SMALL BASES FOR FINITE GROUPS

BY
TOMASZ ŁUCZAK and TOMASZ SCHOEN (POZNAŃ)
We give a very simple probabilistic argument which shows that every group of n elements contains a proper k-basis of size $O\left((n \log n)^{1 / k}\right)$.

For a subset A of a multiplicative group G and natural $k \geq 2$ let

$$
A^{k}=\left\{a_{1} \ldots a_{k}: a_{1}, \ldots, a_{k} \in A\right\}
$$

and

$$
A^{\wedge k}=\left\{a_{1} \ldots a_{k}: a_{1}, \ldots, a_{k} \in A \text { and } a_{i} \neq a_{j} \text { for } 1 \leq i<j \leq k\right\} .
$$

A subset A for which $A^{k}=G$ is called a k-basis for G; if furthermore $A^{\wedge k}=G$ we say that the k-basis A is proper. Nathanson [2] proved that for a given $k \geq 2$ and $\varepsilon>0$ there exists n_{0} such that each group of $n \geq n_{0}$ elements admits a k-basis of size at most $(k+\varepsilon)(n \log n)^{1 / k}$. We show that for $k \geq 3$ this fact follows immediately from an elementary probabilistic argument. Although, unlike Nathanson's proof, our method is non-constructive, it implies the existence of a proper basis, and gives a slightly better value of the constant.

Theorem. For each $k \geq 3$ and $\varepsilon>0$ there exists n_{0} such that each group of size $n \geq n_{0}$ has a proper k-basis which consists of at most $(1+\varepsilon)(k!n \log n)^{1 / k}$ elements.

For an element b of a group G let S_{b} be the family of all k element subsets $\underline{a}=\left\{a_{1}, \ldots, a_{k}\right\}$ such that for some permutation σ of elements of \underline{a} we have $a_{\sigma(1)} \ldots a_{\sigma(k)}=b$. In our argument we employ the following simple fact.

Claim. Let G be a group of n elements and let $b \in G$. Then
(i) $\left|S_{b}\right| \geq \frac{1}{k}\binom{n}{k-1}-k^{3} n^{k-2}$,
(ii) for every l, where $1 \leq l \leq k-1$, the number of pairs $\underline{a}, \underline{a}^{\prime} \in S_{b}$ such that $\left|\underline{a} \cap \underline{a}^{\prime}\right|=l$ is bounded from above by $k k!2^{k} n^{2 k-l-2}$.

Proof. Choose $k-1$ different elements a_{1}, \ldots, a_{k-1} in one of $n(n-1)$ $\ldots(n-k+2)$ possible ways. Then there is a unique element a_{k} for which

[^0]$a_{1} \ldots a_{k}=b$. Thus, there exist at least $(n)_{k-1} / k!$ sets $\left\{a_{1}, \ldots, a_{k}\right\}$ such that $a_{1} \ldots a_{k}=b$ and all of their elements, except at most two, are different. On the other hand, to build a sequence $\left(a_{1}, \ldots, a_{k}\right)$ such that $a_{1} \ldots a_{k}=b$, in which one of the terms appears twice, one needs to choose a repeated element (there are n ways of doing so), pick $k-3$ remaining terms (here we have $\binom{n-1}{k-3}$ possibilities), decide in which order they appear in the product $((k-1)!/ 2$ choices) and add to it the last factor at one of k possible positions in such a way that the product of all elements is b. Thus, the number of such sequences is bounded from above by
$$
n\binom{n-1}{k-3} \frac{(k-1)!}{2} k \leq k^{3} n^{k-2}
$$
and (i) follows.
In order to show (ii) note that \underline{a} can be chosen in $\left|S_{b}\right| \leq k n^{k-1}$ ways. Furthermore, given \underline{a}, to choose \underline{a}^{\prime} such that $\left|\underline{a} \cap \underline{a}^{\prime}\right|=l$ we need to pick in \underline{a} a subset $\underline{a} \cap \underline{a}^{\prime}$ in one of $\binom{k}{l}$ possible ways, then add to $\underline{a} \cap \underline{a}^{\prime}$ another $k-l-1$ elements (at most $\binom{n}{k-l-1}$ possibilities), order it in one of $(k-1)$! possible ways, and finally add the last element of \underline{a}^{\prime} at one of k possible positions. Consequently, the number of choices for $\underline{a}, \underline{a}^{\prime} \in S_{b}$, where $\left|\underline{a} \cap \underline{a}^{\prime}\right|=l$, is crudely bounded by
$$
k n^{k-1}\binom{k}{l}(k-1)!\binom{n}{k-l-1} k \leq k k!2^{k} n^{2 k-l-2}
$$

