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1. Introduction. Let Λ be an artin algebra over a commutative artin
ring R and let modΛ be the category of finitely generated (right) Λ-modules.
A short exact sequence

(1) 0→ A
f→ B

g→ C → 0

in modΛ induces a left exact sequence

(2) 0→ τA
(p,q)−→ τB ⊕ I

(rt)−→ τC,

where τ is the Auslander translate DTr (see Section 2 for the definitions of
D and Tr) and I is a direct summand of the injective envelope of τA.

The main aim of this paper is to study the circumstances in which this
left exact sequence is a short exact sequence of the form

(3) 0→ τA
p→ τB

r→ τC → 0.

We show that the condition for the map
(
r
t

)
, occurring in (2), to be

an epimorphism is that any map from A to a projective module factors
through f . Further, the map p is a monomorphism if and only if I = 0,
whereas r is a monomorphism if and only if I = I(τA) where, for any module
X (over any ring), I(X) denotes its injective envelope.

Let l be a positive integer. We shall say that the short exact sequence
(1) belongs to the class Fl if, for all indecomposable modules X with length
l(X) < l, every map φ : A → X factors through f . If g is irreducible,
then (1) is in Fl(A) (see [2]). Let X be the set of isomorphism classes of
indecomposable modules which are either a direct summand of the radical of
a projective module or a direct summand of the socle factor of an injective
module and let

L(Λ) = max
X∈X

l(X)+1 ≤ max{l(P ) : P is indecomposable projective} ≤ l(Λ).
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Our main result is the following theorem.

Theorem 1. If the short exact sequence (1) belongs to the class FL(Λ),
and a fortiori , if (1) belongs to Fl(Λ), and A has no projective direct sum-
mand , then the sequence (1) induces an exact sequence of the form (3).

This result (with g irreducible) is used in [5] in the course of proving
that, if Λ is an algebra over an algebraically closed field, and there is an
almost split sequence of the form

0→ A→ B ⊕B ⊕B′ → C → 0

in which neither B nor B′ is the zero module and B′ is not both projective
and injective, then Λ is wild. In the same paper, a class of short exact
sequences which belong to Fl(Λ), but which do not have irreducible cokernel
term, is constructed and used in another proof.

Suppose now that g is irreducible and r = τg (see Section 4) is a
monomorphism. In Section 4 we establish the remarkable fact that, in this
case, A has a simple top, that soc(coker τg) ∼= topA and that exactly one
of A and coker τg is simple.

The reference [4] contains the material cited from the original references
[1], [2] and [3].

2. Construction and simple consequences. Let J be the radical of
Λ and denote by t the natural transformation from idmodΛ to −⊗Λ (Λ/J).
Suppose that

X
φ−→ Y

ψ−→ Z → 0

is a right exact sequence. We obtain an exact commutative diagram

X Y Z 0

0 Eφ topX topY topZ 0

0 0 0

φ //

tX

��

ψ //

tY

��

//

tZ

��
// µ // tφ //

��

tψ //

��

//

��

where µ = ker tφ. We may write

topX = Eφ ⊕ Fφ
where Fφ ∼= im tφ.

It is easy to verify the following lemma.

Lemma 2. Let σ be a map from X to a semi-simple module Σ. There is
a unique map % : topX → Σ such that σ = tX% and σ factors through φ if
and only if µ% = 0.
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If X ∈ modΛ, we write πX : P (X)→ X for a projective cover of X and
ιX : Ω(X)→ P (X) for the kernel of πX .

We can now use the notation above to obtain from the exact sequence
(1) an exact commutative diagram of the form

(4)

0 0 0

0 Ω(A) P (E)⊕Ω(B) Ω(C) 0

0 P (E)⊕ P (F ) P (E)⊕ P (F )⊕ P (C) P (C) 0

0 A B C 0

0 0 0

�� �� ��
// (ι1,ψ) //

(ι1,ι2)

��

//

��

//

��
// //

��

//

��

//

��
// f //

��

g //

��

//

��

in which E = Ef , F = Ff , P (A) = P (E)⊕P (F ) and P (B) = P (F )⊕P (C).
Using similar notation to write the projective cover of Ω(A) as a direct sum,
we get an exact commutative diagram of the form

(5)

0 P (U)⊕ P (V ) P (U)⊕ P (V )⊕ P (E)⊕ P P (E)⊕ P 0

0 P (E)⊕ P (F ) P (E)⊕ P (F )⊕ P (C) P (C) 0

0 A B C 0

0 0 0

// χ //

��

//

π1

��

//

��
// //

��

//

π

��

//

��
// f //

��

g //

��

//

��

in which U=E(ι1,ψ), V =F(ι1,ψ), P is a projective module, the left and right
hand columns are minimal projective presentations of A and C, respectively,
and the middle column is isomorphic to

(6) P (U)⊕ P (V )⊕ P (E)⊕ P

( 0 0 0

0 π11 π12

id 0 0

0 π21 π22

)
−−−−−−→ P (E)⊕ P (F )⊕ P (C)(

0

π′

π′′

)
−−−→ B → 0,
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where

P (V )⊕ P
(π11 π12

π21 π22

)
−−−−−−→ P (F )⊕ P (C)

(π
′

π′′)−→ B → 0

is a minimal projective presentation of B.

