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1. Introduction and main result. A quadratic form χ : Zn → Z is
called a unit form provided it is of the shape

χ(x1, . . . , xn) =
∑

1≤i≤n

x2i +
∑

1≤i<j≤n

χijxixj

for all (x1, . . . , xn) ∈ Zn, of course with integer coefficients χij. Such forms
and their root systems are ubiquitous in many parts of mathematics: for
example in Lie theory, in singularity theory as well as in the representation
theory of finite-dimensional algebras. The most prominent forms are those
associated with the Dynkin diagrams An, Dn, E6, E7, E8. These are those unit
forms which are “connected”, positive definite and such that for all i < j
we have χij ≤ 0. There are corresponding positive semidefinite forms which
are labelled by the diagrams Ãn, D̃n, Ẽ6, Ẽ7, Ẽ8. These diagrams are referred
to as the extended Dynkin or Euclidean or affine diagrams. In general, the
matrix of coefficients χij which determines such a unit form is what is called
an “intersection matrix” (see [Sl]).

Given a unit form χ : Zn → Z, an integer vector x = (x1, . . . , xn) will be
called a 1-root provided χ(x) = 1. In this way we try to avoid the possible
confusion: The usual root system attached to a symmetric generalized Car-
tan matrix consists of real and imaginary roots. The real roots are 1-roots,
but in general there may be additional 1-roots. Of course, for the Dynkin
and the Euclidean forms, the 1-roots are just the real roots.

Sometimes it is helpful to consider Zn together with a fixed basis consist-
ing of 1-roots. Think for example of choosing a root basis of a root system in
Lie theory. In some applications such a basis will even be given intrinsically.
For instance, in the representation theory of finite-dimensional algebras, Zn

is the Grothendieck group of finite-dimensional representations with respect
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to all exact sequences, and the simple representations provide an intrinsic
basis of this lattice.

Frequently, only the 1-roots which are linear combinations of the base
vectors with only non-negative coefficients are of interest. Think again of
Lie theory or representation theory. After identifying the elements of the
basis with the canonical base vectors, these linear combinations are just the
positive vectors in the following sense: The lattice Zn is partially ordered by
defining x ≥ y if xi − yi ≥ 0 for all i = 1, . . . , n. A vector x is called positive

if x > 0.

Having in mind applications in the representation theory of algebras,
one has to study unit forms which satisfy weaker positivity conditions than
positive definiteness resp. semidefiniteness. Namely, a unit form χ is said
to be weakly positive if χ(x) > 0 provided x > 0 and is said to be weakly

non-negative if χ(x) ≥ 0 provided x ≥ 0. For consistency, in the sequel we
refer to positive definite forms as positive forms and to positive semidefinite
forms as non-negative forms.

Recall the following theorem of Ovsienko ([Ov1], see also [Ri]): If χ :
Zn → Z is a weakly positive unit form and x = (x1, . . . , xn) is a positive
1-root of χ, then xi ≤ 6 for all i = 1, . . . , n. Note that 6 is the best bound
possible, as the maximal root of the root system of type E8 shows.

In this paper we consider the corresponding problem for weakly non-
negative unit forms. A weakly non-negative unit form which is not weakly
positive always has infinitely many positive 1-roots, thus there cannot exist
a bound for their coordinates. On the other hand, it frequently happens that
the set of positive 1-roots of a weakly non-negative unit form has maximal
elements.

Main Theorem. If χ : Zn → Z is a weakly non-negative unit form and

x = (x1, . . . , xn) is a maximal positive 1-root of χ, then

xi ≤ 12 for all i = 1, . . . , n.

The bound 12 is the best possible, as the following example shows. For
displaying the form χ we use the associated bigraph: The vertex set is
{1, . . . , n}. The vertices i and j are connected by χij dotted edges if χij ≥ 0
and by |χij | solid edges if χij < 0. Moreover, we attach the coordinates xi
of a maximal positive 1-root x of χ to the vertices of the bigraph.

Observe that the bigraph is obtained by “glueing” two copies of the ex-
tended Dynkin diagram of type Ẽ8 along the subdiagram E8 and connecting
the extension vertices by three dotted edges. The 1-root x is the sum of the
positive radical generators of the two subforms of type Ẽ8, thus the number
12 occurs as the sum of their maximal entries.
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We will prove the theorem in Section 9 after establishing several preliminary
results, some of which should be of interest on their own. Obviously, we can
and will restrict ourselves to the case when x is sincere, i.e. xi > 0 for all
i = 1, . . . , n. Note that, if x is sincere, then the requirement that the unit
form χ is weakly non-negative is not really necessary but follows from the
maximality. Namely, it is shown in [HP] under the assumption χij ≥ −5 for
all i < j and in [Ov2] in general that the existence of a maximal sincere
positive 1-root forces a unit form to be weakly non-negative.

Our original interest in maximal positive 1-roots of weakly non-negative
unit forms came from representation theory of finite-dimensional algebras
and similar structures. In this context unit forms occur as Tits forms or Euler
characteristics (see e.g. [Ga], [Bo], [Ri]) and their weak positivity (resp. weak
non-negativity) is frequently related to finite (resp. tame) representation
type.

Let us briefly review the connection between the representations of an
algebra A over an algebraically closed field k and the weak definiteness of
its Tits form χA. To give the definition of χA, we suppose that A is basic,
the ordinary quiver of A is directed and A has up to isomorphism exactly n
simple modules S1, . . . , Sn. Then

χA(x) =
n∑

i,j=1

( 2∑

ν=0

(−1)ν dimk Ext
ν
A(Si, Sj)

)
xixj.

It is easy to see that this is a unit form.

An algebra A has finite representation type if there are only finitely
many isomorphism classes of indecomposable finite-dimensional A-modules.
In order to check finite representation type for an arbitrary A, one may
proceed as follows: Using covering theory (see [BG]) one may suppose that
A is simply connected. This implies that A has a directed ordinary quiver
and the Auslander–Reiten quiver of A has a postprojective component. For
an algebra A of this kind it is shown in [Bo] that finite representation type
is equivalent to the weak positivity of its Tits form χA.
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But the connection between the representations of A and the form χA

is even closer. Namely, the dimension vectors of the indecomposable A-
modules are precisely the positive 1-roots of χA. Recall that the dimension
vector x = (x1, . . . , xn) of an A-module X has as component xi just the
multiplicity of Si in a composition series of X.

Concerning tame representation type the picture is not yet complete. In
[Pe1] it is shown that tame type of A implies weak non-negativity of the Tits
form χA. Moreover, there are interesting classes of tame algebras (see e.g.
[Ri]) where the dimension vectors of the discrete indecomposable A-modules
are just the connected positive 1-roots of χA. If one asks in addition for the
existence of sincere directing indecomposable modules, then χA actually has
only finitely many sincere positive 1-roots. Thus our main theorem applies.
We will give some more applications of our theorem for the representation
theory of finite-dimensional algebras in the final section of this paper.

The authors are grateful to CONACYT, DAAD, SFB 343 and the Volks-
wagenstiftung who supported stays and visits during which the results in
this paper were achieved.

2. Preliminaries

2.1. In Section 4 we will prove a reduction theorem allowing us to pass
from general unit forms to so-called semigraphical forms which will be dis-
cussed in Section 6. On the other hand, the reduction theorem makes it
necessary to slightly increase the class of forms we have to consider. Namely,
we will have to deal with semiunit forms, where a semiunit form is a map
χ : Zn → Z,

x = (x1, . . . , xn) 7→
n∑

i,j=1
i≤j

χijxixj,

such that χij ∈ Z and χii ∈ {0, 1}. Obviously, any unit form is also semiunit.
For some definitions it will be convenient to use an even more general setup.
We call a map χ as above an integral form if just χij ∈ Z.

Given such a form we put χij := χji for all i < j and define a symmetric
integral matrix Aχ with coefficients (Aχ)ij := χij for i 6= j and (Aχ)ii :=
2χii. We denote by e(1), . . . , e(n) the canonical base vectors in Zn. The
symmetric bilinear form (−,−)χ : Zn × Zn → Z, x 7→ 1

2 (xAχx
T), has the

following properties:

(a) (x, x)χ = χ(x) for all x ∈ Zn.
(b) (e(i), e(i))χ = χii and 2(e(i), e(j))χ = χij for all i 6= j.
(c) (x, y)χ = 1

2(χ(x+ y)− χ(x)− χ(y)) for all x, y ∈ Zn.

Whenever no confusion is possible, we omit the index χ.
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The radical of χ is defined as Radχ := {x ∈ Zn : xAχ = 0} whereas the
positive radical Rad+ χ consists only of all positive x in Radχ. The corank

of χ is the rank of the free abelian group Radχ. In analogy to 1-roots an
element x ∈ Zn is said to be a 0-root of χ if χ(x) = 0.

2.2. Of course, one may also consider integral forms χ : ZI → Z for
arbitrary finite sets I. Usually we will identify forms which only differ by
renaming the vertices. But let us present one example where this use of more
general index sets is appropriate. Namely, if I is a subset of {1, . . . , n}, then
ZI is embedded in Zn in the canonical way. Obviously, for an integral (resp.
semiunit, unit) form χ : Zn → Z the restriction χ|I : ZI → Z defined by
χ|I(x) = χ(x) is again an integral (resp. semiunit, unit) form.

