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Sequential topological groups
of any sequential order under CH

by

Alexander S h i b a k o v (Auburn, Ala.)

Abstract. For any α < ω1 a countable sequential topological group of sequential
order α is constructed using CH.

1. Introduction. In [N] P. Nyikos investigated convergence in topo-
logical groups and discovered that some convergence properties which are
different for general spaces may coincide in the class of sequential topologi-
cal groups. He asked whether the sequential order of a sequential topological
group can be nontrivial (i.e. between 2 and ω1). The question was answered
consistently in [S1] where a countable sequential topological group was con-
structed for which the sequential order is known to be between 2 and ω
but is otherwise undetermined (see also [DP], [P] and [F] for examples of
sequential spaces of intermediate sequential order which are “close” to topo-
logical groups). Although answering the initial question raised by Nyikos,
the result left open many other interesting questions about sequential order
in topological groups.

In an e-mail correspondence, R. Pierone asked whether it is possible to
construct a sequential topological group of sequential order 2. In this paper
we answer this question affirmatively constructing sequential topological
groups of any given sequential order.

We use some techniques from [S1] to construct a sequential topology on
Q that makes it a topological group of a given sequential order. The main
idea is to construct the topology by induction “killing” witnesses of high
sequential order on the way by adding new convergent sequences to the
topology. As we need our group to have a nontrivial sequential order some
witnesses should be left untouched however. The major technical difficulty
lies in adding new sequences so that to leave the witnesses of the second
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kind intact. Therefore, we introduce subspaces of special kind as our wit-
nesses. These subspaces turn out to have nice convergence properties. For
example, their sequential order does not rise after adding a compact sub-
space (Lemma 3.8). This property allows one to carry out the main inductive
construction in Lemmas 3.9 and 3.10.

2. Definitions and preliminary results. Let us now give some def-
initions. A space X is called a kω-space if there is an increasing family
K = {Ki : i ∈ ω} of compact subsets of X such that U ⊆ X is open if and
only if U ∩K is relatively open for every K ∈ K. If S ⊆ X and x ∈ X then
we say that S converges to x if for any neighborhood U of x the set S \ U
is finite. Define [A]seq = {x : x is the limit point of a sequence in A}. Then
[A]0 = A, [A]α+1 = [[A]α]seq, [A]α =

⋃
β<α[A]β for limit α. If [A]α = A for

any A ⊆ X, then we write so(X) ≤ α. Now so(X) = min{α : so(X) ≤ α}.
A space X is called sequential if [A]ω1 = A for any A ⊆ X. is(X) denotes
the set of all isolated points of X. The space Sω is obtained by identifying
the limit points of countably many convergent sequences.

Let Q be the set of rationals. Let K = {Kα}α∈A be an arbitrary family
of subsets of Q. Suppose ~a ∈ Qn, ~K ∈ Kn, n ∈ ω \ {0}. Let us write
〈~a, ~K〉 = 〈(a1, . . . , an), (Kα1 , . . . ,Kαn)〉 = a1 · Kα1 + . . . + an · Kαn ⊆ Q,
where ai ∈ Q. Define Q∞ =

⋃
n∈ω Qn, Q0 = {0}. If K ⊆ Q, ~a ∈ Qn we set

~a〈K〉 = a1 ·K + . . .+ an ·K. If ~a ∈ Q0 then ~a〈K〉 = 0. Let Q = {bi : i ∈ ω},
bi 6= bj if i 6= j, Q(i) = {bj : j ≤ i} and Qk =

⋃
i,j≤k(Q(i))j . If a ∈ Q \ {0}

let nQ(a) = n provided a = bn, nQ(0) =∞ > k for any k ∈ ω.
To analyze the intermediate topologies in the construction we will need

the following lemmas which have been proved in [S1].

Lemma 2.1. Let K be a countable family of compact subsets of Q. Then
there exists a countable family C(K) ⊇ K of compact subsets of Q such that :

(1) {a} ∈ C(K) for any a ∈ Q,

(2) if ~a ∈ Qn and ~K ∈ C(K)n then 〈~a, ~K〉 ∈ C(K),
(3) if K1 ∈ C(K), . . . , Kn ∈ C(K) then

⋃
i≤nK

i ∈ C(K),
(4) if K ⊆ K′ and K′ has properties (1)–(3) then C(K) ⊆ K′.

Lemma 2.2. If K =
⋃
β<αKβ and Kβ ⊆ Kβ′ for β ≤ β′ then C(K) =⋃

β<α C(Kβ).

Lemma 2.3. Let K be a countable family of compact subsets of Q. Let
us introduce a new topology on Q with U ⊆ Q open if and only if U ∩K is
relatively open for every K ∈ C(K). Denote Q with this topology by G(K).
Then:
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(5) if ~a ∈ Qn then the mapping p : G(K)n → G(K), p(~b) = 〈~a,~b〉, is
continuous,

(6) G(K) is a kω-space.

