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1. Introduction and main result. A quadratic form x : Z" — Z is

called a unit form provided it is of the shape

X(@1, . mn) = Y @+ > xmw
1<i<n 1<i<j<n

for all (z1,...,x,) € Z", of course with integer coefficients y;;. Such forms
and their root systems are ubiquitous in many parts of mathematics: for
example in Lie theory, in singularity theory as well as in the representation
theory of finite-dimensional algebras. The most prominent forms are those
associated with the Dynkin diagrams A,,, D,, Eg, E7, Eg. These are those unit
forms which are “connected”, positive definite and such that for all i < j
we have x;; < 0. There are corresponding positive semidefinite forms which
are labelled by the diagrams A,,, D,,, Eg, E7, Eg. These diagrams are referred
to as the extended Dynkin or Fuclidean or affine diagrams. In general, the
matrix of coefficients x;; which determines such a unit form is what is called
an “intersection matrix” (see [Sl]).

Given a unit form x : Z" — Z, an integer vector x = (x1,...,z,) will be
called a 1-root provided x(z) = 1. In this way we try to avoid the possible
confusion: The usual root system attached to a symmetric generalized Car-
tan matrix consists of real and imaginary roots. The real roots are 1-roots,
but in general there may be additional 1-roots. Of course, for the Dynkin
and the Euclidean forms, the 1-roots are just the real roots.

Sometimes it is helpful to consider Z" together with a fixed basis consist-
ing of 1-roots. Think for example of choosing a root basis of a root system in
Lie theory. In some applications such a basis will even be given intrinsically.
For instance, in the representation theory of finite-dimensional algebras, Z™
is the Grothendieck group of finite-dimensional representations with respect
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to all exact sequences, and the simple representations provide an intrinsic
basis of this lattice.

Frequently, only the 1-roots which are linear combinations of the base
vectors with only non-negative coefficients are of interest. Think again of
Lie theory or representation theory. After identifying the elements of the
basis with the canonical base vectors, these linear combinations are just the
positive vectors in the following sense: The lattice Z™ is partially ordered by
defining x >y if x; —y; > 0foralli =1,...,n. A vector x is called positive
ifx>0.

Having in mind applications in the representation theory of algebras,
one has to study unit forms which satisfy weaker positivity conditions than
positive definiteness resp. semidefiniteness. Namely, a unit form x is said
to be weakly positive if x(z) > 0 provided z > 0 and is said to be weakly
non-negative if x(z) > 0 provided = > 0. For consistency, in the sequel we
refer to positive definite forms as positive forms and to positive semidefinite
forms as non-negative forms.

Recall the following theorem of Ovsienko ([Ovl], see also [Ri]): If x :
Z" — 7 is a weakly positive unit form and x = (z1,...,z,) is a positive
1-root of x, then x; < 6 for all ¢ = 1,...,n. Note that 6 is the best bound
possible, as the maximal root of the root system of type Eg shows.

In this paper we consider the corresponding problem for weakly non-
negative unit forms. A weakly non-negative unit form which is not weakly
positive always has infinitely many positive 1-roots, thus there cannot exist
a bound for their coordinates. On the other hand, it frequently happens that
the set of positive 1-roots of a weakly non-negative unit form has maximal
elements.

MAIN THEOREM. If x : Z" — Z is a weakly non-negative unit form and
x = (x1,...,2y,) is a mazimal positive 1-root of x, then

r; <12 foralli=1,...,n.

The bound 12 is the best possible, as the following example shows. For
displaying the form x we use the associated bigraph: The vertex set is
{1,...,n}. The vertices i and j are connected by x;; dotted edges if x;; > 0
and by |x;;| solid edges if x;; < 0. Moreover, we attach the coordinates x;
of a maximal positive 1-root x of x to the vertices of the bigraph.

Observe that the bigraph is obtained by “glueing” two copies of the ex-
tended Dynkin diagram of type Eg along the subdiagram Eg and connecting
the extension vertices by three dotted edges. The 1-root z is the sum of the
positive radical generators of the two subforms of type Eg, thus the number
12 occurs as the sum of their maximal entries.
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We will prove the theorem in Section 9 after establishing several preliminary
results, some of which should be of interest on their own. Obviously, we can
and will restrict ourselves to the case when x is sincere, i.e. x; > 0 for all
i =1,...,n. Note that, if x is sincere, then the requirement that the unit
form x is weakly non-negative is not really necessary but follows from the
maximality. Namely, it is shown in [HP] under the assumption x;; > —5 for
all i < j and in [Ov2] in general that the existence of a maximal sincere
positive 1-root forces a unit form to be weakly non-negative.

Our original interest in maximal positive 1-roots of weakly non-negative
unit forms came from representation theory of finite-dimensional algebras
and similar structures. In this context unit forms occur as Tits forms or Euler
characteristics (see e.g. [Ga], [Bo], [Ri]) and their weak positivity (resp. weak
non-negativity) is frequently related to finite (resp. tame) representation
type.

Let us briefly review the connection between the representations of an
algebra A over an algebraically closed field & and the weak definiteness of
its Tits form x . To give the definition of y 4, we suppose that A is basic,
the ordinary quiver of A is directed and A has up to isomorphism exactly n
simple modules S1,...,.S,. Then

n 2
XA(.%') = Z ( Z(—l)y dimy, EXti(Si, S]))xlx]
ij=1 v=0
It is easy to see that this is a unit form.

An algebra A has finite representation type if there are only finitely
many isomorphism classes of indecomposable finite-dimensional A-modules.
In order to check finite representation type for an arbitrary A, one may
proceed as follows: Using covering theory (see [BG]) one may suppose that
A is simply connected. This implies that A has a directed ordinary quiver
and the Auslander—Reiten quiver of A has a postprojective component. For
an algebra A of this kind it is shown in [Bo] that finite representation type
is equivalent to the weak positivity of its Tits form y 4.
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But the connection between the representations of A and the form x4
is even closer. Namely, the dimension vectors of the indecomposable A-
modules are precisely the positive 1-roots of x 4. Recall that the dimension
vector x = (x1,...,x,) of an A-module X has as component x; just the
multiplicity of S; in a composition series of X.

Concerning tame representation type the picture is not yet complete. In
[Pel] it is shown that tame type of A implies weak non-negativity of the Tits
form x 4. Moreover, there are interesting classes of tame algebras (see e.g.
[Ri]) where the dimension vectors of the discrete indecomposable A-modules
are just the connected positive 1-roots of y 4. If one asks in addition for the
existence of sincere directing indecomposable modules, then y 4 actually has
only finitely many sincere positive 1-roots. Thus our main theorem applies.
We will give some more applications of our theorem for the representation
theory of finite-dimensional algebras in the final section of this paper.

The authors are grateful to CONACYT, DAAD, SFB 343 and the Volks-
wagenstiftung who supported stays and visits during which the results in
this paper were achieved.

2. Preliminaries

2.1. In Section 4 we will prove a reduction theorem allowing us to pass
from general unit forms to so-called semigraphical forms which will be dis-
cussed in Section 6. On the other hand, the reduction theorem makes it
necessary to slightly increase the class of forms we have to consider. Namely,
we will have to deal with semiunit forms, where a semiunit form is a map
X:Z" — 7,

n
x=(T1,...,2y) — Z XijTij,
ij=1
1<j
such that x;; € Z and x4 € {0,1}. Obviously, any unit form is also semiunit.
For some definitions it will be convenient to use an even more general setup.
We call a map x as above an integral form if just x;; € Z.

Given such a form we put x;; := xj; for all i < j and define a symmetric
integral matrix A, with coefficients (A, );; := xi; for i # j and (Ay )y =
2xii. We denote by e(1),...,e(n) the canonical base vectors in Z". The
symmetric bilinear form (—, —)y : Z" x Z" — Z, x + 1(zA,2T), has the
following properties:

(a) (z,x)y = x(z) for all z € Z".

(b) (e(2), e(i))y = xis and 2(e(i), e(j))y = xij for all i # j.

(©) (z,9)y = 5(x(z +y) — x(z) = x(y)) for all z,y € Z".

Whenever no confusion is possible, we omit the index Y.
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The radical of x is defined as Rad x := {z € Z" : A, = 0} whereas the
positive radical Rad™ x consists only of all positive = in Rad x. The corank
of x is the rank of the free abelian group Rad x. In analogy to 1-roots an
element = € Z" is said to be a 0-root of x if x(z) = 0.