Proof of Theorem. Let G be a group of n elements and $\mathbf{A}_{p} \subseteq G$ be a random subset of G, where an element a belongs to \mathbf{A}_{p} with probability

$$
p=\frac{1+\varepsilon / 2}{n}(k!n \log n)^{1 / k}
$$

independently for every $a \in G$. For given $b \in G$ and $\underline{a} \in S_{b}$, let \mathbf{X}_{a} denote the random variable such that $\mathbf{X}_{\underline{a}}=1$ whenever $\underline{a} \subseteq \mathbf{A}_{p}$, and $\mathbf{X}_{\underline{a}}=0$ otherwise. Then, for the probability $\mathbb{P}\left(b \notin \mathbf{A}_{p}^{\wedge k}\right)=\mathbb{P}\left(\sum_{\underline{a} \in S_{b}} \mathbf{X}_{\underline{a}}=0\right)$, a large deviation inequality from [1] gives
$(*) \quad \mathbb{P}\left(\sum_{\underline{a} \in S_{b}} \mathbf{X}_{\underline{a}}=0\right) \leq \exp \left(-\sum_{\underline{a} \in S_{b}} \mathbb{E} \mathbf{X}_{\underline{a}}+\frac{1}{2} \sum_{\substack{\underline{a}, \underline{a}^{\prime} \in S_{b} \\ \underline{a} \cap a^{\prime} \neq \emptyset}} \sum_{\underline{\emptyset}} \mathbb{E} \mathbf{X}_{\underline{a}} \mathbf{X}_{\underline{a}^{\prime}}\right)$.
However, for n large enough, the Claim gives

$$
\sum_{\underline{a} \in S_{b}} \mathbb{E} \mathbf{X}_{\underline{a}}=\left|S_{b}\right| p^{k} \geq(1+\varepsilon / 3) \log n
$$

and

$$
\sum_{\substack{\underline{a}, \underline{a}^{\prime} \in S_{b} \\ \underline{a} \cap \underline{a}^{\prime} \neq \emptyset}} \mathbb{E}_{\underline{a}} \mathbf{X}_{\underline{a}^{\prime}} \leq \sum_{l=1}^{k-1} k k!2^{k} n^{2 k-l-2} p^{2 k-l} \leq n^{-1 / k}(\log n)^{2}
$$

Thus, for large $n,(*)$ becomes

$$
\mathbb{P}\left(\sum_{\underline{a} \in S_{b}} \mathbf{X}_{\underline{a}}=0\right) \leq \exp \left(-(1+\varepsilon / 3) \log n+n^{-1 / k}(\log n)^{2}\right) \leq n^{-1-\varepsilon / 4}
$$

and, consequently,

$$
\mathbb{P}\left(G \neq \mathbf{A}_{p}^{\wedge k}\right) \leq n \mathbb{P}\left(\sum_{\underline{a} \in S_{b}} \mathbf{X}_{\underline{a}}=0\right) \leq n^{-\varepsilon / 4}
$$

i.e. with probability $1-o(1)>2 / 3$ the set \mathbf{A}_{p} is a proper k-basis for G. Notice also that with probability $1-o(1)>2 / 3$,

$$
\left|\mathbf{A}_{p}\right|<(1+\varepsilon / 3) n p<(1+\varepsilon)(k!n \log n)^{1 / k}
$$

Thus, for large n, with probability at least $1 / 3, \mathbf{A}_{p}$ is a small proper basis we are looking for and the assertion follows.

REFERENCES

[1] S. Janson, T. Luczak and A. Ruciński, An exponential bound for the probability of nonexistence of a specified subgraph in a random graph, in: Random Graphs, M. Karoński, J. Jaworski and A. Ruciński (eds.), Wiley, Chichester, 1990, 73-89.
[2] M. B. Nathanson, On a problem of Rohrbach for finite groups, J. Number Theory 41 (1992), 69-76.

Department of Discrete Mathematics
Adam Mickiewicz University
60-769 Poznań, Poland
E-mail: tomasz@math.amu.edu.pl schoen@math.amu.edu.pl

[^0]: 1991 Mathematics Subject Classification: Primary 05E15.
 Research partially supported by KBN grant 2 P03A 02309