Note that we will use the notation x|I for the image of x ∈ Zn under the
canonical retraction of the above-mentioned embedding ZI → Zn.

A vector x ∈ Zn is called sincere provided x does not lie in ZI for any
proper subset I of {1, . . . , n}, or equivalently, xi 6= 0 for all i = 1, . . . , n. A
semiunit form χ is said to be sincere if there exists a sincere positive 1-root
x of χ.

If x is a maximal positive 1-root of χ and we define I as the support

suppx := {i : xi 6= 0} of x, then x ∈ ZI and x is a maximal sincere positive
1-root of the restriction χ|I. This shows that it is enough to prove our
main theorem for maximal sincere positive 1-roots of weakly non-negative
semiunit forms.

2.3. If χ : Zn → Z is a unit form then we will use the well-known concept
of reflections. The reflection σχ

i : Zn → Zn with respect to i ∈ {1, . . . , n} is
the linear map defined by σχ

i (x) = x− 2(e(i), x)χe(i) and has the following
properties:

(a) (σχ
i )

2 = idZn .
(b) (σχ

i (x), y)χ = (x, σχ
i (y))χ for all x, y ∈ Zn.

(c) (σχ
i (x), σ

χ
i (y))χ = (x, y)χ for all x, y ∈ Zn, in particular χ(σχ

i (x)) =
χ(x) for all x ∈ Zn.

2.4. Let us recall once more the common way of visualizing integral
forms using bigraphs. The vertex set of the bigraph Bχ of a semiunit form
χ : Zn → Z is just {1, . . . , n}. The vertices i, j are connected by |χij − δij |
solid edges provided χij − δij < 0 and by |χij − δij | dotted edges provided
χij − δij ≥ 0. In particular, if χ is a semiunit form, then the vertex i has no
loop if χii = 1 and one solid loop if χii = 0.

3. Basic properties of weakly non-negative semiunit forms

3.1. Throughout this section we suppose that χ : Zn → Z is a weakly non-
negative semiunit form. This implies immediately that χij ≥ −2. Moreover,
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the fact that 0 ≤ χ(ne(i) + e(j)) = χjj + nχij for all i, j with χii = 0 shows
that χij ≥ 0.

The following lemma is quite analogous to the corresponding one for the
weakly positive situation (compare [Ri, 1.0(4)]).

Lemma. (a) For a positive 1-root of a weakly non-negative semiunit form

χ the following assertions hold :

(a1) 2(e(i), x) ≥ −2 for all i = 1, . . . , n.

(a2) If xi > 0, then 2(e(i), x) ≤ 2.

(a3) χij ≤ 3 for all i 6= j such that xi 6= 0 6= xj .

(b) For a positive 0-root of a weakly non-negative semiunit form χ the

following assertions hold :

(b1) 2(e(i), x) ≥ 0 for all i = 1, . . . , n.

(b2) If xi > 0, then 2(e(i), x) = 0.

(b3) χij ≤ 2 for all i 6= j such that xi 6= 0 6= xj .

Pr oo f. (a1) and (a2) follow from applying χ to x± e(i). To prove (a3),
by possibly interchanging i, j we may suppose 2(x, e(i) − e(j)) ≤ 0 and
obtain 0 ≤ χ(x+ (e(i) − e(j)) ≤ χ(x) + χ(e(i)− e(j)) ≤ 3 + χij.

(b1) and (b2) follow from applying χ to 2x± e(i), whereas the proof of
(b3) is completely analogous to that of (a3).

3.2. We call a weakly non-negative semiunit form χ finitely sincere pro-
vided χ is sincere and there are only finitely many sincere positive 1-roots.
Using the above lemma it turns out that the finitely sincere forms are exactly
the forms possessing a maximal sincere positive 1-root.

Proposition. For a weakly non-negative semiunit form χ the following

assertions are equivalent :

(a) There exists a maximal sincere positive 1-root x.

(b) χ is sincere and Rad+ χ = ∅.
(c) χ is finitely sincere.

Pr oo f. (a)⇒(b) and (c)⇒(a) are obvious. For (b)⇒(c) we assume that
the set of sincere positive 1-roots is infinite. Hence we are able to find an
infinite subset {x(1), x(2), . . .} satisfying x(i) < x(i + 1) for all i ∈ N. By
3.1(a) we know 2(e(j), x(i)) ∈ {0,±1,±2} for all i ∈ N and j = 1, . . . , n.
Hence there exist s < t such that 2(e(j), x(s)) = 2(e(j), x(t)) for all j =
1, . . . , n. Consequently, x(t)− x(s) ∈ Rad+ χ.

Remark. If χ is a weakly non-negative, finitely sincere semiunit form,
then the bigraph Bχ of χ is connected and the points i such that χii = 0 are

characterized by χij ≥ 0 for all j 6= i.
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Pr oo f. If Bχ has two non-trivial connected components supported by
the sets I1, I2 and x is a sincere positive 1-root, then x = x1 + x2 with
xi = x|Ii. Hence 1 = χ(x1) + χ(x2). Without loss of generality this means
χ(x1) = 1 and χ(x2) = 0. Consequently, all the vectors x1 + nx2 are sincere
positive 1-roots.

To prove the second assertion we suppose χij ≥ 0 for all j 6= i and from
the connectedness of Bχ derive the existence of some j such that actually
χij > 0. Therefore the assumption χii = 1 would lead to 2(e(i), x) = 2xi +∑

j 6=i χjixj ≥ 3, contradicting 3.1(a).

3.3. In [Ri, 1.1(7)] it is shown that maximal sincere positive 1-roots of
weakly positive forms have at most 2 exceptional vertices. This generalizes
to our situation:

Lemma. Let χ : Zn → Z be a weakly non-negative unit form with n ≥ 2
and suppose that x is a maximal sincere positive 1-root of χ. Then one and

only one of the following two situations occurs.

(a) There is exactly one exceptional vertex i (i.e. xi = 2, 2(e(i), x) = 1
and 2(e(j), x) = 0 for all j 6= i).

(b) There are exactly two exceptional vertices i1, i2 (i.e. xi1 = xi2 = 1,
2(e(i1), x) = 2(e(i2), x) = 1 and 2(e(j), x) = 0 for all j 6= i1, i2).

Pr oo f. As χ is supposed to be a unit form, the vectors σj(x) are all
1-roots as well. Hence 2(e(j), x) ≥ 0 for all j. We consider the equation
2 = 2χ(x) =

∑n
j=1 xj2(e(j), x) and assume that there exists i such that

xi = 1, 2(e(i), x) = 2 and 2(e(j), x) = 0 for all j 6= i. Putting µ = x − e(i)
and calculating χ(µ) = 0, from 3.1(b) we obtain (e(j), µ) = 0 for all j 6= i
whereas immediately (e(i), µ) = (e(i), x) − χ(e(i)) = 0. Thus n ≥ 2 yields
µ ∈ Rad+ χ. This contradiction shows that only the two alternatives of the
lemma can occur.

3.4. Lemma. Suppose χ : ZI → Z is a weakly non-negative semiunit form

and x is a sincere positive 1-root. For r = 0, 1 we put Ir = {i ∈ I : χii = r}
and xr = x|Ir. Then one and only one of the following three situations

occurs:

(a) χ(x1) = 1 and χij = 0 for all i ∈ I0, j ∈ I.

(b) χ(x1) = 0 and there exist i, j ∈ I0 such that xi = xj = χij = 1.
Additionally , if s ∈ I0, t ∈ I and χst 6= 0, then {s, t} = {i, j}.

(c) χ(x1) = 0 and there exist i ∈ I0, j ∈ I1 such that xi = xj = χij = 1.
Additionally , if s ∈ I0, t ∈ I and χst 6= 0, then {s, t} = {i, j}.

Moreover , if x is maximal and I0 6= ∅ 6= I1, then (c) holds and card(I0)
= 1.
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Pr oo f. By 3.1 we know that χij ≥ 0 for all i ∈ I0, j ∈ I. We may
suppose I = {1, . . . , n} and I0 = {1, . . . ,m} for some m ≤ n. Consider the
equation

1 =
( ∑

i∈I1

x2i +
∑

i,j∈I1

i<j

χijxixj
)
+

∑

i,j∈I0

i<j

χijxixj +
∑

i∈I1

j∈I0

χijxixj .

The first summand of this sum is just χ(x1) and the second is χ(x0). As
also the third summand is non-negative and integer, exactly one of these
summands has to be 1 and the others have to be 0. This leads to the three
cases because x is sincere.

In case (a) all the vectors nx0+x1 and in case (b) all the vectors x0+nx1

are positive 1-roots greater than x. Hence for x maximal only case (c) is
possible. Furthermore, if there existed k ∈ I0, k 6= i, then also the vectors
x+ ne(k) would be 1-roots greater than x.