2.2. Of course, one may also consider integral forms y : Z! — Z for
arbitrary finite sets I. Usually we will identify forms which only differ by
renaming the vertices. But let us present one example where this use of more
general index sets is appropriate. Namely, if I is a subset of {1,...,n}, then
7! is embedded in Z" in the canonical way. Obviously, for an integral (resp.
semiunit, unit) form x : Z" — Z the restriction x|I : Z! — Z defined by
x|I(z) = x(z) is again an integral (resp. semiunit, unit) form.

Note that we will use the notation x|l for the image of = € Z" under the
canonical retraction of the above-mentioned embedding Z/ — z™.

A vector x € Z" is called sincere provided x does not lie in Z! for any
proper subset I of {1,...,n}, or equivalently, x; # 0 for alli =1,...,n. A
semiunit form y is said to be sincere if there exists a sincere positive 1-root
x of .

If x is a maximal positive 1-root of x and we define I as the support
suppz := {i : z; # 0} of z, then z € Z! and x is a maximal sincere positive
1-root of the restriction x|I. This shows that it is enough to prove our
main theorem for maximal sincere positive 1-roots of weakly non-negative
semiunit forms.

2.3.If x : Z" — Z is a unit form then we will use the well-known concept
of reflections. The reflection o : Z" — Z™ with respect to i € {1,...,n} is
the linear map defined by oX(z) = z — 2(e(i), z)ye(i) and has the following
properties:

(a) (02)2 =
(b) (0X(2).y)x = (2,0X(y))y for all z,y € Z".
() (o)), \

2 len .

X
oX(y))y = (z,y)y for all z,y € Z", in particular x(c)(z)) =
x(x) for all z € Z".

2.4. Let us recall once more the common way of visualizing integral
forms using bigraphs. The vertex set of the bigraph B, of a semiunit form
X : Z"™ = Z is just {1,...,n}. The vertices i,j are connected by |x;; — 0i;|
solid edges provided x;; — d;; < 0 and by |x;; — d;;| dotted edges provided
Xij — 0;5 = 0. In particular, if x is a semiunit form, then the vertex 7 has no
loop if x;; = 1 and one solid loop if x4 = 0.

3. Basic properties of weakly non-negative semiunit forms

3.1. Throughout this section we suppose that x : Z"* — Z is a weakly non-
negative semiunit form. This implies immediately that x;; > —2. Moreover,
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the fact that 0 < x(ne(i) +e(j)) = x;j; + nx;; for all ¢, j with x;; = 0 shows
that x;; > 0.

The following lemma is quite analogous to the corresponding one for the
weakly positive situation (compare [Ri, 1.0(4)]).

LEMMA. (a) For a positive 1-root of a weakly non-negative semiunit form
X the following assertions hold:

(al) 2(e(i),x) > =2 for alli=1,... n.
(a2) If z; > 0, then 2(e(i), z) < 2.
(a3) xij < 3 for all i # j such that x; # 0 # x;.

(b) For a positive 0-root of a weakly non-negative semiunit form x the
following assertions hold:

(b1) 2(e(i),z) >0 for alli=1,...,n.
(b2) If x; > 0, then 2(e(i),z) = 0.
(b3) xij <2 for all i # j such that x; # 0 # x;.

Proof. (al) and (a2) follow from applying x to x +e(i). To prove (a3),
by possibly interchanging i,j we may suppose 2(x,e(i) — e(j)) < 0 and
obtain 0 < x(z + (e(i) — (7)) < x(x) + x(e(i) — e()) < 3+ X

(b1) and (b2) follow from applying x to 2z + e(i), whereas the proof of
(b3) is completely analogous to that of (a3). m

3.2. We call a weakly non-negative semiunit form y finitely sincere pro-
vided x is sincere and there are only finitely many sincere positive 1-roots.
Using the above lemma it turns out that the finitely sincere forms are exactly
the forms possessing a maximal sincere positive 1-root.

PROPOSITION. For a weakly non-negative semiunit form x the following
assertions are equivalent:

(a) There exists a mazximal sincere positive 1-root x.
(b) x is sincere and Radt x = 0.
(c) x is finitely sincere.

Proof. (a)=(b) and (c)=-(a) are obvious. For (b)=-(c) we assume that
the set of sincere positive 1-roots is infinite. Hence we are able to find an
infinite subset {z(1),x(2),...} satisfying x(i) < z(i + 1) for all i € N. By
3.1(a) we know 2(e(j),x(i)) € {0,£1,42} for all i € Nand j = 1,...,n.
Hence there exist s < t such that 2(e(j),z(s)) = 2(e(j),z(t)) for all j =
1,...,n. Consequently, z(t) — 2(s) € Radt x. m

REMARK. If x is a weakly non-negative, finitely sincere semiunit form,
then the bigraph B, of x is connected and the points © such that x;; = 0 are
characterized by x;; > 0 for all j # 1.
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Proof. If B, has two non-trivial connected components supported by
the sets I1,Is and z is a sincere positive 1-root, then z = x1 + x5 with
x; = x|l;. Hence 1 = x(z1) + x(x2). Without loss of generality this means
x(z1) =1 and x(x2) = 0. Consequently, all the vectors z1 + nxs are sincere
positive 1-roots.

To prove the second assertion we suppose x;; > 0 for all j # 7 and from
the connectedness of B, derive the existence of some j such that actually
Xij > 0. Therefore the assumption x;; = 1 would lead to 2(e(i),z) = 2x; +
> j4i XjiTj > 3, contradicting 3.1(a). =

3.3. In [Ri, 1.1(7)] it is shown that maximal sincere positive 1-roots of
weakly positive forms have at most 2 exceptional vertices. This generalizes
to our situation:

LEMMA. Let x : Z" — Z be a weakly non-negative unit form with n > 2
and suppose that x is a maximal sincere positive 1-root of x. Then one and
only one of the following two situations occurs.

(a) There is exactly one exceptional vertex i (i.e. x; = 2, 2(e(i),z) =1
and 2(e(j),x) =0 for all j #1).

(b) There are exactly two exceptional vertices iy,is (i.e. x;; = xiy = 1,
2(e(i1),z) = 2(e(iz),z) =1 and 2(e(j),z) =0 for all j # iy,i2).

Proof. As x is supposed to be a unit form, the vectors o;(x) are all
1-roots as well. Hence 2(e(j),z) > 0 for all j. We consider the equation
2 = 2x(z) = Xj_17;2(e(j), x) and assume that there exists i such that
x; =1, 2(e(i),x) = 2 and 2(e(j),z) = 0 for all j # i. Putting u = = — e()
and calculating x(u) = 0, from 3.1(b) we obtain (e(j),u) = 0 for all j # i
whereas immediately (e(i),u) = (e(i),z) — x(e(i)) = 0. Thus n > 2 yields
u € Rad™ . This contradiction shows that only the two alternatives of the
lemma can occur. m

3.4. LEMMA. Suppose X : Z! — 7 is a weakly non-negative semiunit form
and x is a sincere positive 1-root. Forr =0,1 we put I" ={i € I : x; =}
and x" = z|I". Then one and only one of the following three situations
occurs:

(a) x(z') =1 and x;; =0 for alli € I°, j € I.

(b) x(x') = 0 and there exist i,j € I such that x; = z; = x;; = 1.
Additionally, if s € 1Y, t € I and xs # 0, then {s,t} = {i,j}.

(c) x(z') = 0 and there existi € I°, j € I' such that z; = z; = xij = 1.
Additionally, if s € IV, t € I and xs # 0, then {s,t} = {i,j}.

Moreover, if x is mazximal and I° # () # I', then (c) holds and card(1°)
=1.
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Proof. By 3.1 we know that x;; > 0 for all i € Y, j € I. We may

suppose I = {1,...,n} and I° = {1,...,m} for some m < n. Consider the
equation
1= ( Z xlz + Z Xijxixj) + Z XijTiTj + Z XijTiLy
et i,jeIt i,j€I° iclt
1<j i<j jelo

The first summand of this sum is just y(«!) and the second is x(x°). As
also the third summand is non-negative and integer, exactly one of these
summands has to be 1 and the others have to be 0. This leads to the three
cases because x is sincere.

