If $q \mid U_{n}$, then $\varrho(q) \mid n$.
(3) $q \mid U_{q}$ iff $q \mid D$.
(4) If $q \mid U_{k}$, for some $k>0$, and $q \nmid D$, then $q \mid U_{q-1}$ or $q \mid U_{q+1}$.
(5) $\operatorname{gcd}\left(U_{n}, U_{m}\right)=U_{\operatorname{gcd}(n, m)}$, and $U_{n} \mid U_{m}$ iff $n \mid m$.
(6) If $q^{e} \| U_{n}$, then $q^{e+1} \| U_{n q}$.
(7) $\operatorname{gcd}\left(U_{n}, Q\right)=\operatorname{gcd}\left(V_{n}, Q\right)=1$.
(8) If n is odd, then $\operatorname{gcd}\left(U_{n}, P\right)=1$.
(9) If $d=\operatorname{gcd}(m, n)$, then $\operatorname{gcd}\left(V_{m}, V_{n}\right)=V_{d}$ if m / d and n / d are odd, and 2 otherwise.
(10) If $d=\operatorname{gcd}(m, n)$, then $\operatorname{gcd}\left(U_{m}, V_{n}\right)=V_{d}$ if m / d is even, and 1 or 2 otherwise.
(11) $U_{2 m}=U_{m} V_{m}$.
(12) If n is odd, then $U_{n}=\square$ only if $n=\square$

Property (12) was proven by Rotkiewicz [10] and the other properties are well known (see e.g. [7], p. 44).

Lemma 1. If q is an odd prime and each prime factor of the odd integer m is greater than q, then $q \nmid U_{m}$.

Proof. Assume each prime factor of m is greater than the odd prime q. By (3) and (4), if $q \mid U_{m}$, then q divides U_{q}, U_{q-1}, or U_{q+1}; but then, by (2), $\varrho(q)$ divides $q, q-1$ or $q+1$, implying that each prime factor of $\varrho(q)$ is $\leq q<m$. However, this is impossible, since, by (2), $q \mid U_{m}$ implies that $\varrho(q) \mid m$.

Robbins [9] has shown that for all positive integers m and n, there exists an integer R such that $U_{m n} / U_{m}=\left[n\left(Q U_{m-1}\right)^{n-1}+U_{m} R\right]$. Since $\operatorname{gcd}\left(U_{m}, Q U_{m-1}\right)=1$, we immediately have:

Lemma 2. For all positive integers m and $n, \operatorname{gcd}\left(U_{m}, U_{m n} / U_{m}\right)=$ $\operatorname{gcd}\left(U_{m}, n\right)$.

Lemma 3. If $2 \| P$, then

$$
V_{n} \equiv \begin{cases}P(\bmod 8) & \text { if } n \text { is odd }, \\ 2(\bmod 8) & \text { if } n \text { is even. }\end{cases}
$$

If $4 \mid P$, then

$$
V_{n} \equiv \begin{cases}P(\bmod 8) & \text { if } n \text { is odd } \\ 2(\bmod 8) & \text { if } n \equiv 0,4(\bmod 8) \\ -2(\bmod 8) & \text { if } n \equiv 2,6(\bmod 8)\end{cases}
$$

Proof. By (0), $V_{0}=2, V_{1}=P$ and $V_{2}=P \cdot P-Q \cdot 2 \equiv P^{2}-2$ $(\bmod 8)$. Assume that $2 \| P$, and that the lemma holds for all integers $<n$. If $n \geq 2$ is odd, then

$$
V_{n}=P V_{n-1}-Q V_{n-2} \equiv\left\{\begin{array}{l}
2 P-Q P \text { or } \\
2 P-5 Q P
\end{array}\right\} \equiv P \text { or } 5 P(\bmod 8)
$$

and for $P \equiv \pm 2(\bmod 8)$ we have $5 P \equiv P(\bmod 8)$. If $n \geq 2$ is even, then

$$
V_{n}=P V_{n-1}-Q V_{n-2} \equiv 4-Q \cdot 2 \equiv 2(\bmod 8)
$$

The proof for $4 \mid P$ is similar.