3.5. We recall that a unit form χ : ZI → Z is critical (resp. hypercriti-
cal) if it is not weakly positive (resp. weakly non-negative) but χ|J is weakly
positive (resp. weakly non-negative) for every proper subset J of I. Every
critical unit form χ is non-negative and its radical is generated by a sincere
positive vector µ (see [Ri]) which in this paper will be called the character-

istic vector of χ. For an arbitrary unit form χ : ZI → Z we denote a subset
J ⊆ I resp. the induced restriction η := χ|J as critical (resp. hypercritical)
restriction provided that η is critical (resp. hypercritical).

A weakly non-negative semiunit form χ is called 0-sincere if there is
a sincere vector y ∈ Rad+ χ. Note that by Lemma 3.1(b2) it would be
sufficient to require only that y is a positive sincere 0-root. The fact that we
can shift any vector into the positive cone by adding integer multiples of y
shows that a 0-sincere form has to be non-negative. As observed above, any
critical unit form is 0-sincere with corank 1.

If χ : ZI → Z is an arbitrary weakly non-negative unit form, we consider
the union I+ of all suppµ where µ ∈ Rad+ χ and denote χ|I+ by χ+. By
construction the form χ+ is 0-sincere. We call χ+ the 0-sincere kernel of χ.
Using the following lemma, we deduce that a vector x ∈ ZI is a 0-root of
χ+ if and only if suppx ⊆ I+ and x ∈ Radχ. In particular, this shows that
Rad+ χ = Rad+ χ+.

Lemma. Suppose χ is a weakly non-negative semiunit form and x ∈
Rad+ χ. If µ ∈ Zn is a 0-root of χ such that suppµ ⊆ suppx, then µ ∈
Radχ.

Pr oo f. Assuming the existence of an index i such that 2(e(i), µ) 6= 0,
we may choose ε ∈ {±1} such that ε2(e(i), µ) ≥ 1. Putting y = e(i) − 2εµ
we observe χ(y) = χ(e(i))−ε4(e(i), µ) ≤ 1−2 = −1. On the other hand, the
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requirement on the supports shows that y + kx is positive for some k ∈ N.
Thus we arrive at the contradiction 0 ≤ χ(y + kx) = χ(y) = −1.

4. The reduction theorem

4.1. Let χ : Zn → Z be an integer form and pick i 6= j ∈ {1, . . . , n}.
The Z-isomorphism Rij : Z

n → Zn is defined on the canonical base vectors
by Rij(e(k)) = e(k) for k 6= j and Rij(e(j)) = e(j) − e(i). Hence for x =
(x1, . . . , xn) ∈ Zn the coordinates of x′ = Rij(x) are x′k = xk for k 6= i and
x′i = xi − xj.

The map χ′ = χR−1
ij is called the small reduction of χ with respect to

(i, j) provided χij < 0. Note that, if χ is a unit form and χij = −1, then
this is just a direct Gabrielov transformation. Immediate calculations show:

(a) χ′
kl = χkl if j 6∈ {k, l}.

(b) χ′
jk = χjk + χik if j 6= k 6= i.

(c) χ′
jj = χjj + χii + χji and χ′

ji = χji + 2χii.

4.2. In the following lemma we use the norm |x| =
∑n

i=1 xi to measure
the size of vectors in the cone Cn := {x ∈ Zn : x ≥ 0}.

Lemma. Let χ : Zn → Z be an integer form and χ′ be the small reduction

of χ with respect to (i, j). Then the following assertions hold :

(a) R−1
ij (Cn) ⊆ Cn, in particular R−1

ij preserves the order on Zn.

(b) χR−1
ij (x) = χ′(x) for all x ∈ Zn, in particular R−1

ij maps the set of

positive 1-roots (resp. 0-roots) x′ of χ′ bijectively to the set of all positive

1-roots (resp. 0-roots) x of χ satisfying xi ≥ xj.

(c) If x ∈ Zn is sincere positive and xi > xj, then x′ = Rij(x) is sincere

positive and |x′| < |x|.
(d) If χ is a weakly non-negative semiunit form and χij < 0 then χ′ is

also a weakly non-negative semiunit form.

(e) If χ is a weakly non-negative semiunit form with χij < 0 and x is

a maximal sincere positive 1-root of χ with xi > xj, then χ′ is a weakly

non-negative semiunit form and x′ = Rij(x) is a maximal sincere positive

1-root of χ′ satisfying |x′| < |x|.

Pr oo f. (a), (b) and (c) are obvious. In (d) the weak non-negativity of
χ′ is clear. By 3.1 we know χii = χjj = 1 and χij ∈ {−1,−2}. If χij = −1,
then χ′

jj = 1 + 1− 1 = 1. If χij = −2, then χ′
jj = 1 + 1− 2 = 0. Part (e) is

an immediate consequence of the previous parts.

Note that applying this lemma to a unit form will usually lead to a
semiunit form. So it is just this lemma that made it necessary to introduce
semiunit forms.
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4.3. Using the previous lemma, we can switch to another weakly non-
negative, finitely sincere semiunit form with a maximal sincere 1-root x′ of
smaller norm provided in our given root x we find i, j such that χij > 0 and
xi > xj . We will now see that the last restriction is not essential.

For an integer form χ : Zn → Z and indices i 6= j we consider the
restriction χ′ = (χR−1

ij )|J where J = {1, . . . , i − 1, i + 1, . . . , n}. The form
χ′ is called the tightening of χ with respect to (i, j).

To formulate the properties of χ′, let Li be the subgroup of Zn consist-
ing of all x = (x1, . . . , xn) such that xi = xj. We observe that the map
∆ : ZJ → Li given by (∆(x′))k = x′k for k 6= i and (∆(x′))i = x′j is an
isomorphism. The following lemma is an immediate consequence of the pre-
vious considerations of this section.

Lemma. Let χ : Zn → Z be an integer form and χ′ be the tightening of

χ with respect to (i, j). Then the following assertions hold :

(a) ∆(CJ) ⊆ Cn, in particular ∆ is order preserving.

(b) χ∆(x′) = χ′(x′) for all x′ ∈ ZJ , in particular ∆ maps the set of

positive 1-roots (resp. 0-roots) x′ of χ′ bijectively to the intersection of Li

with the set of all positive 1-roots (resp. 0-roots) of χ.

(c) If x ∈ Zn is sincere positive and xi = xj , then x′ = x|J is sincere

positive and |x′| < |x|.

(d) If χ is a weakly non-negative semiunit form and χij < 0 then χ′ is

also a weakly non-negative semiunit form.

(e) If χ is a weakly non-negative semiunit form with χij < 0 and x is a

maximal sincere positive 1-root of χ with xi = xj , then χ′ is a weakly non-

negative semiunit form and x′ = x|J is a maximal sincere positive 1-root of
χ′ satisfying |x′| < |x|.

4.4. Sections 4.1 and 4.2 furnish the proof of our fundamental reduction
theorem:

Theorem. Let χ : ZI → Z be a weakly non-negative semiunit form and

x a maximal sincere positive 1-root of χ. If we write I as the disjoint union

of two subsets J and K, then there is a weakly non-negative semiunit form

χ′ : ZI′ → Z, a maximal sincere positive 1-root x′ of χ′ and a monomorphism

ϕ : ZI′ → ZI with the following properties:

(a) I ′ is the disjoint union of K and a subset J ′ of J .

(b) ϕ(z) = z for all z ∈ ZK .

(c) ϕ(CI′) ⊆ CI , in particular ϕ is order preserving.

(d) χϕ(z′) = χ′(z′) for all z′ ∈ ZI′ , in particular ϕ induces an injection

from the set of positive 1-roots (resp. 0-roots) of χ′ to the set of positive

1-roots (resp. 0-roots) of χ.
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(e) ϕ(x′) = x.
(f) χij ≥ 0 for all i, j ∈ J ′.

Pr oo f. We apply 4.1 and 4.2 as long as we find vertices i, j ∈ J such
that χij < 0. This process has to stop since the norm of the considered
maximal sincere positive 1-root always decreases.

The triple (χ′, x′, ϕ) in the above theorem is called a full reduction of
the pair (χ, x) with respect to the subset J of I.

4.5. The reduction theorem usually decreases the number of variables
occurring in the form obtained. We also need a process increasing the number
of variables called doubling of vertices (see [D-Z]).

Let χ : Zn → Z be an integer form. For i ∈ {1, . . . , n} we define a new

integer form χ(i) : Zn+1 → Z by χ(i)|{1, . . . , n} = χ, χ
(i)
n+1,n+1 = χii and

(e(n + 1), e(j))χ(i) = (e(i), e(j))χ for all j = 1, . . . , n. We say that χ(i) is

obtained from χ by doubling the vertex i. Actually, the bigraph of χ(i) is
constructed from the bigraph of χ by doubling the vertex i thus obtaining
two vertices i and n + 1. The edges between these two vertices depend on

χ
(i)
(n+1)i = 2χii. Clearly, if χ is a semiunit (resp. unit) form, then χ(i) is a

semiunit (resp. unit) form as well. To understand the relation of χ and χ(i),
it is suitable to introduce the surjective homomorphism π : Zn+1 → Zn given
by (π(x))k = xk for k 6= i and (π(x))i = xi + xn+1.