In case (a) all the vectors nz®+ 2! and in case (b) all the vectors 2% +na!
are positive 1-roots greater than z. Hence for  maximal only case (c) is
possible. Furthermore, if there existed k € I°, k # 4, then also the vectors
x + ne(k) would be 1-roots greater than x. m

3.5. We recall that a unit form y : Z/ — Z is critical (vesp. hypercriti-
cal) if it is not weakly positive (resp. weakly non-negative) but x|J is weakly
positive (resp. weakly non-negative) for every proper subset J of I. Every
critical unit form x is non-negative and its radical is generated by a sincere
positive vector p (see [Ri]) which in this paper will be called the character-
istic vector of . For an arbitrary unit form y : Z! — Z we denote a subset
J C I resp. the induced restriction 1 := x|J as critical (resp. hypercritical)
restriction provided that 7 is critical (resp. hypercritical).

A weakly non-negative semiunit form x is called 0-sincere if there is
a sincere vector y € Rad™ y. Note that by Lemma 3.1(b2) it would be
sufficient to require only that y is a positive sincere 0-root. The fact that we
can shift any vector into the positive cone by adding integer multiples of y
shows that a 0-sincere form has to be non-negative. As observed above, any
critical unit form is 0-sincere with corank 1.

If x : Z! — Z is an arbitrary weakly non-negative unit form, we consider
the union I of all supp  where u € Rad’ x and denote x|IT by xT. By
construction the form x™ is 0-sincere. We call xT the 0-sincere kernel of x.
Using the following lemma, we deduce that a vector z € Z! is a 0-root of
x " if and only if suppz C I'™ and x € Rad . In particular, this shows that
Rad® y = Radt x*.

LEMMA. Suppose x is a weakly non-negative semiunit form and x €

Rad™ x. If u € Z" is a 0-root of x such that suppu C suppwz, then pu €
Rad x.

Proof. Assuming the existence of an index 4 such that 2(e(7), u) # 0,
we may choose € € {£1} such that €2(e(i), ) > 1. Putting y = e(i) — 2ep
we observe x(y) = x(e(i)) —e4(e(i), u) < 1—2 = —1. On the other hand, the
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requirement on the supports shows that y + kz is positive for some k € N.
Thus we arrive at the contradiction 0 < x(y + kx) = x(y) = —1. =

4. The reduction theorem

4.1. Let x : Z" — Z be an integer form and pick ¢ # j € {1,...,n}.
The Z-isomorphism R;; : Z™ — Z" is defined on the canonical base vectors
by Rij(e(k)) = e(k) for k # j and R;;(e(j)) = e(j) — e(i). Hence for x =
(x1,...,2,) € Z" the coordinates of 2/ = R;j(x) are x) = xj, for k # i and
T, = x; — xj.

The map X' = XRi_jl is called the small reduction of x with respect to
(¢,7) provided x;; < 0. Note that, if x is a unit form and y;; = —1, then
this is just a direct Gabrielov transformation. Immediate calculations show:

(a) X = xw if j & {k,1}.

(b) Xx = Xk + Xk if § # k # .

() Xjj = Xy + xai + Xgi and Xj; = Xji + 2Xi-

4.2. In the following lemma we use the norm |z| = }_"; z; to measure
the size of vectors in the cone C), := {z € Z" : x > 0}.

LEMMA. Let x : Z" — 7 be an integer form and X' be the small reduction
of x with respect to (i,7). Then the following assertions hold:

(a) Ri_jl(Cn) C Cp, in particular Ri_j1 preserves the order on Z".

(b) XRi_jl(m) = X'(z) for all x € Z", in particular Ri_j1 maps the set of
positive 1-roots (resp. 0-roots) x' of X' bijectively to the set of all positive
1-roots (resp. 0-roots) x of x satisfying x; > x;.

(c) If x € Z™ is sincere positive and x; > x;, then ' = R;;(x) is sincere
positive and |2'| < |x|.

(d) If x is a weakly non-negative semiunit form and x;; < 0 then X' is
also a weakly non-negative semiunit form.

(e) If x is a weakly non-negative semiunit form with x;; < 0 and x is
a mazimal sincere positive 1-root of x with x; > xj, then X' is a weakly
non-negatiwe semiunit form and x' = R;j(x) is a mazimal sincere positive
1-root of X' satisfying |2'| < |x|.

Proof. (a), (b) and (c) are obvious. In (d) the weak non-negativity of
X' is clear. By 3.1 we know x;; = xj; = 1 and x;; € {—1,—2}. If x;; = —1,
then xj; =1+1—1=11f x;; = =2, then xj; =1 +1—2=0. Part (e) is
an immediate consequence of the previous parts. m

Note that applying this lemma to a unit form will usually lead to a

semiunit form. So it is just this lemma that made it necessary to introduce
semiunit forms.
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4.3. Using the previous lemma, we can switch to another weakly non-
negative, finitely sincere semiunit form with a maximal sincere 1-root 2’ of
smaller norm provided in our given root x we find 7, j such that x;; > 0 and
x; > ;. We will now see that the last restriction is not essential.

For an integer form x : Z" — Z and indices ¢ # j we consider the
restriction ¥/ = (XRi_jl)\J where J = {1,...,i—1,i+1,...,n}. The form
X' is called the tightening of x with respect to (,7).

To formulate the properties of x’, let L; be the subgroup of Z" consist-

ing of all # = (x1,...,2,) such that z; = x;. We observe that the map
A : 77 — L; given by (A(2'))r, = 2}, for k # i and (A(2')); = ) is an

isomorphism. The following lemma is an immediate consequence of the pre-
vious considerations of this section.

LEMMA. Let x : Z" — 7Z be an integer form and X' be the tightening of
X with respect to (i,7). Then the following assertions hold:

(a) A(Cy) C Cy, in particular A is order preserving.

(b) xA(@") = X'(2') for all 2’ € Z7, in particular A maps the set of
positive 1-roots (resp. 0-roots) ' of x' bijectively to the intersection of L;
with the set of all positive 1-roots (resp. 0-roots) of x.

(c) If x € Z™ is sincere positive and x; = x;, then 2/ = x|J is sincere
positive and |r'| < |z|.

(d) If x is a weakly non-negative semiunit form and x;; < 0 then X' is
also a weakly non-negative semiunit form.

(e) If x is a weakly non-negative semiunit form with x;; <0 and x is a
mazimal sincere positive 1-root of x with x; = xj, then X' is a weakly non-
negative semiunit form and x’' = z|J is a maximal sincere positive 1-root of
X' satisfying |2'| < |x|.

4.4. Sections 4.1 and 4.2 furnish the proof of our fundamental reduction
theorem:

THEOREM. Let x : Z! — Z be a weakly non-negative semiunit form and
T a mazximal sincere positive 1-root of x. If we write I as the disjoint union
of two subsets J and K, then there is a weakly non-negative semiunit form
X : 2" — 7, a mazimal sincere positive 1-root &' of X' and a monomorphism
p: 7! — 7! with the following properties:

(a) I' is the disjoint union of K and a subset J' of J.

(b) p(2) = 2z for all z € ZF.

(c) p(Cp) C Cy, in particular ¢ is order preserving.

(d) xo(z') = X'(2') for all 2" € Z"', in particular ¢ induces an injection
from the set of positive 1-roots (resp. 0-roots) of x' to the set of positive
1-roots (resp. 0-roots) of x.
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(e) p(a') ==
(f) xi; >0 foralli,j € J.

Proof. We apply 4.1 and 4.2 as long as we find vertices i,j € J such
that x;; < 0. This process has to stop since the norm of the considered
maximal sincere positive 1-root always decreases. m

The triple (x',2’,¢) in the above theorem is called a full reduction of
the pair (x,x) with respect to the subset J of I.

4.5. The reduction theorem usually decreases the number of variables
occurring in the form obtained. We also need a process increasing the number
of variables called doubling of vertices (see [D-Z]).

Let x : Z™ — Z be an integer form. For i € {1,...,n} we define a new
integer form x® : z"*1 — 7z by xO|{1,...,n} = x, X&—l,n—kl = x4 and
(e(n +1),e(5))y0 = (e(i),e(j))y for all j = 1,...,n. We say that X s
obtained from x by doubling the vertex i. Actually, the bigraph of x@ is
constructed from the bigraph of x by doubling the vertex i thus obtaining
two vertices 7 and n + 1. The edges between these two vertices depend on
XEQJFI)Z. = 2xy;. Clearly, if x is a semiunit (resp. unit) form, then Y@ is a
semiunit (resp. unit) form as well. To understand the relation of y and x®,
it is suitable to introduce the surjective homomorphism 7 : Z" ! — Z" given
by (m(x))r = xp for k # i and (7(z)); = ;i + Tp1-

LEMMA. If x : Z" — 7 is an integer form, then the form x obtained
by doubling the vertex i has the following properties:

(a) m(Cpy1) = Cp and therefore 7 is order preserving. In addition, for
0<z<yinZ andy > 0 in Z"" such that 7(y') = y there exists
2 €z with 0 < 2’ <9/ and 7n(2') = .