It is not hard to see that we may arrange (by using appropriate auto-
morphisms of projectives, if necessary) that the map π1 in diagram (5) can
be written in the form given by (6) and the map χ in diagram (5) can be
written in the form

(7) χ =

(
1 · · ·
0 · · ·

)
,

where we have written · for a map which we do not need to know.

Note that, if A is projective, we have P (U) ⊕ P (V ) = 0. All our cal-
culations remain valid in this case and we shall only comment when it is
essential to do so.

Let P1
p−→ P → X be a minimal projective presentation of a moduleX ∈

modΛ. The cokernel of the map p∗ induced by the functor ∗ = homΛ(−, Λ)
is called the transpose of X and denoted by TrX (see [1]). If X is projective,
then TrX = 0.

We apply the functor ∗ = homΛ(−, Λ) to diagram (5), and take cokernels
of the columns, to obtain an exact commutative diagram of the form

(8)

0 0 0

0 C∗ B∗ A∗

0 P (C)∗ P (E)∗⊕P (F )∗⊕P (C)∗ P (E)∗⊕P (F )∗ 0

0 P (E)∗⊕P∗ P (U)∗⊕P (V )∗⊕P (E)∗⊕P∗ P (U)∗⊕P (V )∗ 0

TrC P (U)∗⊕TrB TrA 0

0 0 0

�� �� ��// //

��

f∗ //

�� ��
// //

��

//

π∗
1

��

//

��
// //

��

χ∗ //

��

//

(ν1ν2)
��(α,β) //

��

(γδ) //

��

//

��

The commutativity of the bottom right hand square of diagram (8) and the
forms given by (6) and (7) for the maps π1 and χ imply γ = ν1 in (8).

The exactness of the bottom row of (8) implies that β is an epimorphism
if and only if γ is. Since the right hand column of (8) is a minimal projective
presentation of TrA (see [1]), it follows that β is an epimorphism if and only
if V = 0.
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Similarly, δ is an epimorphism if and only if α is. Since τC has no pro-
jective direct summand, this implies that δ is an epimorphism if and only if
U = 0.

Application of the functor D = homR(−, I(R/ radR)) to the bottom row
of (8) gives the left exact sequence

0→ τA
(p,q)−→ τB ⊕ I

(rt)−→ τC

where I = DP (U)∗ ∼= I(U), p= Dδ, r= Dβ, etc. Hence the above discus-
sion establishes the following proposition.

Proposition 3. The short exact sequence

0→ A
f−→ B

g−→ C → 0

in modΛ induces a left exact sequence

0→ τA
(p,q)−→ τB ⊕ I

(rt)−→ τC,

where I is a direct summand of I(τA). The map p is a monomorphism if and
only if I = 0 and the map r is a monomorphism if and only if I = I(τA).

Remark. The maps p, q, r and t in the exact sequence (2) depend on
the initial choice of projective presentations for A, B and C. However (up
to isomorphism) I does not.

3. Proof of Theorem 1. We establish first that the conditions I = 0
and I = I(τA) are equivalent to the conditions (C1) and (C2), respectively,
defined below.

(C1) For every simple Λ-module S, every non-zero map s : A → I(S)/S
which does not factor through the natural epimorphism I(S) →
I(S)/S factors through f .

(C2) For every simple Λ-module S, no non-zero map s : A → I(S)/S
factors through f .

First we need the following lemma.

Lemma 4. Suppose that there is an exact commutative diagram

0 Ω(A) P (A) A 0

0 Ω P B 0

// ιA //

fΩ

��

πA //

fp

��

//

f

��
// ι // π // //

in which πA is a projective cover and P is projective. An epimorphism
σ : Ω(A) → Σ, where Σ is semi-simple, factors through fΩ if and only if
there is an exact commutative diagram of the form
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(9)

0 Ω(A) P (A) A 0

0 Σ I(Σ) I(Σ)/Σ 0

// ιA //

σ

��

πA //

σ′

��

//

σ′′

��
// µ // ν // //

such that σ′′ factors through f .

P r o o f. Suppose first that σ = fΩλ for some λ : Ω → Σ. Since ι is
a monomorphism and I(Σ) is injective, there exists a map λ′ : P → I(Σ)
such that ιλ′ = λµ. Then ιλ′ν = 0 and so there exists λ′′ : B → I(Σ)/Σ
such that λ′ν = πλ′′. Let σ′ = fpλ

′ and σ′′ = fλ′′. Then ιAσ
′ = ιAfpλ

′ =
fΩιλ

′ = fΩλµ = σµ and πAσ
′′ = πAfλ

′′ = fpπλ
′′ = fpλ

′ν = σ′ν. Hence we
have an exact commutative diagram of form (9) such that σ′′ = fλ′′.