Lemma. If χ : Zn → Z is an integer form, then the form χ(i) obtained

by doubling the vertex i has the following properties:

(a) π(Cn+1) = Cn and therefore π is order preserving. In addition, for
0 ≤ x ≤ y in Zn and y′ ≥ 0 in Zn+1 such that π(y′) = y there exists

x′ ∈ Zn+1 with 0 ≤ x′ ≤ y′ and π(x′) = x.
(b) (x, y)χ(i) = (π(x), π(y))χ for all x, y ∈ Zn+1. In particular , π maps

the set of positive 1-roots (resp. 0-roots) of χ(i) surjectively to the set of

positive 1-roots (resp. 0-roots) of χ.
(c) Radχ(i) = Radχ⊕Z(e(n+1)− e(i)). In addition, a vector x ∈ Zn+1

lies in Rad+ χ(i) if and only if it can be written as y + q(e(n + 1) − e(i))
where y ∈ Rad+ χ and q is a non-negative integer such that q ≤ yi.

(d) χ is weakly non-negative if and only if χ(i) is weakly non-negative.

(e) x ∈ Cn+1 is a maximal positive 1-root of χ(i) if and only if π(x) is a
maximal positive 1-root of χ.

Pr oo f. (a), (b), (c) and one direction of (d) are obvious. For the converse
we pick x ∈ Cn+1 and from π(x) ∈ Cn we obtain χ(i)(x) = χ(π(x)) ≥ 0. For
(e) we observe that in the case of a 1-root y of χ(i) such that y > x also
π(y) > π(x) holds. Conversely, if z is a 1-root of χ satisfying z > π(x), then
it is easy to find y such that π(y) = z and y > x.
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Remark. Obviously, e(n+1)−e(i) ∈ Radχ(i). If, conversely, χ′ : Zn+1 →
Z is an integer form such that χ′|{1, . . . , n} = χ and e(n+1)−e(i) ∈ Radχ′,
then χ′ = χ(i).

5. 2-layer 1-roots. Throughout this section we suppose that χ : Zn → Z

is a weakly non-negative semiunit form.

5.1. Lemma. Let µ be a positive 0-root of the weakly non-negative semi-

unit form χ and x ∈ Zn. Suppose there is a non-negative integer n such that

x+ nµ is positive and sincere. If (x, µ)χ = 0, then µ ∈ Radχ.

Pr oo f. If we assume µ 6∈ Radχ, then there exists i such that by 3.1 we
have 2(e(i), µ) ≥ 1. Hence there is l ∈ N with 2(x + lµ, e(i)) = 2(x, e(i)) +
l2(µ, e(i)) ≥ χ(x) + 2. Putting t = max{n, l} and y = x + tµ, we see
that the sincere positive vector µ satisfies 2(y, e(i)) ≥ χ(x) + 2. Observing
that (x, µ) = 0 implies χ(y) = χ(x), we arrive at the contradiction 0 ≤
χ(y − e(i)) ≤ χ(x) + 1− 2(e(i), y) ≤ −1.

5.2. A positive 1-root x of χ is called 2-layer if there exist positive 0-roots
µ, µ′ such that µ+ µ′ = x.

Proposition. Suppose x is a positive 1-root of the weakly non-negative

semiunit form χ. If µ is a positive 0-root of χ such that µ 6∈ Radχ and

x > µ, then x− µ is a positive 0-root as well. In particular , x is 2-layer.

Pr oo f. Without loss of generality we may suppose that x is sincere. By
5.1 we obtain (x, µ) 6= 0. The inequalities 0 ≤ χ(x− µ) = χ(x) − 2(x, µ) =
1 − 2(x, µ) and 0 ≤ χ(x + nµ) = χ(x) + 2n(x, µ) = 1 + 2n(x, µ) show that
2(x, µ) = 1. Hence χ(x− µ) = χ(x) + χ(µ)− 2(x, µ) = 1 + 0− 1 = 0.

Corollary. Suppose x is a maximal positive 1-root of a weakly non-

negative semiunit form χ. If there is a positive 0-root µ such that x > µ,
then x is 2-layer.

5.3. Lemma. Let χ : ZI → Z be a 0-sincere weakly non-negative semiunit

form. Suppose there is i ∈ I such that χ|(I \ {i}) is a unit form. If the set

U of all y ∈ Rad+ χ satisfying yi = 1 is non-empty and finite, then yj ≤ 6
for all y ∈ U and j ∈ I.

Pr oo f. We claim that χ′ = χ|(I \ {i}) is weakly positive. If not, there
is some positive µ′ such that i 6∈ suppµ′ and χ(µ′) = 0. From Lemma 3.5
we know that µ′ ∈ Rad+ χ, which contradicts the finiteness of U .

Let now y ∈ U . As χ(y − e(i)) = χ(e(i)) = 1, we deduce that y − e(i) is
a positive 1-root of the weakly positive unit form χ′.

Theorem. If x is a maximal positive 2-layer 1-root of a weakly non-

negative semiunit form χ : Zn → Z, then xi ≤ 12 for all i = 1, . . . , n.
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Pr oo f. Let x = µ + µ′ with µ, µ′ positive 0-roots of χ. We inductively

double all points i ∈ I = {1, . . . , n}. Of course, the resulting form χ : ZI → Z

does not depend on the ordering chosen. We write I = {1, . . . , 2n} as I =
{1−, . . . , n−}∪{1+, . . . , n+} where i− = i and i+ = i+n for all i = 1, . . . , n.

Clearly, the projection map π : ZI → ZI sending e(i−) and e(i+) to e(i) has
by induction the properties listed in Lemma 4.3.

We put µ− =
∑n

i=1 µie(i
−), µ+ =

∑n
i=1 µie(i

+) and x = µ− + µ+. As
π(x) = x, part (d) of Lemma 4.3 tells us that x is a maximal positive 1-root
of χ.

The sets I− = suppµ− and I+ = suppµ+ have the property that I− ∪
I+ = suppx. Consequently, χ′ = χ|I− ∪ I+ is a finitely sincere semiunit
form and x is a maximal sincere positive 1-root of χ′.

Let now (η, z, ϕ) be a full reduction of (χ′, x) with respect to I− where
η : ZJ → Z and J is the disjoint union of J− and I+. Putting λ = z|J−, we
see that z = λ + µ+, yielding ϕ(λ) = µ− and therefore η(λ) = χϕ(µ−) =
χ(µ−) = χ(µ) = 0. Writing this down explicitly yields 0 =

∑
i∈J− ηiiλ

2
i +∑

i<j ηijλiλj . By construction all ηij are non-negative. Thus the sincerity of
λ forces all ηij to be 0. Without loss of generality there is i+ ∈ I+ such that
ηi+i+ = 1. By Lemma 3.4 we see that η|I+ is a unit form and J− consists of
just one element ω. Moreover, there is a unique i+ ∈ I+ such that ηωi+ = 1
and µ+

i+
= 1 = zω.

Putting η′ = η|I+ = χ|I+ = χ| supp(µ′), we deduce from 5.1 that µ+ ∈
Rad+ η′. The vector µ+ is contained in the set U = {y ∈ Rad+ η′ : yi+ = 1}.
We observe that (e(j+), y)η = 0 and (e(ω), y)η = yi+ = 1 for all y ∈ U
and j+ ∈ I+. The assumption that the set U is infinite would lead to the
existence of y, y′ ∈ U satisfying y′ < y. But then 0 < y − y′ would lie in
Rad+ η, contradicting the finite sincerity of η. Hence U is finite and by the
above lemma we obtain µj+ ≤ 6 for all j+ ∈ I+. But this shows µ′

j ≤ 6 and
by symmetry also µj ≤ 6 for all j = 1, . . . , n.

6. Semigraphical forms

6.1. A semiunit form χ : ZI → Z is called semigraphical if there exists
ω ∈ I such that χωi < 0 for all i ∈ I with i 6= ω and χij ≥ 0 for all i, j 6= ω.
An index ω as occurring in the definition is called a center . The center is
unique provided card I > 2.

The graphical forms χ introduced in [Ri] are just the semigraphical unit
forms such that |χij | ≤ 1 for all i, j ∈ I. Graphical forms χ with card I > 2
are usually visualized by their reduced bigraph B′(χ), which is just the full
subbigraph of B(χ) supported by the edges different from the center. Note
that B′(χ) does not contain any solid edge hence is a graph with dotted
edges.
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6.2. We observe that a weakly non-negative semigraphical semiunit form
by 3.1 is actually a unit form; we investigate the critical semigraphical unit
forms. First we notice that the form C(1) given by the Kronecker bigraph

ss
is obviously a critical semigraphical unit form. As shown in [Ri] there are
up to isomorphism exactly 6 critical graphical forms, namely C(2), . . . , C(6)
and C(4′), whose reduced bigraphs are presented in the list below where
we replace the vertices by the coefficients of the characteristic vector. The
coefficient of the center ω is the encircled number in the lower right corner.

mC(2) 2

1 1 1 1

m1

1 1

1 3

1

1C(3)

m1
C(4′) 4

1

1

1

1

1

1 1

m1 1C(4)

1 1

1 1

2

4

mC(5) 5

1 1

1 1

2 2

1 1
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m
3

2

2

1

1 1

1

1C(6) 6

Lemma. If χ : ZI → Z is a critical semigraphical unit form and card I
> 2, then χ is actually graphical. Hence the critical semigraphical forms are

exactly the forms C(1), . . . , C(6) and C(4′).