(b) (@,9)y0 = (7(x),7(y))x for all x,y € Z"Y In particular, ™ maps
the set of positive 1-roots (resp. 0-roots) of O surjectively to the set of
positive 1-roots (resp. 0-roots) of x.

(¢c) Rad x = Rad x ® Z(e(n+ 1) — e(4)). In addition, a vector x € Z"+1
lies in Rad® x9 if and only if it can be written as y + q(e(n + 1) — e(4))
where y € Rad™ x and q is a non-negative integer such that q < y;.

(d) x is weakly non-negative if and only if X is weakly non-negative.

(e) & € Cpy1 is a mazimal positive 1-root of X9 if and only if (z) is a
maximal positive 1-root of x.

Proof. (a), (b), (c) and one direction of (d) are obvious. For the converse
we pick x € Cy,11 and from 7(x) € C,, we obtain x¥(z) = x(n(z)) > 0. For
(e) we observe that in the case of a 1-root y of x(?) such that y > x also
m(y) > m(x) holds. Conversely, if z is a 1-root of x satisfying z > m(z), then
it is easy to find y such that 7(y) =z and y > x. =
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REMARK. Obviously, e(n41)—e(i) € Rad x9). If, conversely, ' : Z"+1 —
Z is an integer form such that x'|[{1,...,n} = x and e(n+1) —e(i) € Rad x/,
then y' = x@.

5. 2-layer 1-roots. Throughout this section we suppose that x : Z" — Z
is a weakly non-negative semiunit form.

5.1. LEMMA. Let u be a positive 0-root of the weakly non-negative semi-
unit form x and x € Z™. Suppose there is a non-negative integer n such that
x + np is positive and sincere. If (z, )y = 0, then p € Rad x.

Proof. If we assume u ¢ Rad y, then there exists ¢ such that by 3.1 we
have 2(e(i), u) > 1. Hence there is [ € N with 2(x + lu,e(i)) = 2(x,e(i)) +
12(p,e(i)) > x(z) + 2. Putting ¢ = max{n,l} and y = x + tu, we see
that the sincere positive vector p satisfies 2(y, e(i)) > x(x) + 2. Observing
that (z,u) = 0 implies x(y) = x(z), we arrive at the contradiction 0 <

x(y—e(i) < x(x) +1—2(e(i),y) < —1. =

5.2. A positive 1-root x of  is called 2-layer if there exist positive O-roots
i, i/ such that p+ p' = .

PROPOSITION. Suppose x is a positive 1-root of the weakly non-negative
semiunit form x. If p is a positive 0-root of x such that p ¢ Radx and
x > W, then x — p is a positive 0-root as well. In particular, x is 2-layer.

Proof. Without loss of generality we may suppose that x is sincere. By
5.1 we obtain (z, u) # 0. The inequalities 0 < x(z — p) = x(z) — 2(x, u) =
1—2(x,pn) and 0 < x(z +nu) = x(z) + 2n(x,u) = 1 + 2n(x, ) show that
2(z,u) = 1. Hence x(x — pn) = x(z) + x(1) = 2(z,p) =14+0—-1=0. m

COROLLARY. Suppose z is a maximal positive 1-root of a weakly non-
negative semiunit form x. If there is a positive 0-root u such that x > u,
then x is 2-layer.

5.3. LEMMA. Let x : Z! — Z be a 0-sincere weakly non-negative semiunit
form. Suppose there is i € I such that x|(I \ {i}) is a unit form. If the set
U of all y € Rad™ x satisfying y; = 1 is non-empty and finite, then y; < 6
forallye U and j € 1.

Proof. We claim that x' = x|(I \ {i}) is weakly positive. If not, there
is some positive y’ such that i ¢ supp p’ and x(¢') = 0. From Lemma 3.5
we know that 1/ € Rad™ y, which contradicts the finiteness of U.

Let now y € U. As x(y —e(i)) = x(e(i)) = 1, we deduce that y — e(i) is
a positive 1-root of the weakly positive unit form x’. m

THEOREM. If x is a maximal positive 2-layer 1-root of a weakly non-
negative semiunit form x : 2" — 7Z, then x; < 12 for alli=1,...,n.
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Proof. Let x = pu + p/ with p, 4/ positive 0-roots of . We inductively
double all points i € I = {1,...,n}. Of course, the resulting form y : Z! — Z
does not depend on the ordering chosen. We write I = {1,...,2n} as I =
{1=,...,n JU{1",...,n"} where i~ =iand it =i+nforalli=1,...,n.
Clearly, the projection map 7 : Z! — 7! sending e(i~) and e(i*) to e(i) has
by induction the properties listed in Lemma 4.3.

We put p= = 37 pie(i7), = = 3y pie(it) and T = p~ + pt. As
7m(Z) = x, part (d) of Lemma 4.3 tells us that T is a maximal positive 1-root
of X.

The sets I~ = suppp~ and I = supp u™ have the property that I~ U
I = supp®. Consequently, ¥/ = X|I~ U I is a finitely sincere semiunit
form and T is a maximal sincere positive 1-root of y’.

Let now (1, z,¢) be a full reduction of (x/,T) with respect to I~ where
n:7Z7 — 7Z and J is the disjoint union of J~ and I*. Putting A = z|J~, we
see that z = X\ + u™, yielding ¢(\) = p~ and therefore n(\) = Xp(u~) =
X(¢™) = x(p) = 0. Writing this down explicitly yields 0 = 3 ;c;- m:iA? +
>i<j MijAiAj. By construction all n;; are non-negative. Thus the sincerity of
A forces all 7;; to be 0. Without loss of generality there is i™ € It such that
Ni+i+ = 1. By Lemma 3.4 we see that n|IT is a unit form and J~ consists of
just one element w. Moreover, there is a unique i+ € I'™ such that 1+ =1
and ,u;; =1=z,.

Putting o' = n|I™ = x|IT = x|supp('), we deduce from 5.1 that u* €
Rad* 7. The vector ut is contained in the set U = {y € Rad™ 7' : y;+ = 1}.
We observe that (e(j7),y), = 0 and (e(w),y), = yiy = Lforally e U
and j* € I't. The assumption that the set U is infinite would lead to the
existence of 1,1y € U satisfying 3y’ < y. But then 0 < y — ¢/ would lie in
Rad™ 7, contradicting the finite sincerity of 7. Hence U is finite and by the
above lemma we obtain p;+ < 6 for all jT € I'". But this shows ,u;» < 6 and
by symmetry also p; <6 forall j=1,...,n. =

6. Semigraphical forms

6.1. A semiunit form y : Z! — Z is called semigraphical if there exists
w € I such that x.; < 0 for all ¢ € I with 7 # w and x;; > 0 for all ¢,j # w.
An index w as occurring in the definition is called a center. The center is
unique provided card I > 2.

The graphical forms y introduced in [Ri] are just the semigraphical unit
forms such that |x;;| <1 for all 4,j € I. Graphical forms x with card I > 2
are usually visualized by their reduced bigraph B’(x), which is just the full
subbigraph of B(x) supported by the edges different from the center. Note
that B’(x) does not contain any solid edge hence is a graph with dotted
edges.
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6.2. We observe that a weakly non-negative semigraphical semiunit form
by 3.1 is actually a unit form; we investigate the critical semigraphical unit
forms. First we notice that the form C(1) given by the Kronecker bigraph

is obviously a critical semigraphical unit form. As shown in [Ri] there are
up to isomorphism exactly 6 critical graphical forms, namely C(2),...,C(6)
and C(4'), whose reduced bigraphs are presented in the list below where
we replace the vertices by the coefficients of the characteristic vector. The
coeflicient of the center w is the encircled number in the lower right corner.
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LEMMA. If x : Z' — Z is a critical semigraphical unit form and card I

> 2, then x is actually graphical. Hence the critical semigraphical forms are
exactly the forms C(1),...,C(6) and C(4").