3. Proofs of the theorems

Theorem 1. Let $n=2^{k} m, k \geq 1$ and m odd.
(a) If $2 \| P$, then $U_{n}=\square$ only if k is even and $U_{m}=\square$.
(b) If $4 \mid P$, then $U_{n}=\square$ only if $k=1$ and $U_{m}=\square$.

Proof. Assume that $U_{n}=U_{2^{k} m}=\square$. By (11),

$$
U_{n}=U_{m} V_{m} V_{2 m} V_{4 m} \ldots V_{2^{k-1} m}
$$

and since, by (9) and $(10), \operatorname{gcd}\left(U_{m}, V_{2^{j} m}\right)=1$, and $\operatorname{gcd}\left(V_{2^{i} m}, V_{2^{j} m}\right)=2$ for $0 \leq i<j \leq k-1$, each factor is \square or $2 \square$; in particular, since U_{m} is odd, $U_{m}=\square$. Now, if $2 \| P$, then, since, by Lemma $3, V_{2^{i} m} \equiv 2(\bmod 4)$ for $0 \leq i \leq k-1$, it follows that $V_{2^{i} m}=2 \square$ and k is even. If, on the other hand, $4 \mid P$, then, by Lemma $3, V_{2 m} \equiv-2(\bmod 8)$, so $V_{2 m} \neq \square$ or $2 \square$, and it follows that $k=1$.

Lemma 4. Assume p is a prime, t is a positive integer, $p^{t}>2$, and $U_{p^{t}}=\square$. Then $p \mid D$, and if $1 \leq u \leq t$, then $U_{p^{u}}=\square$ if u is even and $U_{p^{u}}=p \square$ if u is odd.

Proof. By Lemma 2,

$$
d=\operatorname{gcd}\left(U_{p^{u}}, U_{p^{t}} / U_{p^{u}}\right)=\operatorname{gcd}\left(U_{p}, p^{t-u}\right)
$$

so, for some $s(0 \leq s \leq t-1), d=p^{s}$; hence, $\square=U_{p^{t}}=U_{p^{u}} \cdot\left(U_{p^{t}} / U_{p^{u}}\right)$ implies that $U_{p^{u}}=p^{s} \square=\square$ or $p \square$. Since, by (12) if p is odd and by Theorem 1(a) if $p=2$ (note that $p^{t}>2$), $U_{p^{u}}$ is a square only if u is even, we have $U_{p^{u}}=p \square$ if u is odd, and in view of (6), $U_{p^{u}}=\square$, if u is even. Since $U_{p}=p \square$, it follows from (3) that $p \mid D$ if p is odd, and $p \mid D$ trivially if $p=2$ since D is even.

Theorem 2. Let $n>1$ and assume that $U_{n}=\square$. If p is a prime factor of n, then $p \mid D$. Further, if $p^{t} \| n$ and $p^{t}>2$, then, for $1 \leq u \leq t, U_{p^{u}}=\square$ if u is even, and $U_{p^{u}}=p \square$ if u is odd.

Proof. Let $n=m_{0} m$, where m_{0} is such that each prime divisor of m_{0} is less than the least prime divisor of m. Let

$$
d=\operatorname{gcd}\left(U_{m}, U_{m m_{0}} / U_{m}\right)=\operatorname{gcd}\left(U_{m}, m_{0}\right) .
$$

Clearly, if $m_{0}=1$ then $d=1$. If $m_{0}>1$ then m is odd (and U_{m} is odd) and either $d=1$ or some odd prime factor p of m_{0} divides U_{m}; however, since each prime factor of m is $>p$, the latter is impossible by Lemma 1 . So $d=1$, and $\square=U_{n}=U_{m}\left(U_{m m_{0}} / U_{m}\right)$ implies $U_{m}=\square$.