Now suppose, conversely, that we have an exact commutative diagram
of form (9) and that σ′′ = fλ′′. Then, since P is projective and ν is an
epimorphism, there is a map λ′ : P → I(Σ) such that πλ′′ = λ′ν. Since
ιλ′ν = ιπλ′′ = 0, there is a map λ : Ω → Σ such that λµ = ιλ′. Now
fPλ

′ν = fPπλ
′′ = πAfλ

′′ = πAσ
′′ = σ′ν and so fPλ

′ − σ′ = ζµ for some
ζ : P (A)→ Σ. Since Σ is semi-simple and im ιA ⊆ radP (A), it follows that
ιAζ = 0. Now fΩλµ = fΩιλ

′ = ιAfPλ
′ = ιAσ

′ = σµ and so, since µ is a
monomorphism, we have fΩλ = σ as required.

Lemma 5. The conditions I = 0 and I = I(τA) is equivalent to the
conditions (C1) and (C2), respectively.

P r o o f. Let S be a simple module and suppose that there is a non-zero
map s : A → I(S)/S. This induces an exact commutative diagram of form
(9) with Σ = S and σ′′ = s. Furthermore, σ = 0 only if s = σ′′ factors
through ν : I(S)→ I(S)/S. Now it follows from Lemma 2 that U = 0 if and
only if every map from Ω(A) to a simple module factors through the map
(i1, ψ) of diagram (4). Similarly, V =0 if and only if no map from Ω(A) to a
simple module factors through (i1, ψ). Hence it follows from Lemma 4 that
the conditions (C1) and (C2) are equivalent to the statements U = 0 and
V = 0, respectively. These, in turn, are equivalent to the conditions I = 0
and I = I(τA), respectively.

The map
(
r
t

)
is an epimorphism if and only if the map (α, β) in the

bottom line of the commutative diagram (8) is a monomorphism. By the
Serpent Lemma and the construction of the top line of (8), this is the case if
and only if every map from A to a projective factors through f . Now, if (1)
is in FL(Λ), then every map from A to the socle factor of an injective module,
or to the radical of a projective module, factors through f . It follows that
I = 0 and, if A has no projective direct summand, the map r in (3) is an
epimorphism. This completes the proof of Theorem 1.
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4. Irreducible cokernels. If, in the short exact sequence (1), g is irre-
ducible, then [3, Proposition 2.2] the map r in the left exact sequence (2) is
also irreducible and we shall denote it by τg, although in the case where B
has a projective direct summand we shall have to be a little cautious with
this notation. (Of course, τg depends on the choice of projective presenta-
tions for B and C. However, it is well defined modulo rad2(τB, τC).)

We shall make frequent use of the following easily proved lemma and its
dual.

Lemma 6. Suppose h : K → L is an irreducible monomorphism. Then
cokerh is simple if and only if I(K) ∼= I(L). If cokerh is not simple, then
I(L) ∼= I(K)⊕ I(cokerh).

Theorem 7. Let

0→ A
f→ B

g→ C → 0

be a short exact sequence in which g is irreducible. Suppose that τg is a
monomorphism. Then A has simple top, topA ∼= soc(coker τg) and exactly
one of A and coker τg is simple.

P r o o f. We use the notation introduced in Section 2.

Since g is irreducible, A is indecomposable [3].

Since r = τg is a monomorphism, it follows from Proposition 3 that
V = 0. Since g is irreducible, it follows from the dual of Lemma 6 that
either A is not simple and E = 0 or A is simple and F = 0.

Consider first the case in which A is not simple. Then, from diagram (8),
we see that P (TrC) = P ∗ = P (TrB) and hence I(τC) = I(τB). It follows
from Lemma 6 that coker τg is simple. Write coker τg = S. Then the kernel
of the map β = D(τg) is DS. Now either A is projective and then P (U)∗ =
0 = TrA, or (α, β) is a monomorphism, which implies ker γ = kerβ = DS.
In the first case, it follows from the Serpent Lemma applied to diagram (8)
that A∗ = P (F )∗ maps onto DS = ker(β) and so A = P (F ) = P (S). In the
second case the right hand column of the diagram (8) induces (remember
that ν1 = γ) the exact sequence

(10) 0→ A∗ → P (F )∗ → DS → 0,

and it follows (since E = 0) that P (A) = P (F ) = P (S) and so topA = S.

We now consider the case in which A = S is simple. Then P (E) = P (S)
and so, from diagram (8), P (TrC) = P (DS)⊕ P (TrB). This is equivalent
to I(τC) = I(τB)⊕ I(S) and it follows from Lemma 6 that coker τg is not
simple and has socle S.

This completes the proof of the theorem.
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