Proof. As cardI > 2, clearly x.; = —1 for all i # w. Hence we only
have to show x;; < 1 for all 4, j different from w. Observing that for i # j the
vector e(i) —e(j) and the characteristic vector of x are linearly independent,
we obtain 1 < x(e(i) —e(j)) =2 — xij. =

6.3. LEMMA. Let x : Z! — Z be a weakly non-negative semigraphical unit
form with center w satisfying x.; = —1 for all j € I different from w. We
fix i € I different from w and put S; = {j € I : xi; > 0}. If x is a positive
sincere vector, S is a subset of S; and x; — 2(w,e(i)) > Ty — Y je5 Tj, then
S =2S5; and x;; =1 for all j € 5;.

Proof. We calculate

x; — 2(x,e(i)) = x; — Z XijTj — 2 + Ty = Xy — ij —A
JjES; jES
J#i
where A =37, cs(xi; — Dz + > jesi\s XijTj = 0. By assumption it follows
that A = 0, which implies S; \ S = () and x;; = 1 for all j € S since z is
sincere. m

THEOREM. Suppose x : Z! — Z is a weakly non-negative, finitely sincere,
semigraphical form with center w. Let x be a mazimal sincere positive 1-
root of x such that x,, is maximal among all those 1-roots. If x has only 1
exceptional vertex, then x, < 7.

Proof. Note that card I > 3. Let 7 be the exceptional vertex of x, thus
2(e(i),x) = 1, z; = 2 and 2(e(j),z) = 0 for all j # i. Without loss of
generality we may assume x,, > 7, which shows w # i. We will carry out the
proof by showing several claims.

CLAM 1. xuj = —1 for all j # w.

Assuming that this is false furnishes a point j such that x,; = —2 and
consequently x(e(w)+e(j)) = 0. In the case j # i we obtain (e(w)+e(j), )
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= 0 and therefore e(w) + e(j) € Rad™ x by 5.1. By Proposition 3.2 this

yields a contradiction. For j = i because of x — 2e(i) — 2e(w) > 0 we get the

contradiction 0 < x(x — 2¢(i) — 2e(w)) =1+ 0 — 4(z,e(i) + e(w)) = —1.
CLAIM 2. x5 <1 for all j # w.

Assuming x;; > 2 for some j # i,w would give x(e(i) — e(j)) < 0.
Since = — 2(e(i) — e(j)) > 0, we would arrive at the contradiction 0 <
w(z—2(e(i)—e())) = x(2)+Ax(e(i)—e())—A(z, (i) —e(j)) < 1+0-2 = —1.

CLAIM 3. Xi,5, > 0 for all j1,jo # w satisfying xij, > 0 < Xijs-

Of course, for j; = jo nothing has to be proved. Assuming that the
claim fails for some j; # jo, we first deal with the case where ji,jo are
both different from . Using Claims 2 and 1, we get y := 0,0;,0j,0i(x) =
ow(x —e(i) +e(j1) +e(f2)) = z = e(i) — e(w) + e(j1) + e(w) +e(j2) + e(w) =
x+e(w)+e(j1) +e(j2) —e(i). This is a contradiction to the maximal choice
of = since y is a sincere positive 1-root of x satisfying y, = z,, + 1. In the
case j1 = ¢ we can use the same vector y for a similar argument.

CrAIM 4. For S; := {j : xij > 0}, the following assertions hold:

(i) zj =1 for all j € S;, j # 1.

(ii) xjk =1 for all j,k € S;.

(iii) If j € S; and k € I such that xj, > 0, then k € S;.

(iv) card S; =z, — 2.

Using Claim 2, we calculate 1 = z; —2(e(i), ) = 2 — 3 e, XijTj — Ti +
Ty = Ty — 2 jes, Tj- By Claim 3 we obtain 5; C .S; for an arbitrary j # i.
Observing that

1 <aj=x;—2(e(j), z)

=T — Z XjkTk — 225 + T < Ty — Z T <Xy — Zwkzl,
kESj,k;ﬁj kGSj kes;
by application of Lemma 6.3 we obtain (i)—(iii). From the equation 1 =
Ty —1—3eg, 1 it follows that card S; = x,, — 2, which is (iv).

Proceeding with the proof we see that because of x, > 7 the form x
cannot be weakly positive. Thus there exists a critical restriction x|J which
has to be one of the C(i), 2 < i <6, or C(4).

CramM 5. S; C J.

If pu is the characteristic vector of x|J then by 5.1 we get 0 # 2(u,z) =
>jerti2(e(d), x) = p; and thus i € J. For all j € S;, j # 4, we see that
ojoi(z) = = — e(i) + e(j) is still a positive sincere vector. Again using 5.1
we get 0 # 2(p,0504(2)) = Yper in2(e(k),z — e(i) + e(j)) = pj;, where the
last equality is obtained by going through all possibilities for & and applying
Claim 4.
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Using again Claim 4, we see that the bigraph of x|J contains as full
subbigraph a full graph on z, — 2 > 5 vertices with single dotted edges.

Hence x|J can be identified with C(6). We finish by deriving z,, —2 = 5 and
hence z, = 7.

6.4. We will need a classification of the hypercritical semigraphical unit
forms x such that —1 < x;; for all 4,j. It is helpful to observe that they
actually satisfy x;; <1 for all 7, j.

Namely, if x;; > 2 for some 4,j, then x(e(i) — e(j)) < 0. Since x is
not weakly non-negative, we find 0 < v € Z! such that x(v) < 0. Possibly
interchanging i and j we may suppose that (v,e(i)) > 0. We obtain

x(v —vile(i) —e(j))) = x(v) + x(e(z) — e(j)) — 2vi(v, e(i) —e(j)) <0,
contradicting the weak non-negativity of x|I \ {i}.

LEMMA. If x : Z' — Z is a hypercritical semigraphical unit form such
that —1 < x;j for alli, j, then x is one of the graphical forms HC(2'), HC(2),

HC(3), HC(4'), HC(4), HC(5), HC(6) whose reduced bigraphs are shown in
the following list.

O
O O O O O O O O ;
HC(2) HC(2) O
O O O
Hc(g)o O O """"" O
(OREEERERES O O
oo a’ O




180 P. DRAXLER ET AL.

@) O--------- O
O /II \\\ i \></ i
wHey O O O--------- O
O O 0z::---:0
E E ////")\/,E:\\IL/ \\ .
e  ofA g
He(s) O © O~
.. .0
Q | e
© . On R SRR SRR -0
O e
HC(6) O O

Proof. Since —1 < x;j, there has to be a critical restriction x|J of
type C(2), C(3), C(4'), C(4), C(5) or C(6). By [Pe2| the set I\ J consists of
exactly one element s and for the characteristic vector p of x|.J the inequality
2(u,e(s)) < 0 holds. For all j € J satisfying 1; = 1 we obtain 0 < x(p —
() +e(s)) = 2+2(p.e(s)) — Xy Hence 2 > ~2(y1,e(5)) = 1 — s fiXoi
> 0 and even —2(y,e(s)) = 1 provided there exists j € J such that x,; = 1.

A case by case inspection using these numerical conditions easily shows
that the above bigraphs are the only possible candidates. Then one readily
checks that these forms are actually hypercritical. m

7. 0-sincere unit forms

7.1. The following basic results on 0-sincere forms can be found in [DP].
For convenience of the reader we include a short sketch of the proof.

PROPOSITION. Suppose x : ZI — Z is a O-sincere unit form and let
{J1,...,Jm} be the set of all subsets J of I such that x|J is critical. For
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alli=1,...,m we denote by u; the characteristic vector of x|J;. Then the
following assertions hold:

(a) If n € Rad™ x is sincere, then there exist p € N and q; € Ny such
that pp = 3771 Gitki-

(b) I =U i

(c) For any x € Rad x there exists r € Z such that rx € Y i Zi;.

(d) i, Zpi is a subgroup of Rad x of finite index. In particular, x is
of corank < m.

Proof. Let € Rad' x be sincere. We prove (a) by induction on n =
card I. Since x is O-sincere, we know n > 0. For n = 2 we obtain x = C(1)
where the claim is obvious. For n > 2 there is some linear combination
0 < w = qu— pu, with p,¢g € N and K := suppw is a proper subset
of I. Then by induction (a) holds for the sincere vector w € Rad™ x|K.
Consequently, (a) and also (b) are proved.