Now, let $n=p_{1}^{t_{1}} p_{2}^{t_{2}} \ldots p_{r}^{t_{r}}, p_{i}<p_{j}$ for $i<j$. We have just shown, in particular, that $U_{p_{r}^{t_{r}}}=\square$, and therefore $p_{r} \mid D$, by Lemma 4. If $r>1$, let $a<r$ be such that $p_{a+1}, p_{a+2}, \ldots, p_{r}$ divide D. Let $m=\prod_{i=a}^{r} p_{i}^{t_{i}}$, and set

$$
d^{\prime}=\operatorname{gcd}\left(U_{p_{a}^{t_{a}}}, U_{m} / U_{p_{a}^{t_{a}}}\right)=\operatorname{gcd}\left(U_{p_{a}^{t_{a}}}, m / p_{a}^{t_{a}}\right) .
$$

Now, if $a<k \leq r$, then $p_{k} \nmid U_{p_{a} t_{a}}$, since, by (2) and (3), $\varrho\left(p_{k}\right)=p_{k}$. Hence, $d^{\prime}=1$ and $U_{p_{a}^{t_{a}}}=\square$. By induction, we have $U_{p_{i} t_{i}}=\square$ for $i=$ $1, \ldots, r$. The theorem then follows from Lemma 4.

We now show that unless P or $2 P$ is restricted to the set of perfect squares, $U_{n} \neq \square$ for n an even positive integer.

Lemma 5. For any fixed integer Q and every positive integer $n, V_{n}=$ $f_{n}(P)$, where $f_{n}(P)$ is a polynomial in P; for each $k \geq 1$, the term of lowest degree of $f_{2 k}(P)$ is $(-1)^{k} Q^{k}$, and of $f_{2 k+1}(P)$ is $(-1)^{k}(2 k+1) Q^{k} P$.

The proof is by induction on k.
By this lemma, if m is odd, $V_{m} / P=A P \pm m Q^{(m-1) / 2}$, for some integer A. If, now, $U_{m}=\square$, then, since each prime factor of m divides $D\left(=P^{2}-4 Q\right)$ by Theorem 2, we have $\operatorname{gcd}(P, m)=\operatorname{gcd}(D, m)=1$, and it follows that $\operatorname{gcd}\left(P, V_{m} / P\right)=1$. Hence, if $P \cdot V_{m} / P=V_{m}=\square$, then $P=\square$, and if $V_{m}=2 \square$, then $P=2 \square$.

Theorem 3. Assume $n>0$ is an even integer and $U_{n}=\square$. If $2 \| P$, then $P=2 \square$, and if $4 \mid P$, then $P=\square$.

Proof. Let $n=2^{k} m, m$ odd. If $2 \| P$, then, as seen in the proof of Theorem $1, V_{m}=2 \square$, so, by the remarks preceding the theorem, $P=2 \square$. If
$4 \mid P$, then $k=1$ by Theorem 1 , so $U_{n}=U_{2 m}=U_{m} V_{m}$, and since $U_{m}=\square$, we have $V_{m}=\square$, and $P=\square$.

The Main Theorem incorporates the results of Theorems 1, 2 and 3. Similar results can be obtained for the sequence $\left\{2 U_{n}(P, Q)\right\}$:

Theorem 4. Let $n=2^{k} m, k \geq 0$ and m odd.
(a) If $k=0$ (i.e., n is odd), then $U_{n} \neq 2 \square$.
(b) If $2 \| P$, then $U_{n}=2 \square$ only if k is odd, $U_{m}=\square$ and $P=2 \square$.
(c) If $4 \mid P$, then $U_{n}=2 \square$ only if $k=1, U_{m}=\square$ and $P=2 \square$.

Proof. Assume that $U_{n}=U_{2^{k} m}=2 \square$. Trivially, if $k=0$, then $U_{n} \neq 2 \square$ since U_{n} is odd. Thus $k \geq 1$. Then $U_{n}=U_{m} V_{m} V_{2 m} \ldots V_{2^{k-1} m}$ implying that $U_{m}=\square$. The remainder of the proof parallels that of Theorems 1 and 3.