Pr oo f. As card I > 2, clearly χωi = −1 for all i 6= ω. Hence we only
have to show χij ≤ 1 for all i, j different from ω. Observing that for i 6= j the
vector e(i)−e(j) and the characteristic vector of χ are linearly independent,
we obtain 1 ≤ χ(e(i) − e(j)) = 2− χij.

6.3. Lemma. Let χ : ZI → Z be a weakly non-negative semigraphical unit

form with center ω satisfying χωj = −1 for all j ∈ I different from ω. We

fix i ∈ I different from ω and put Si = {j ∈ I : χij > 0}. If x is a positive

sincere vector , S is a subset of Si and xi − 2(x, e(i)) ≥ xω −
∑

j∈S xj , then
S = Si and χij = 1 for all j ∈ Si.

Pr oo f. We calculate

xi − 2(x, e(i)) = xi −
∑

j∈Si

j 6=i

χijxj − 2xi + xω = xω −
∑

j∈S

xj −∆

where ∆ =
∑

j∈S(χij − 1)xj +
∑

j∈Si\S χijxj ≥ 0. By assumption it follows
that ∆ = 0, which implies Si \ S = ∅ and χij = 1 for all j ∈ S since x is
sincere.

Theorem. Suppose χ : ZI → Z is a weakly non-negative, finitely sincere,
semigraphical form with center ω. Let x be a maximal sincere positive 1-
root of χ such that xω is maximal among all those 1-roots. If x has only 1
exceptional vertex , then xω ≤ 7.

Pr oo f. Note that card I ≥ 3. Let i be the exceptional vertex of x, thus
2(e(i), x) = 1, xi = 2 and 2(e(j), x) = 0 for all j 6= i. Without loss of
generality we may assume xω ≥ 7, which shows ω 6= i. We will carry out the
proof by showing several claims.

Claim 1. χωj = −1 for all j 6= ω.

Assuming that this is false furnishes a point j such that χωj = −2 and
consequently χ(e(ω)+ e(j)) = 0. In the case j 6= i we obtain (e(ω)+ e(j), x)
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= 0 and therefore e(ω) + e(j) ∈ Rad+ χ by 5.1. By Proposition 3.2 this
yields a contradiction. For j = i because of x− 2e(i)− 2e(ω) > 0 we get the
contradiction 0 ≤ χ(x− 2e(i) − 2e(ω)) = 1 + 0− 4(x, e(i) + e(ω)) = −1.

Claim 2. χij ≤ 1 for all j 6= ω.

Assuming χij ≥ 2 for some j 6= i, ω would give χ(e(i) − e(j)) ≤ 0.
Since x − 2(e(i) − e(j)) ≥ 0, we would arrive at the contradiction 0 ≤
χ(x−2(e(i)−e(j))) = χ(x)+4χ(e(i)−e(j))−4(x, e(i)−e(j)) ≤ 1+0−2 = −1.

Claim 3. χi1j2 > 0 for all j1, j2 6= ω satisfying χij1 > 0 < χij2.

Of course, for j1 = j2 nothing has to be proved. Assuming that the
claim fails for some j1 6= j2, we first deal with the case where j1, j2 are
both different from i. Using Claims 2 and 1, we get y := σωσj1σj2σi(x) =
σω(x− e(i) + e(j1)+ e(j2)) = x− e(i)− e(ω) + e(j1)+ e(ω) + e(j2)+ e(ω) =
x+ e(ω)+ e(j1)+ e(j2)− e(i). This is a contradiction to the maximal choice
of x since y is a sincere positive 1-root of χ satisfying yω = xω + 1. In the
case j1 = i we can use the same vector y for a similar argument.

Claim 4. For Si := {j : χij > 0}, the following assertions hold :

(i) xj = 1 for all j ∈ Si, j 6= i.
(ii) χjk = 1 for all j, k ∈ Si.

(iii) If j ∈ Si and k ∈ I such that χjk > 0, then k ∈ Si.

(iv) cardSi = xω − 2.

Using Claim 2, we calculate 1 = xi− 2(e(i), x) = xi−
∑

j∈Si
χijxj −xi+

xω = xω −
∑

j∈Si
xj . By Claim 3 we obtain Si ⊆ Sj for an arbitrary j 6= i.

Observing that

1 ≤ xj = xj − 2(e(j), x)

= xj −
∑

k∈Sj ,k 6=j

χjkxk − 2xj + xω ≤ xω −
∑

k∈Sj

xk ≤ xω −
∑

k∈Si

xk = 1,

by application of Lemma 6.3 we obtain (i)–(iii). From the equation 1 =
xω − 1−

∑
k∈Si

1 it follows that cardSi = xω − 2, which is (iv).

Proceeding with the proof we see that because of xω ≥ 7 the form χ
cannot be weakly positive. Thus there exists a critical restriction χ|J which
has to be one of the C(i), 2 ≤ i ≤ 6, or C(4′).

Claim 5. Si ⊆ J .

If µ is the characteristic vector of χ|J then by 5.1 we get 0 6= 2(µ, x) =∑
j∈I µj2(e(j), x) = µi and thus i ∈ J . For all j ∈ Si, j 6= i, we see that

σjσi(x) = x − e(i) + e(j) is still a positive sincere vector. Again using 5.1
we get 0 6= 2(µ, σjσi(x)) =

∑
k∈I µk2(e(k), x − e(i) + e(j)) = µj, where the

last equality is obtained by going through all possibilities for k and applying
Claim 4.



COORDINATES OF MAXIMAL ROOTS 179

Using again Claim 4, we see that the bigraph of χ|J contains as full
subbigraph a full graph on xω − 2 ≥ 5 vertices with single dotted edges.
Hence χ|J can be identified with C(6). We finish by deriving xω−2 = 5 and
hence xω = 7.

6.4. We will need a classification of the hypercritical semigraphical unit
forms χ such that −1 ≤ χij for all i, j. It is helpful to observe that they
actually satisfy χij ≤ 1 for all i, j.

Namely, if χij ≥ 2 for some i, j, then χ(e(i) − e(j)) ≤ 0. Since χ is
not weakly non-negative, we find 0 ≤ v ∈ ZI such that χ(v) < 0. Possibly
interchanging i and j we may suppose that (v, e(i)) ≥ 0. We obtain

χ(v − vi(e(i) − e(j))) = χ(v) + χ(e(i)− e(j)) − 2vi(v, e(i) − e(j)) < 0,

contradicting the weak non-negativity of χ|I \ {i}.

Lemma. If χ : ZI → Z is a hypercritical semigraphical unit form such

that −1 ≤ χij for all i, j, then χ is one of the graphical forms HC(2′), HC(2),
HC(3), HC(4′), HC(4), HC(5), HC(6) whose reduced bigraphs are shown in

the following list.

f f f f f
HC(2′)

f f f
f

f
HC(2)

f

f

f

f f f

f

HC(3)

f f

f f

f f

ff f

HC(4′)
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f
f

f f f f

ff

HC(4)

f

f f

f
f

f f
f

f
HC(5)

f
f

f

f f

f

f f

f

HC(6)

Pr oo f. Since −1 ≤ χij, there has to be a critical restriction χ|J of
type C(2), C(3), C(4′), C(4), C(5) or C(6). By [Pe2] the set I \ J consists of
exactly one element s and for the characteristic vector µ of χ|J the inequality
2(µ, e(s)) < 0 holds. For all j ∈ J satisfying µj = 1 we obtain 0 ≤ χ(µ −
e(j)+ e(s)) = 2+2(µ, e(s))−χsj . Hence 2 ≥ −2(µ, e(s)) = µω −

∑
i 6=ω µiχsi

> 0 and even −2(µ, e(s)) = 1 provided there exists j ∈ J such that χsj = 1.
A case by case inspection using these numerical conditions easily shows

that the above bigraphs are the only possible candidates. Then one readily
checks that these forms are actually hypercritical.

7. 0-sincere unit forms

7.1. The following basic results on 0-sincere forms can be found in [DP].
For convenience of the reader we include a short sketch of the proof.

Proposition. Suppose χ : ZI → Z is a 0-sincere unit form and let

{J1, . . . , Jm} be the set of all subsets J of I such that χ|J is critical. For
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all i = 1, . . . ,m we denote by µi the characteristic vector of χ|Ji. Then the

following assertions hold :

(a) If µ ∈ Rad+ χ is sincere, then there exist p ∈ N and qi ∈ N0 such

that pµ =
∑m

i=1 qiµi.

(b) I =
⋃m

i=1 Ji.

(c) For any x ∈ Radχ there exists r ∈ Z such that rx ∈
∑m

i=1 Zµi.

(d)
∑m

i=1 Zµi is a subgroup of Radχ of finite index. In particular , χ is

of corank ≤ m.

Pr oo f. Let µ ∈ Rad+ χ be sincere. We prove (a) by induction on n =
card I. Since χ is 0-sincere, we know n ≥ 0. For n = 2 we obtain χ = C(1)
where the claim is obvious. For n > 2 there is some linear combination
0 ≤ w = qµ − pµn with p, q ∈ N and K := suppw is a proper subset
of I. Then by induction (a) holds for the sincere vector w ∈ Rad+ χ|K.
Consequently, (a) and also (b) are proved.