For (c) we choose a sincere y € Rad™ y and a € N such that w = au lies
in Rad™ x and is again sincere. Now we apply (a) to w and p. Clearly, (d)
follows from (c). m

7.2. It does not seem to be obvious that a 0O-sincere form of corank n
has to have a 0-sincere subform of corank n — 1. To establish this result, we
need the following lemma.

LEMMA. Suppose V), ... 2" ¢ Ng are Q-linearly independent vectors
satisfying supp(d_i_; m(i)) ={1,...,n}. Then there exist Q-linearly indepen-
dent vectors 21, ... 271 € NP in S°7_, Zz® such that supp Z:;ll 20 g
a proper subset of {1,...,n}.

Proof. We apply induction on r. For r = 1 there is nothing to prove.
In the case r > 1, if necessary, we replace () by S7_, 2®) = {1,... n} in
order to establish that z() is sincere. By induction for zW . 20D there
are z(M ... 2("=2) a5 required. Since supp ::_12 2 is a proper subset of
{1,...,n}, after possibly rearranging indices and vertices, we may suppose
that there is some [ € N, 1 <[ < n, such that forallt=1,...,7—2 we have
z](»z) =0forall j =1,...,[, whereas for all j > [ there is an index 7, 1 < ¢ <

r—2, satisfying zj(-i) > 0. As (Y is sincere, the vectors 2, 21 . 2(r=2)

are
Q-linearly independent. Because 2z 20 are Q-linearly independent,
without loss of generality we may suppose that even z("), 21 1) 2(r=2)
are Q-linearly independent. Defining p/q as the minimum of all quotients
xy)/xgl), we find that z = gz(") — pz(!) > 0 and there is k, 1 < k < n, such
that 2z, = 0.

Since we may freely replace (") by (") + M 2" where M is any natural
number, it is possible to shift the minimum & until & < [. Therefore without
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loss of generality we may even suppose z; = 0. Putting 2™V = 2, we

conclude that 2 M 20D are still Q-linearly independent and 1 ¢
supp ;;11 20w

PROPOSITION. If x : ZI — 7Z is a 0-sincere weakly non-negative unit form
of corank r, then there exists a proper subset J of I such that the restriction
x|J is 0-sincere and of corank r — 1.

Proof. By 7.1 we can find vectors z(1),... z(") ¢ Ni which are Q-
linearly independent and lie in Rad x. We apply the previous lemma and
put J := supp Z::_ll 2 Obviously, the corank of x|J is > r — 1. But, since
X is non-negative, Rad x|J is a subgroup of Rad x. This subgroup has to be
proper, as it does not contain any sincere vector. Consequently, the corank
of x|JisTr—1. m

7.3. A O-sincere weakly non-negative unit form y is said to be reduced
provided x;; < 1 for all vertices 7,j. The reason for calling these forms
reduced is the following assertion.

LEMMA. Suppose x : Z! — 7 is a O-sincere unit form. Then x is not
reduced if and only if there exists a vertex i such that x is obtained from
x|\ {i} by doubling a point.

Proof. The sufficiency of the condition is clear. To prove necessity,
we fix 4,j such that x;; > 1 and derive from 3.1 that x;; = 2. Hence
0=2— x4 = x(e(i) —e(j)), which by 5.3 and Remark 4.5 implies that x is
obtained by doubling a point. =

8. Graphical 0-sincere forms of small corank

8.1. In [Za] (see also [Si]) the sincere partially ordered sets of poly-
nomial growth were classified. Among others there occurred the sets Apg,
A11 and W5, ..., Wa. We denote the corresponding Tits forms by the same
symbols. These forms are by construction graphical and are known to be
non-negative. In fact, more details about them can be found in [Ri] because
the corresponding posets are domestic tubular or tubular.

Let us display the corresponding reduced bigraphs. We replace each ver-
tex by a tuple of numbers which are the coefficients of the characteristic
vectors of the critical restrictions. Since we know that these coefficients are
integers between 0 and 6, we do not insert any separators between the differ-
ent numbers. Again we provide the coefficients at the center inside a circle
in the lower right corner.
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LEMMA. Let x : ZX — 7Z be a reduced non-negative semigraphical form
such that there is no critical restriction of the form C(1), C(2), C(3) or C(4').
Suppose that J is a subset of K such that card J = card K — 1.

(a) If x|J = C(4), then x coincides with one of Ay, A1 and is of
corank 1.

(b) If x|J =C(5), then x coincides with one of W7, Y19, Wy and is of
corank 2.

(c) If x|J = C(6), then x coincides with one of Wig, Yoo and is of
corank 2.

(d) If x|J = A1 or = A1 and p is the characteristic vector of the
unique critical restriction (of type C(4)), then x is of corank 2 and either x
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coincides with one of W15, Yig, Y17, Y1s or Rad x has generators p,v such
that vs = 1 and v; = —1 where s,t are the 2 vertices not belonging to supp p.
In particular, in this second case the form x is not 0-sincere.

Proof. The statements about the coranks can be found in [Ri] with
the exception of the non-0-sincere forms appearing in (d), which have to be
calculated explicitly.

For (a)—(c) denote by k the vertex in K \ J and by p the characteristic
vector of x|J. Since u € Rad(x), we get 0 = 2(e(k), 1) = pw — Djes M)
where S := {j € J : xx; = 1}. The rest of the proof consists of an inspection
of the few cases left possible by this condition.

To show (d) we observe that we can apply (a) to the restriction of x to
the union of C(4) and the additional vertex. Hence there are again only a
few cases left to examine. =

8.2. THEOREM. Let x : Z' — Z be a reduced 0-sincere semigraphical
form such that there is no critical restriction of the form C(1), C(2), C(3)
or C(4"). Then the corank of x is 2 if and only if x is one of the forms
Vs, .., Woo.

Proof. That the forms W5, ..., ¥y have the desired properties follows
from [Ri], which was already stated in the proof of the above lemma.

For the converse we choose a critical restriction x|J. Since x is of corank
2, the set J cannot exhaust I and we can apply the above lemma to the
union K of J with an arbitrary vertex. In the case when y|J coincides with
C(5) or C(6), parts (b), (c) of the lemma show that x|K = x since corank
2 is already reached. If x|.J is of shape C(4), then part (a) shows that x|K
is still of corank 1; therefore K is still a proper subset of I, and we can add
another point to obtain a subset K.

Changing the notation for K to J and for K’ to K we are able to apply
part (d) of the above lemma. Thus it remains to exclude the possibility of
X|K being a form of corank 2 which is not 0-sincere. But, since  is O-sincere,
the last condition shows that in this case K would still be a proper subset
of I, leading to the contradiction that x would be of corank > 3. =

REMARK. The forms ¥is, ..., Wy appearing in the above list have pre-
cisely two critical restrictions. An inspection shows that there are vertices
i,j such that the restrictions of the two characteristic vectors p®), p(
corresponding to {i,j} are just the canonical base vectors (1,0), (0,1).
In particular, this means that any sincere ;. € Rad™ x can be written as
w= nl,u(l) + nQ,u(Q) where n1,no are positive integers.

8.3. Fortunately we do not need the corresponding complete classifica-
tion of forms of corank 3 but will only use certain properties of these forms
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which we will establish in this final part of this section. Let us start with an
ad hoc definition. We call a O-sincere reduced graphical form y : Z! — Z tri-
angular provided there are precisely three critical restrictions I, I, I3 such
that for all ¢ # j € {1,2,3} the restriction x|I; U I; is a 0O-sincere form of
corank 2.

LEMMA. Let x : ZX — 7Z be a reduced non-negative semigraphical form
such that there is no critical restriction of the form C(1), C(2), C(3) or C(4').
Suppose that J is a subset of K such that card J = card K — 1. If x|J is
0-sincere of corank 2, then x is a 0-sincere form of corank 3 which is either
triangular or one of the forms ©1, O2 whose reduced bigraphs are shown
below.

Proof. Since x|J is of corank 2, we can apply Theorem 8.2 to deduce
that x|J is one of the forms ¥y5, ..., Wyy. We denote by k the vertex in K\ J,
choose a critical restriction J’ of J and apply Lemma 8.1(a), (b) or (¢) to
the restriction of x to J’' U {k}. By inspection of all possibilities how k can
be connected to the vertices of J \ J' we obtain the result. =

Let us present the reduced bigraphs of @1, @>. We again replace the

vertices by the coeflicients of the characteristic vectors of the critical re-
strictions.