Example 1. Let r be a positive odd integer, $P=2 r$, and $Q=r^{2}-4$. Then $\operatorname{gcd}(P, Q)=1$ and $Q \equiv 1(\bmod 4)$. Since $D=P^{2}-4 Q=4 r^{2}-4\left(r^{2}-4\right)$ $=16$, the only prime factor of $2 D$ is $p=2$. Now, $U_{4}=P\left(P^{2}-2 Q\right)=$ only if $P^{2}-2 Q=2 \square$. But

$$
P^{2}-2 Q=4 r^{2}-2\left(r^{2}-4\right)=2\left(r^{2}+4\right) \neq 2 \square
$$

By Theorems 1 and 2, then, the only squares in $\left\{U_{n}\left(2 r, r^{2}-4\right)\right\}$ are U_{0} and U_{1}.

Example 2. Let r be a positive integer, $3 \nmid r, P=4 r$, and $Q=4 r^{2}-3$. Then $\operatorname{gcd}(P, Q)=1, Q \equiv 1(\bmod 4)$ and $D=16 r^{2}-4\left(4 r^{2}-3\right)=12$. Now

$$
U_{3}=P^{2}-Q=16 r^{2}-\left(4 r^{2}-3\right)=3\left(4 r^{2}+1\right) \neq 3 \square
$$

so $U_{n}=\square \Rightarrow 3 \nmid n$. By Theorems 1,2 and $3, U_{n}=\square$ iff $n=0,1$, or 2 , with $U_{2}=\square$ iff $r=\square$.

No example is known of a pair P, Q and an odd prime p such that $U_{p^{2}}=$(and none exists if P and Q are odd). It is our conjecture that none exists if P is even and $Q \equiv 1(\bmod 4)$; that is, that the only odd value of n such that $U_{n}=\square$ is $n=1$. It appears highly probable that, in practice, one can easily determine all n such that $U_{n}(P, Q)=\square$ for any given P and Q such that $U_{p^{2}}$ is computable for the largest prime factor p of $P^{2}-4 Q$-and know that all have been found.

REFERENCES

[1] J. H. E. Cohn, Squares in some recurrent sequences, Pacific J. Math. 41 (1972), 631-646.
[2] W. Ljunggren, Über die unbestimmte Gleichung $A x^{2}-B y^{4}=C$, Arch. Math. Naturvid. 41 (1938), 3-18.
[3] W. Ljunggren, Zur Theorie der Gleichung $x^{2}+1=D y^{4}$, Avh. Norske Vid. Akad. Oslo. I, No. 5 (1942), 1-26.
[4] -, New propositions about the indeterminate equation $\frac{x^{n}-1}{x-1}=y^{q}$, Norske Mat. Tidskr. 25 (1943), 17-20.
[5] L. J. Mordell, Diophantine Equations, Pure Appl. Math. 30, Academic Press, London, 1969.
[6] A. Pethő, Perfect powers in second order linear recurrences, J. Number Theory 15 (1982), 5-13.
[7] P. Ribenboim, The Book of Prime Number Records, Springer, New York, 1989.
[8] P. Ribenboim and W. L. McDaniel, The square terms in Lucas sequences, J. Number Theory 58 (1996), 104-123.
[9] N. Robbins, Some identities and divisibility properties of linear second-order recursion sequences, Fibonacci Quart. 20 (1982), 21-24.
[10] A. Rotkiewicz, Applications of Jacobi's symbol to Lehmer's numbers, Acta Arith. 42 (1983), 163-187.

Department of Mathematics
Queen's University
Kingston, Ontario
Canada K7L 3N6

Department of Mathematics and Computer Science University of Missouri-St. Louis St. Louis, Missouri 63121
U.S.A.

E-mail: mcdaniel@arch.umsl.edu

[^0]: 1991 Mathematics Subject Classification: Primary 11B39.