For (c) we choose a sincere µ ∈ Rad+ χ and a ∈ N such that w = aµ lies
in Rad+ χ and is again sincere. Now we apply (a) to w and µ. Clearly, (d)
follows from (c).

7.2. It does not seem to be obvious that a 0-sincere form of corank n
has to have a 0-sincere subform of corank n− 1. To establish this result, we
need the following lemma.

Lemma. Suppose x(1), . . . , x(r) ∈ Nn
0 are Q-linearly independent vectors

satisfying supp(
∑r

i=1 x
(i)) = {1, . . . , n}. Then there exist Q-linearly indepen-

dent vectors z(1), . . . , z(r−1) ∈ Nn
0 in

∑r
i=1 Zx

(i) such that supp
∑r−1

i=1 z
(i) is

a proper subset of {1, . . . , n}.

Pr oo f. We apply induction on r. For r = 1 there is nothing to prove.
In the case r > 1, if necessary, we replace x(1) by

∑r
i=1 x

(i) = {1, . . . , n} in
order to establish that x(1) is sincere. By induction for x(1), . . . , x(r−1) there
are z(1), . . . , z(r−2) as required. Since supp

∑r−2
i=1 z

(i) is a proper subset of
{1, . . . , n}, after possibly rearranging indices and vertices, we may suppose
that there is some l ∈ N, 1 ≤ l ≤ n, such that for all i = 1, . . . , r−2 we have

z
(i)
j = 0 for all j = 1, . . . , l, whereas for all j > l there is an index i, 1 ≤ i ≤

r−2, satisfying z
(i)
j > 0. As x(1) is sincere, the vectors x(1), z(1), . . . , z(r−2) are

Q-linearly independent. Because x(1), . . . , x(r) are Q-linearly independent,
without loss of generality we may suppose that even x(r), x(1), z(1), . . . , z(r−2)

are Q-linearly independent. Defining p/q as the minimum of all quotients

x
(r)
i /x

(1)
i , we find that z = qx(r) − px(1) ≥ 0 and there is k, 1 ≤ k ≤ n, such

that zk = 0.

Since we may freely replace x(r) by x(r)+Mz(i) where M is any natural
number, it is possible to shift the minimum k until k ≤ l. Therefore without
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loss of generality we may even suppose z1 = 0. Putting z(r−1) = z, we
conclude that x(1), z(1), . . . , z(r−1) are still Q-linearly independent and 1 6∈
supp

∑r−1
i=1 z

(i).

Proposition. If χ : ZI → Z is a 0-sincere weakly non-negative unit form

of corank r, then there exists a proper subset J of I such that the restriction

χ|J is 0-sincere and of corank r − 1.

Pr oo f. By 7.1 we can find vectors x(1), . . . , x(r) ∈ Nn
0 which are Q-

linearly independent and lie in Radχ. We apply the previous lemma and
put J := supp

∑r−1
i=1 z

(i). Obviously, the corank of χ|J is ≥ r− 1. But, since
χ is non-negative, Radχ|J is a subgroup of Radχ. This subgroup has to be
proper, as it does not contain any sincere vector. Consequently, the corank
of χ|J is r − 1.

7.3. A 0-sincere weakly non-negative unit form χ is said to be reduced

provided χij ≤ 1 for all vertices i, j. The reason for calling these forms
reduced is the following assertion.

Lemma. Suppose χ : ZI → Z is a 0-sincere unit form. Then χ is not

reduced if and only if there exists a vertex i such that χ is obtained from

χ|I \ {i} by doubling a point.

Pr oo f. The sufficiency of the condition is clear. To prove necessity,
we fix i, j such that χij > 1 and derive from 3.1 that χij = 2. Hence
0 = 2− χij = χ(e(i)− e(j)), which by 5.3 and Remark 4.5 implies that χ is
obtained by doubling a point.

8. Graphical 0-sincere forms of small corank

8.1. In [Za] (see also [Si]) the sincere partially ordered sets of poly-
nomial growth were classified. Among others there occurred the sets A10,
A11 and Ψ15, . . . , Ψ20. We denote the corresponding Tits forms by the same
symbols. These forms are by construction graphical and are known to be
non-negative. In fact, more details about them can be found in [Ri] because
the corresponding posets are domestic tubular or tubular.

Let us display the corresponding reduced bigraphs. We replace each ver-
tex by a tuple of numbers which are the coefficients of the characteristic
vectors of the critical restrictions. Since we know that these coefficients are
integers between 0 and 6, we do not insert any separators between the differ-
ent numbers. Again we provide the coefficients at the center inside a circle
in the lower right corner.
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n
3

1

1 1 1 1

10

A10 2

n

1

1 1 1 1 23

0

A11

1

n
22

11 10

11 01

Ψ15

10 11

1101 44

n11 11

11

Ψ16
01

01 10

10

21 12

44

n11

01 10

12

22

Ψ17

11

1101

11

45
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n

12

12

10

01

01

11

11

11 46Ψ18

23

n
22

11

11

10 12

01 21

11

11 55Ψ19

m22

12 23

10

11

01

11

11

11

Ψ20 56

Lemma. Let χ : ZK → Z be a reduced non-negative semigraphical form

such that there is no critical restriction of the form C(1), C(2), C(3) or C(4′).
Suppose that J is a subset of K such that card J = cardK − 1.

(a) If χ|J = C(4), then χ coincides with one of A10, A11 and is of

corank 1.

(b) If χ|J = C(5), then χ coincides with one of Ψ17, Ψ19, Ψ20 and is of

corank 2.

(c) If χ|J = C(6), then χ coincides with one of Ψ18, Ψ20 and is of

corank 2.

(d) If χ|J = A10 or = A11 and µ is the characteristic vector of the

unique critical restriction (of type C(4)), then χ is of corank 2 and either χ
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coincides with one of Ψ15, Ψ16, Ψ17, Ψ18 or Radχ has generators µ, v such

that vs = 1 and vt = −1 where s, t are the 2 vertices not belonging to suppµ.
In particular , in this second case the form χ is not 0-sincere.

Pr oo f. The statements about the coranks can be found in [Ri] with
the exception of the non-0-sincere forms appearing in (d), which have to be
calculated explicitly.

For (a)–(c) denote by k the vertex in K \ J and by µ the characteristic
vector of χ|J . Since µ ∈ Rad(χ), we get 0 = 2(e(k), µ) = µω −

∑
j∈S µj

where S := {j ∈ J : χkj = 1}. The rest of the proof consists of an inspection
of the few cases left possible by this condition.

To show (d) we observe that we can apply (a) to the restriction of χ to
the union of C(4) and the additional vertex. Hence there are again only a
few cases left to examine.

8.2. Theorem. Let χ : ZI → Z be a reduced 0-sincere semigraphical

form such that there is no critical restriction of the form C(1), C(2), C(3)
or C(4′). Then the corank of χ is 2 if and only if χ is one of the forms

Ψ15, . . . , Ψ20.

Pr oo f. That the forms Ψ15, . . . , Ψ20 have the desired properties follows
from [Ri], which was already stated in the proof of the above lemma.

For the converse we choose a critical restriction χ|J . Since χ is of corank
2, the set J cannot exhaust I and we can apply the above lemma to the
union K of J with an arbitrary vertex. In the case when χ|J coincides with
C(5) or C(6), parts (b), (c) of the lemma show that χ|K = χ since corank
2 is already reached. If χ|J is of shape C(4), then part (a) shows that χ|K
is still of corank 1; therefore K is still a proper subset of I, and we can add
another point to obtain a subset K ′.

Changing the notation for K to J and for K ′ to K we are able to apply
part (d) of the above lemma. Thus it remains to exclude the possibility of
χ|K being a form of corank 2 which is not 0-sincere. But, since χ is 0-sincere,
the last condition shows that in this case K would still be a proper subset
of I, leading to the contradiction that χ would be of corank ≥ 3.

Remark. The forms Ψ15, . . . , Ψ20 appearing in the above list have pre-
cisely two critical restrictions. An inspection shows that there are vertices
i, j such that the restrictions of the two characteristic vectors µ(1), µ(2)

corresponding to {i, j} are just the canonical base vectors (1, 0), (0, 1).
In particular, this means that any sincere µ ∈ Rad+ χ can be written as
µ = n1µ

(1) + n2µ
(2) where n1, n2 are positive integers.

8.3. Fortunately we do not need the corresponding complete classifica-
tion of forms of corank 3 but will only use certain properties of these forms
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which we will establish in this final part of this section. Let us start with an
ad hoc definition. We call a 0-sincere reduced graphical form χ : ZI → Z tri-

angular provided there are precisely three critical restrictions I1, I2, I3 such
that for all i 6= j ∈ {1, 2, 3} the restriction χ|Ii ∪ Ij is a 0-sincere form of
corank 2.

Lemma. Let χ : ZK → Z be a reduced non-negative semigraphical form

such that there is no critical restriction of the form C(1), C(2), C(3) or C(4′).
Suppose that J is a subset of K such that card J = cardK − 1. If χ|J is

0-sincere of corank 2, then χ is a 0-sincere form of corank 3 which is either

triangular or one of the forms Θ1, Θ2 whose reduced bigraphs are shown

below.