221001 _ 1122100
111111------ 111111 A
%) 210012 - 4- - - le s s oo 012210
11111------ 111111 e
0, 100122 001221
1111
1100~ i,
AN T=-0101 /1N
1 N |\\7/‘\l AN
2222-------- 0112 : 1223 Lo uan
N : e ",l\’/T/ J
o 001y
1010~ S
2 1111
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THEOREM. Let x : ZI =7 be a reduced 0-sincere semigraphical form such
that there is no critical restriction of the form C(1), C(2), C(3) or C(4'). If
the corank of x is 3 then x is either triangular or one of the forms Oy, Os.

Proof. By Proposition 7.2 there is a restriction x|J of x which is of
corank 2. We choose a vertex k € I \ K and apply the above lemma to
K := JU{k}. Since the lemma tells us that the corank of x|K is 3, we get
K = I and the theorem is proved. =

REMARK. We need a remark corresponding to the above for the corank 2
case. Namely, here an inspection shows that for the triangular forms appear-
ing in the above theorem there are vertices i, j, k such that the restrictions
of the characteristic vectors @, u@, 1®) to {i,7,k} are just the canonical
base vectors (1,0,0), (0,1,0), (0,0,1). In particular, this means that any
sincere € Rad™ x can be written as p = nyju + nop® + nap® where
n1, N2, N3 are positive integers.

A similar property still holds for @, where there are vertices i, 7, k,!
such that the restrictions of the characteristic vectors pM, p2, u®  1®
to {1, J, k,l} are the vectors (1,1,0,0), (1,0,1,0), (0,1,0,1), (0,0,1,1). This
shows that after possibly renaming the vertices any sincere u € Rad™ x can
be written as y = nlu(l) + ngu@) + ng,u(3) where ni1,no, n3 are non-negative
integers and ni,ny are positive.

9. Proof of the main theorem

9.1. We assume the existence of a weakly non-negative, finitely sincere
semiunit form y : Z’ — Z which has a maximal sincere positive 1-root x
with a coordinate x; > 12 and try to establish a contradiction.

Applying 4.4 we replace x, z by x’, 2’ where (X', 2/, ¢) is a full reduction of
(x, z) with respect to I'\ {i}. Obviously, card I’ > 2. If there exists i # j € I
such that xi; > 0, then xj; > 0 for all k € I', which by Remark 3.2 implies
Xj; = 0. This shows that e(j) is a positive 0-root with the property ' > e(j).
By Corollary 5.2 the 1-root 2’ is 2-layer, which by Theorem 5.3 yields the
contradiction a} < 12.

Hence in the sequel we only have to deal with the case of x’ being a
semigraphical unit form with center i. In order to simplify notation we re-
place X’ by x, ¢’ by « and i by w. If x has a critical restriction y|J which is
of the shape C(1), C(2), C(3) or C(4’), then the characteristic vector of this
restriction is a O-root u satisfying z > p. Again we obtain a contradiction
by Corollary 5.2 and Theorem 5.3.

9.2. Let us sum up to what extent we have already reduced our original
problem. To produce a contradiction, we now have at our disposal a weakly
non-negative, finitely sincere semigraphical form x : Z! — Z with center
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w having a maximal sincere positive 1-root x with z, > 12 and having the
property that any critical restriction is of the shape C(4), C(5) or C(6). Since
C(1) does not occur, we know that x;, = 1 for all i € I different from w.

Among all forms  as above we consider one where the number of vertices
card I is minimal. Section 4.5 shows that this choice implies that x is not
obtained from any subform by doubling a vertex. By 3.4 the 1-root z has one
or two exceptional vertices. If z has only one exceptional vertex, applying
Theorem 6.3 we arrive at the contradiction x, < 7.

Thus there are exactly two exceptional vertices ¢ # j which have the
property that z; = z; = 2(x,e(?)) = 2(z,e(j)) = 1 and 2(z, e(k)) = 0 for all
k # i, 4. Because of x, > 12 we see w # 1, j.

9.3. We observe that the form x|/ \ {7,j} is weakly positive. Indeed,
otherwise there exists a critical restriction of this form having a character-
istic vector u, which yields the contradiction x(u + z) = x(z) = 1. Using
this observation we can prove:

LEMMA. If 0 < z € Z! satisfies z, <1 for allk € I, k # w, 2 =zj=1
and x(z) <2, then z, > 6.

Proof. Assuming z, < 6, we obtain x — z > 0 and therefore 0 <
x(x—2) = x(2)—1 < 1. Thus z— z is a positive 1-root of the weakly positive
form x|I \ {4,j}, which shows (x — z), < 6 and finally the contradiction
T, <12. m

We can apply this lemma immediately to show that x;; € {2,3}. By 3.1
we know that 0 < x;; < 3. The lemma shows that x;; € {0,1} is impossible
by using the vector z := e(w) + e(i) + e(j), which satisfies x(z) < 2.

9.4. Let us consider the unit form ¥ : Z/ — Z defined by X(y) = x(y) —
y;y; for all y € Z!. Clearly, z is a sincere positive 0-root of . We want to
show that ¥ is weakly non-negative and consequently a O-sincere unit form.

If we assume that  is not weakly non-negative, then there has to be a
critical restriction |J where J has to contain both i and j. If x;; = 3, we
have a contradiction to 6.4. If x;; = 2, we see from 6.4 that the reduced
bigraph of |J contains a subbigraph K satisfying i,j € K of one of the
following two shapes:

e =

e
N

= e
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Defining vectors z € ZKXY{«} as shown in the pictures above and considering
them as elements of Z!, we obtain X(z) = 1 resp. x(z) = 2. This is a
contradiction to the previous lemma.

9.5. As the next step we convince ourselves that X, < 1 for all s,t € I
such that {s,t} # {i,j}. As X is O-sincere, by 3.1 we only have to show that
Xst = 2 leads to a contradiction for s # ¢ such that {s,t} # {i,j}.

If {s,t}N{i,j} = 0, then by 7.3 the forms ¥ and also x would be obtained
form the restriction to I\ {¢} by doubling the point s.

If the intersection of {s,t} and {7, j} is just ¢ = j, then we consider the
positive 1-root y := x—e(i) of n = x|I\{i}. If n were weakly positive, then we
would get x,, = y,, < 6. Hence 1 has a critical restriction with a characteristic
vector v. By 7.3 the form X is obtained from x|I'\ {j} by doubling s. Hence
also n is obtained from n|I \ {7,j} by doubling s. Consequently, the vector
w = v — vje(j) + vje(s) is a O-root of n and also of x, which gives the
contradiction x(z+w) = x(z)+2(w, z) = x(z)+2w;(e(i), z)+2w;(e(j), z) =
x(z) = 1.

9.6. Before we continue, let us recall that because of the positive defi-
niteness of ¥ any 0-root of X lies in Rady. Consider the restriction £ of x
to I’ := I\ {i} which, being a restriction of ¥ as well, is a non-negative
reduced semigraphical form. The vector y = = — e(i) = o;(z) is a positive
1-root of x and therefore a sincere positive 1-root of &. As y,, > 12, we know
that & is not weakly positive and consequently the 0-sincere kernel £ of &
is non-trivial. We want to establish that £ is of corank < 2.

Assume that the corank of £ is at least 3. Then by 7.3 the form &*
has a O-sincere restriction ( whose corank is precisely 3. We will obtain a
contradiction using again Corollary 5.2 and Theorem 5.3 by constructing a
positive O-root p such that x > pu.

In fact, by Theorem 8.3 the form ( is either triangular or coincides with
©1 or Oy. If ( = O, the positive 0-root z defined by 2z, = 5 and z, = 1
for all other vertices allows us to apply Corollary 5.2 and Theorem 5.3 im-
mediately. If { happens to be triangular, we denote by p1, uo, g the char-
acteristic vectors of the three critical restrictions Iy, I, I3 such that for all
s # t the union I;U I} is 0-sincere of corank 2 and consequently, by Theorem
8.2, is one of the forms Wys,...,Wy. Looking at these forms, we find that
{(ns — )k : k€ I, k # w} ={=1,0,1} and (us — pt)w € {—2,0,2}. If
¢ = O3 the same holds for the the first three vectors i, s, 3 displayed in
8.3 although this form is not triangular.