Pr oo f. Since χ|J is of corank 2, we can apply Theorem 8.2 to deduce
that χ|J is one of the forms Ψ15, . . . , Ψ20. We denote by k the vertex in K \J ,
choose a critical restriction J ′ of J and apply Lemma 8.1(a), (b) or (c) to
the restriction of χ to J ′ ∪ {k}. By inspection of all possibilities how k can
be connected to the vertices of J \ J ′ we obtain the result.

Let us present the reduced bigraphs of Θ1, Θ2. We again replace the
vertices by the coefficients of the characteristic vectors of the critical re-
strictions.
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Theorem. Let χ : ZI →Z be a reduced 0-sincere semigraphical form such

that there is no critical restriction of the form C(1), C(2), C(3) or C(4′). If
the corank of χ is 3 then χ is either triangular or one of the forms Θ1, Θ2.

Pr oo f. By Proposition 7.2 there is a restriction χ|J of χ which is of
corank 2. We choose a vertex k ∈ I \ K and apply the above lemma to
K := J ∪ {k}. Since the lemma tells us that the corank of χ|K is 3, we get
K = I and the theorem is proved.

Remark.We need a remark corresponding to the above for the corank 2
case. Namely, here an inspection shows that for the triangular forms appear-
ing in the above theorem there are vertices i, j, k such that the restrictions
of the characteristic vectors µ(1), µ(2), µ(3) to {i, j, k} are just the canonical
base vectors (1, 0, 0), (0, 1, 0), (0, 0, 1). In particular, this means that any
sincere µ ∈ Rad+ χ can be written as µ = n1µ

(1) + n2µ
(2) + n3µ

(3) where
n1, n2, n3 are positive integers.

A similar property still holds for Θ2 where there are vertices i, j, k, l
such that the restrictions of the characteristic vectors µ(1), µ(2), µ(3), µ(4)

to {i, j, k, l} are the vectors (1, 1, 0, 0), (1, 0, 1, 0), (0, 1, 0, 1), (0, 0, 1, 1). This
shows that after possibly renaming the vertices any sincere µ ∈ Rad+ χ can
be written as µ = n1µ

(1)+n2µ
(2)+n3µ

(3) where n1, n2, n3 are non-negative
integers and n1, n2 are positive.

9. Proof of the main theorem

9.1. We assume the existence of a weakly non-negative, finitely sincere
semiunit form χ : ZI → Z which has a maximal sincere positive 1-root x
with a coordinate xi > 12 and try to establish a contradiction.

Applying 4.4 we replace χ, x by χ′, x′ where (χ′, x′, φ) is a full reduction of
(χ, x) with respect to I \{i}. Obviously, card I ′ ≥ 2. If there exists i 6= j ∈ I ′

such that χ′
ij ≥ 0, then χ′

kj ≥ 0 for all k ∈ I ′, which by Remark 3.2 implies
χ′
jj = 0. This shows that e(j) is a positive 0-root with the property x′ > e(j).

By Corollary 5.2 the 1-root x′ is 2-layer, which by Theorem 5.3 yields the
contradiction x′i ≤ 12.

Hence in the sequel we only have to deal with the case of χ′ being a
semigraphical unit form with center i. In order to simplify notation we re-
place χ′ by χ, x′ by x and i by ω. If χ has a critical restriction χ|J which is
of the shape C(1), C(2), C(3) or C(4′), then the characteristic vector of this
restriction is a 0-root µ satisfying x > µ. Again we obtain a contradiction
by Corollary 5.2 and Theorem 5.3.

9.2. Let us sum up to what extent we have already reduced our original
problem. To produce a contradiction, we now have at our disposal a weakly
non-negative, finitely sincere semigraphical form χ : ZI → Z with center
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ω having a maximal sincere positive 1-root x with xω > 12 and having the
property that any critical restriction is of the shape C(4), C(5) or C(6). Since
C(1) does not occur, we know that χiω = 1 for all i ∈ I different from ω.

Among all forms χ as above we consider one where the number of vertices
card I is minimal. Section 4.5 shows that this choice implies that χ is not
obtained from any subform by doubling a vertex. By 3.4 the 1-root x has one
or two exceptional vertices. If x has only one exceptional vertex, applying
Theorem 6.3 we arrive at the contradiction xω ≤ 7.

Thus there are exactly two exceptional vertices i 6= j which have the
property that xi = xj = 2(x, e(i)) = 2(x, e(j)) = 1 and 2(x, e(k)) = 0 for all
k 6= i, j. Because of xω > 12 we see ω 6= i, j.

9.3. We observe that the form χ|I \ {i, j} is weakly positive. Indeed,
otherwise there exists a critical restriction of this form having a character-
istic vector µ, which yields the contradiction χ(µ + x) = χ(x) = 1. Using
this observation we can prove:

Lemma. If 0 ≤ z ∈ ZI satisfies zk ≤ 1 for all k ∈ I, k 6= ω, zi = zj = 1
and χ(z) ≤ 2, then zω > 6.

Pr oo f. Assuming zω ≤ 6, we obtain x − z > 0 and therefore 0 <
χ(x−z) = χ(z)−1 ≤ 1. Thus x−z is a positive 1-root of the weakly positive
form χ|I \ {i, j}, which shows (x − z)ω ≤ 6 and finally the contradiction
xω ≤ 12.

We can apply this lemma immediately to show that χij ∈ {2, 3}. By 3.1
we know that 0 ≤ χij ≤ 3. The lemma shows that χij ∈ {0, 1} is impossible
by using the vector z := e(ω) + e(i) + e(j), which satisfies χ(z) ≤ 2.

9.4. Let us consider the unit form χ : ZI → Z defined by χ(y) = χ(y)−
yiyj for all y ∈ ZI . Clearly, x is a sincere positive 0-root of χ. We want to
show that χ is weakly non-negative and consequently a 0-sincere unit form.

If we assume that χ is not weakly non-negative, then there has to be a
critical restriction χ|J where J has to contain both i and j. If χij = 3, we
have a contradiction to 6.4. If χij = 2, we see from 6.4 that the reduced
bigraph of χ|J contains a subbigraph K satisfying i, j ∈ K of one of the
following two shapes:

m1

1

11 2 m1

1

1 1

1 1

41
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Defining vectors z ∈ ZK∪{ω} as shown in the pictures above and considering
them as elements of ZI , we obtain χ(z) = 1 resp. χ(z) = 2. This is a
contradiction to the previous lemma.

9.5. As the next step we convince ourselves that χst ≤ 1 for all s, t ∈ I
such that {s, t} 6= {i, j}. As χ is 0-sincere, by 3.1 we only have to show that
χst = 2 leads to a contradiction for s 6= t such that {s, t} 6= {i, j}.

If {s, t}∩{i, j} = ∅, then by 7.3 the forms χ and also χ would be obtained
form the restriction to I \ {t} by doubling the point s.

If the intersection of {s, t} and {i, j} is just t = j, then we consider the
positive 1-root y := x−e(i) of η = χ|I\{i}. If η were weakly positive, then we
would get xω = yω ≤ 6. Hence η has a critical restriction with a characteristic
vector v. By 7.3 the form χ is obtained from χ|I \ {j} by doubling s. Hence
also η is obtained from η|I \ {i, j} by doubling s. Consequently, the vector
w := v − vje(j) + vje(s) is a 0-root of η and also of χ, which gives the
contradiction χ(x+w) = χ(x)+2(w, x) = χ(x)+2wi(e(i), x)+2wj(e(j), x) =
χ(x) = 1.

9.6. Before we continue, let us recall that because of the positive defi-
niteness of χ any 0-root of χ lies in Radχ. Consider the restriction ξ of χ
to I ′ := I \ {i} which, being a restriction of χ as well, is a non-negative
reduced semigraphical form. The vector y = x − e(i) = σi(x) is a positive
1-root of χ and therefore a sincere positive 1-root of ξ. As yω > 12, we know
that ξ is not weakly positive and consequently the 0-sincere kernel ξ+ of ξ
is non-trivial. We want to establish that ξ+ is of corank ≤ 2.

Assume that the corank of ξ+ is at least 3. Then by 7.3 the form ξ+

has a 0-sincere restriction ζ whose corank is precisely 3. We will obtain a
contradiction using again Corollary 5.2 and Theorem 5.3 by constructing a
positive 0-root µ such that x > µ.

In fact, by Theorem 8.3 the form ζ is either triangular or coincides with
Θ1 or Θ2. If ζ = Θ1, the positive 0-root z defined by zω = 5 and zk = 1
for all other vertices allows us to apply Corollary 5.2 and Theorem 5.3 im-
mediately. If ζ happens to be triangular, we denote by µ1, µ2, µ3 the char-
acteristic vectors of the three critical restrictions I1, I2, I3 such that for all
s 6= t the union Is∪It is 0-sincere of corank 2 and consequently, by Theorem
8.2, is one of the forms Ψ15, . . . , Ψ20. Looking at these forms, we find that
{(µs − µt)k : k ∈ I, k 6= ω} = {−1, 0, 1} and (µs − µt)ω ∈ {−2, 0, 2}. If
ζ = Θ2 the same holds for the the first three vectors µ1, µ2, µ3 displayed in
8.3 although this form is not triangular.