We claim that at least two of the three numbers 2(e(i), p1), 2(e(7), u2),
2(e(7), p3) are equal. Indeed, otherwise there exist s, ¢ satisfying 2(e(), ps) —
2(e(i),p¢) > 2 and therefore also 2(x,ps — ) = 2(y + e(i), us — pe) =
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2(e(i), us — p¢) > 2. On the other hand, = — (us — p¢) > 0, yielding the
contradiction 0 < x(z — (s — 1)) = x () + x (s — i) — 2(w, ps — py) < —1.

Supposing now that without loss of generality 2(e(i), 1) = 2(e(q), p2)
and (pu1 — pe), > 0, we obtain p; — us € Rad y. Putting d := min{zy :
(1 — p2)x = —1}, it follows that z := = + d(u; — po) is a positive 1-root
of x satisfying z, > 12 but z is not sincere. By the subsequent lemma we
arrive at a contradiction to the minimal choice of card I.

LEMMA. Let x : ZI — Z be a weakly non-negative semiunit form. Suppose
x is a mazimal sincere positive 1-root of x and u € Rad x. If x +pu > 0 and
J :=supp(x + u), then x + p is a mazximal sincere positive 1-root of x|J.

Proof. Let y > 4+ p. Then y — p > x and x(y — p) = 1. Hence
Y— = =

9.7. It remains to deal with the case where the corank of £ is 1 or 2. But,
before doing so, we also want to establish that ¥ does not admit a critical
restriction of type C(1),C(2),C(3) or C(4’). It is clear that C(1) cannot occur.
If one of the others occurred, then the support of its characteristic vector z
would have to contain ¢ and j because otherwise it would even be a critical
restriction of x. Therefore z would be a positive 1-root of x to which Lemma
9.3 would apply, furnishing the contradiction z, > 6.

9.8. Suppose now that ¢ : ZX — 7 is of corank 2 and therefore classified
in Theorem 8.2. Assume that there exists k € I'\ K. Then by Lemma 8.3 the
restriction of £ to K U {k} is a O-sincere form of corank 3 and consequently
&1 is of corank > 3, a contradiction. Hence I = K U {i}.

If X;; = 2, then X is obtained from £T by doubling 7, and u := x — e(i) +
e(j) is a sincere O-root of £* such that uj = 2. If 1M and @ are the char-
acteristic vectors of the 2 critical restrictions of &1, then u = pu®) + gu®
where p, g € N. Up to symmetry we only need to consider the cases ,ug»l) =1
tradiction to Theorem 5.3 by Corollary 5.2 since (1) is a positive 0-root of .

If X;; = 1, then again by Lemma 8.3 we know that Y is one of the
0-sincere semigraphical forms of corank 3 which are classified in Theorem
8.3. If ¥ = ©q, then the vector z defined by z, = 5 and z; = 1 for all
other vertices is a 1-root of x, thus leading to a contradiction via Lemma
9.3. In the other cases, by Remark 8.3 we always find characteristic vectors
p ) 1@ B) of critical restrictions generating the radical of X such that
z = p1 W + pop@ 4 psp® | where pr, po, p3 are non-negative integers and at
least pi,p2 > 0. Since x; = 1, we may assume that ugl) = 0. Hence we end
up with the same contradiction as above because this x(!) is a 0-root of y
such that z > p(M,

and p'’ = 0. In both cases we obtain z > p(!), which yields the usual con-
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9.9. Finally, we have to examine the case where ¢V is of corank 1, or
in other words, is critical. We denote by u the corresponding characteristic
vector. This case splits into two subcases: in the first one £ is of the shape
C(5) or C(6), and in the second one £7 is of the shape C(4).

In the first subcase we see from parts (b) and (c¢) of Lemma 8.1 that K =
I 1f Xij = 2 then X is obtained from ¢ T by doubling j and we consider again
the sincere positive 0-root u = z — (i) + e(j) of {T. Because u; = 2 we get
u = pu, where p € {1,2}, yielding the contradiction z,, = u, < 2pu, < 12.

If X;; = 1, then again from Lemma 8.1 we see that  is one of the forms
Wiz, ..., Wy, Since x; = 1, the existence of a critical restriction avoiding ¢
whose characteristic vector p satisfies x > p is easy to derive.

Let us consider the second subcase. If I’ \ K happens to be empty, then
for ;; = 2 we can argue as in the first subcase and for ;; = 1, by part (a)
of Lemma 8.1, the form “ is not 0-sincere, a contradiction.

If I\ K is non-empty, we fix a vertex k in this set. Let us first analyze
the situation where I\ K = {k}. Then either X is not O-sincere if ;; = 2
or X is one of the forms occurring in part (d) of Lemma 8.1. For ¥ among
U5, W6, W17, W1g we obtain a contradiction as in the first subcase. Otherwise
X again fails to be 0-sincere.

Supposing now that there are elements in I’ \ K different from k, we
observe that for any k # [ € I' \ K, by part (d) of 8.3, using the fact
that £* is of corank 1, we find a radical vector v() such that l/l(l) =1 and
V](Cl) = —1. Moreover, it is easy to see that the vectors v() together with the
characteristic vector p of £ form a basis of Rad . This shows that ¢ is not
O-sincere, which remains true for x if x;; = 2. To solve the case Y;; = 1, we
apply part (d) of Lemma 8.1 to X|K U {k,¢}. If this form is not O-sincere,
we obtain another radical vector () as above and ¥ is not O-sincere.

If ¥ is among Y5, Y16, Y17, ¥1s, the argument is slightly more subtle.
Denote by p’ the second characteristic vector for Y|K U {k,i} besides p.
One sees that u} = uj = 1 and the vectors v) together with y and p’
form a basis of Rad. If we write x as a linear combination of these base
vectors and observe that z1 = 1, it follows that z; < 0, which is the final
contradiction finishing the proof.

10. Applications to finite-dimensional algebras

10.1. For more details concerning the notions used in this section we
refer to [Ri]. We suppose that A is a finite-dimensional basic algebra over
an algebraically closed field k. We write A = k[Q]/I, where @ is the ordi-
nary quiver of A and I is an admissible ideal of the path algebra k[Q]. To
consider the Tits form y 4 as defined in the introduction we demand that @
is directed, i.e. does not admit oriented cycles.
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We denote by A-mod the category of all finite-dimensional left A-mod-
ules, which we identify with the representations of @Q satisfying I. We do
not distinguish between a module X and its isomorphism class.

On the indecomposable modules X in A-mod we consider the relation
< which is defined as the transitive closure of the relation given by putting
X <Y if there is a non-zero non-isomorphism X — Y. An indecomposable
A-module X is said to be directing if X £ X.

For a given indecomposable module X we define A(X) to be the sub-
algebra of A induced by the support of X. In the natural way X will be
considered as a A(X)-module, which is directing provided X is a directing
A-module. We say that X is properly directing if X is a directing A-module
but belongs neither to a postprojective nor to a preinjective component of
the Auslander-Reiten quiver of A(X).

PROPOSITION. Let A be a tame algebra. If X is an indecomposable prop-
erly directing A-module, then dimy X (i) < 12 for all vertices i € Q.

Proof. Without loss of generality we may suppose A = A(X). Hence A
is a tame tilted algebra having the sincere directing module X. Consequently,
XA 18 a weakly non-negative unit form and dim X is a sincere positive 1-
root of x 4. Thus by our main theorem it remains to show that x4 is finitely
sincere. By [Pe2, 3.2], A is domestic in at most two 1-parameters.

If A were domestic in less than two l-parameters, then A would be
representation-finite or tame concealed. Thus X would be postprojective or
preinjective.

Consequently, A has to be domestic in exactly two 1-parameters. By
[Pe3, 1.6] and [Pe3, 2.1] it follows that x4 is finitely sincere. m

COROLLARY. If X is an indecomposable properly directing module over
a tame algebra A whose ordinary quiver has n wvertices, then dimg X <
2n + 180.

Proof. Again we may assume A = A(X). If n > 20, then A belongs to
the list presented in [Pe4] and one checks directly that dimy X < 2n — 2.

For n < 19 we assume that dim X is a maximal positive 1-root of x4,
which consequently has an exceptional vertex i satisfying dimy X (i) < 2.
Therefore dimy X <2n — Y j #i|dim X (j) — 2| <2n+18(12—-2). »
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