We claim that at least two of the three numbers 2(e(i), µ1), 2(e(i), µ2),
2(e(i), µ3) are equal. Indeed, otherwise there exist s, t satisfying 2(e(i), µs)−
2(e(i), µt) ≥ 2 and therefore also 2(x, µs − µt) = 2(y + e(i), µs − µt) =
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2(e(i), µs − µt) ≥ 2. On the other hand, x − (µs − µt) > 0, yielding the
contradiction 0 ≤ χ(x− (µs−µt)) = χ(x)+χ(µs−µt)− 2(x, µs−µt) ≤ −1.

Supposing now that without loss of generality 2(e(i), µ1) = 2(e(i), µ2)
and (µ1 − µ2)ω ≥ 0, we obtain µ1 − µ2 ∈ Radχ. Putting d := min{xk :
(µ1 − µ2)k = −1}, it follows that z := x + d(µ1 − µ2) is a positive 1-root
of χ satisfying zω > 12 but z is not sincere. By the subsequent lemma we
arrive at a contradiction to the minimal choice of card I.

Lemma. Let χ : ZI → Z be a weakly non-negative semiunit form. Suppose

x is a maximal sincere positive 1-root of χ and µ ∈ Radχ. If x+µ > 0 and

J := supp(x+ µ), then x+ µ is a maximal sincere positive 1-root of χ|J .

Pr oo f. Let y ≥ x + µ. Then y − µ > x and χ(y − µ) = 1. Hence
y − µ = x.

9.7. It remains to deal with the case where the corank of ξ+ is 1 or 2. But,
before doing so, we also want to establish that χ does not admit a critical
restriction of type C(1), C(2), C(3) or C(4′). It is clear that C(1) cannot occur.
If one of the others occurred, then the support of its characteristic vector z
would have to contain i and j because otherwise it would even be a critical
restriction of χ. Therefore z would be a positive 1-root of χ to which Lemma
9.3 would apply, furnishing the contradiction zω > 6.

9.8. Suppose now that ξ+ : ZK → Z is of corank 2 and therefore classified
in Theorem 8.2. Assume that there exists k ∈ I ′\K. Then by Lemma 8.3 the
restriction of ξ to K ∪ {k} is a 0-sincere form of corank 3 and consequently
ξ+ is of corank ≥ 3, a contradiction. Hence I = K ∪ {i}.

If χij = 2, then χ is obtained from ξ+ by doubling j, and u := x− e(i)+

e(j) is a sincere 0-root of ξ+ such that uj = 2. If µ(1) and µ(2) are the char-
acteristic vectors of the 2 critical restrictions of ξ+, then u = pµ(1) + qµ(2)

where p, q ∈ N. Up to symmetry we only need to consider the cases µ
(1)
j = 1

and µ
(1)
j = 0. In both cases we obtain x ≥ µ(1), which yields the usual con-

tradiction to Theorem 5.3 by Corollary 5.2 since µ(1) is a positive 0-root of χ.
If χij = 1, then again by Lemma 8.3 we know that χ is one of the

0-sincere semigraphical forms of corank 3 which are classified in Theorem
8.3. If χ = Θ1, then the vector z defined by zω = 5 and zk = 1 for all
other vertices is a 1-root of χ, thus leading to a contradiction via Lemma
9.3. In the other cases, by Remark 8.3 we always find characteristic vectors
µ(1), µ(2), µ(3) of critical restrictions generating the radical of χ such that
x = p1µ

(1)+p2µ
(2+p3µ

(3), where p1, p2, p3 are non-negative integers and at

least p1, p2 > 0. Since xi = 1, we may assume that µ
(1)
i = 0. Hence we end

up with the same contradiction as above because this µ(1) is a 0-root of χ
such that x ≥ µ(1).
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9.9. Finally, we have to examine the case where ξ+ is of corank 1, or
in other words, is critical. We denote by µ the corresponding characteristic
vector. This case splits into two subcases: in the first one ξ+ is of the shape
C(5) or C(6), and in the second one ξ+ is of the shape C(4).

In the first subcase we see from parts (b) and (c) of Lemma 8.1 that K =
I ′. If χij = 2 then χ is obtained from ξ+ by doubling j and we consider again
the sincere positive 0-root u = x− e(i) + e(j) of ξ+. Because uj = 2 we get
u = pµ, where p ∈ {1, 2}, yielding the contradiction xω = uω ≤ 2µω ≤ 12.

If χij = 1, then again from Lemma 8.1 we see that χ is one of the forms
Ψ17, . . . , Ψ20. Since xi = 1, the existence of a critical restriction avoiding i
whose characteristic vector µ satisfies x ≥ µ is easy to derive.

Let us consider the second subcase. If I ′ \K happens to be empty, then
for χij = 2 we can argue as in the first subcase and for χij = 1, by part (a)
of Lemma 8.1, the form χ is not 0-sincere, a contradiction.

If I ′ \K is non-empty, we fix a vertex k in this set. Let us first analyze
the situation where I ′ \K = {k}. Then either χ is not 0-sincere if χij = 2
or χ is one of the forms occurring in part (d) of Lemma 8.1. For χ among
Ψ15, Ψ16, Ψ17, Ψ18 we obtain a contradiction as in the first subcase. Otherwise
χ again fails to be 0-sincere.

Supposing now that there are elements in I ′ \ K different from k, we
observe that for any k 6= l ∈ I ′ \ K, by part (d) of 8.3, using the fact

that ξ+ is of corank 1, we find a radical vector ν(l) such that ν
(l)
l = 1 and

ν
(l)
k = −1. Moreover, it is easy to see that the vectors ν(l) together with the
characteristic vector µ of ξ+ form a basis of Rad ξ. This shows that ξ is not
0-sincere, which remains true for χ if χij = 2. To solve the case χij = 1, we
apply part (d) of Lemma 8.1 to χ|K ∪ {k, i}. If this form is not 0-sincere,
we obtain another radical vector ν(i) as above and χ is not 0-sincere.

If χ is among Ψ15, Ψ16, Ψ17, Ψ18, the argument is slightly more subtle.
Denote by µ′ the second characteristic vector for χ|K ∪ {k, i} besides µ.
One sees that µ′

i = µ′
k = 1 and the vectors ν(l) together with µ and µ′

form a basis of Radχ. If we write x as a linear combination of these base
vectors and observe that x1 = 1, it follows that xk ≤ 0, which is the final
contradiction finishing the proof.

10. Applications to finite-dimensional algebras

10.1. For more details concerning the notions used in this section we
refer to [Ri]. We suppose that Λ is a finite-dimensional basic algebra over
an algebraically closed field k. We write A = k[Q]/I, where Q is the ordi-
nary quiver of A and I is an admissible ideal of the path algebra k[Q]. To
consider the Tits form χA as defined in the introduction we demand that Q
is directed, i.e. does not admit oriented cycles.
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We denote by A-mod the category of all finite-dimensional left A-mod-
ules, which we identify with the representations of Q satisfying I. We do
not distinguish between a module X and its isomorphism class.

On the indecomposable modules X in A-mod we consider the relation
≺ which is defined as the transitive closure of the relation given by putting
X ≺ Y if there is a non-zero non-isomorphism X → Y . An indecomposable
A-module X is said to be directing if X 6≺ X.

For a given indecomposable module X we define Λ(X) to be the sub-
algebra of Λ induced by the support of X. In the natural way X will be
considered as a Λ(X)-module, which is directing provided X is a directing
Λ-module. We say that X is properly directing if X is a directing Λ-module
but belongs neither to a postprojective nor to a preinjective component of
the Auslander–Reiten quiver of Λ(X).

Proposition. Let Λ be a tame algebra. If X is an indecomposable prop-

erly directing Λ-module, then dimk X(i) ≤ 12 for all vertices i ∈ Q0.

Pr oo f. Without loss of generality we may suppose Λ = Λ(X). Hence Λ
is a tame tilted algebra having the sincere directing moduleX. Consequently,
χA is a weakly non-negative unit form and dimX is a sincere positive 1-
root of χA. Thus by our main theorem it remains to show that χA is finitely
sincere. By [Pe2, 3.2], A is domestic in at most two 1-parameters.

If A were domestic in less than two 1-parameters, then A would be
representation-finite or tame concealed. Thus X would be postprojective or
preinjective.

Consequently, A has to be domestic in exactly two 1-parameters. By
[Pe3, 1.6] and [Pe3, 2.1] it follows that χA is finitely sincere.

Corollary. If X is an indecomposable properly directing module over

a tame algebra Λ whose ordinary quiver has n vertices, then dimk X ≤
2n+ 180.

Pr oo f. Again we may assume Λ = Λ(X). If n ≥ 20, then Λ belongs to
the list presented in [Pe4] and one checks directly that dimk X ≤ 2n− 2.

For n ≤ 19 we assume that dimX is a maximal positive 1-root of χA,
which consequently has an exceptional vertex i satisfying dimk X(i) ≤ 2.
Therefore dimk X ≤ 2n−

∑
j 6= i|dimX(j) − 2| ≤ 2n+ 18(12 − 2).
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