Lemma 2.4. For any countable family K of compact subsets of Q and any
countable family U of open subsets of G(K) one can fix a topology τ(U ,K)
such that :

(7) the mapping p : Qn → Q where p(~a) = 〈~b,~a〉, ~b ∈ Qn, is continuous
in τ(U ,K),

(8) τ(U ,K) is a Hausdorff group topology with a countable base,
(9) U ∈ τ(U ,K) for any U ∈ U ,
(10) τ(U ,K) is finer than the usual topology of Q and coarser than the

topology of G(K), and
(11) if U ⊇ τ0(U ′,K′) then τ(U ,K) is finer than τ(U ′,K′) where K and

K′ are countable families of compact subsets of Q and τ0(U ,K) is a
fixed countable base at 0 ∈ Q in τ(U ,K).

The first part of the following lemma is a corollary of (10). The second
part follows from the definition of C(K).

Lemma 2.5. Let K be a countable family of compact subsets of Q. Then:

(12) if K ∈ C(K) then the topology of K as a subspace of G(K) coincides
with the topology induced by Q or τ(U ,K) for any countable family
U of open subsets of G(K),

(13) if K ′ ∈ C(K ∪ {K}) then there are K ′′ ∈ K and ~a ∈ Q∞ such that
K ′ ⊆ ~a〈K〉+K ′′.

We will also need the following lemma which is an immediate corollary
of [S2, Theorem 2.4].

Lemma 2.6. Let G be a sequential topological group in which every com-
pact subset is metrizable. If G is a kω-space then either G is metrizable or
so(G) = ω1.

3. Example. The object defined below will be used as a measure of the
sequential order of the subsets of the topological groups that appear in the
construction.

Definition 3.1. Let C be a closed subset of X and x ∈ C. The pair
(x,C) is called an α-pair in X for some α < ω1 if either α = 0 and C = {x}
or there exists a sequence 〈(xi, Ci) : i ∈ ω〉 such that

(14) each (xi, Ci) is an αi-pair in X for some αi < α,
(15) sup{αi : i ∈ λ}+ 1 = α for any infinite λ ⊆ ω,
(16) Ci ∩ Cj = ∅ if i 6= j,
(17) 〈xi : i ∈ ω〉 converges to x,
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(18)
⋃
i∈ω Ci = C \ {x},

(19) for any infinite λ ⊆ ω any subset {di : i ∈ λ} such that di ∈ Ci \{xi}
is a closed discrete subset of X.

For brevity such a sequence will be called a decomposition sequence for
(x,C).

Using Definition 3.1 one can prove the following easy fact.

(20) If 〈(xi, Ci) : i ∈ ω〉 is a decomposition sequence for an α-pair (x,C)
in X then for any i ∈ ω the set F =

⋃
j 6=i Cj ∪ {x} is closed and

Ci ⊆ X \ F .

The next lemma lists some elementary properties of α-pairs.

Lemma 3.2. Let (x,C) be an α-pair in a sequential space X for some
1 ≤ α < ω1, 〈(xi, Ci) : i ∈ ω〉 be its decomposition sequence and K be a
closed subset of X. Then:

(21) is(C) =
⋃
i∈ω is(Ci),

(22) x ∈ [is(C)]α and x 6∈ [is(C)]β for any β < α,
(23) if x 6∈ K then there is C ′ ⊆ C \K such that (x,C ′) is an α-pair in

X and is(C ′) ⊆ is(C),
(24) if the set λ = {i : xi 6∈ K} is infinite then there is C ′ ⊆ (C \K)∪{x}

such that (x,C ′) is an α-pair in X and is(C ′) ⊆ is(C).

P r o o f. (21) follows from (20); (22) and (23) are easily proved by induc-
tion on α. To prove (24) one can apply (23) to every (xi, Ci) with i ∈ λ
to find C ′i ⊆ Ci \ K such that (xi, C ′i) is an αi-pair and is(C ′i) ⊆ is(Ci).
Put C ′ =

⋃
i∈λ C

′
i. It is easy to check that (x,C ′) is an α-pair in X and

is(C ′) ⊆ is(C).

One of the consequences of Lemma 3.2 is that if (x,C) is an α-pair then
x and α are uniquely determined by C. The following lemma shows that
α-pairs can be used in analyzing the sequential order in a natural way.

Lemma 3.3. Let X be a countable kω-space, x ∈ X, E ⊆ X, x ∈ [E]α

and x 6∈ [E]β if β < α. Then there is an α-pair (x,C) such that is(C) ⊆ E.

P r o o f. Suppose that the lemma is true for all ordinals less than α. Let
〈xi : i ∈ ω〉 be a sequence converging to x such that xi ∈ [E]αi and xi 6∈ [E]β

if β < αi where αi < α. Choose Ci, i ∈ ω, so that (xi, Ci) are αi-pairs in X
and is(Ci) ⊆ E. Using (23) and Hausdorffness of X we may assume that

(∗) for any i ∈ ω there is an open Ui ⊆ X such that Ci ⊆ Ui and
Ui ∩ Uj = ∅ if i 6= j.

For each (xi, Ci) let 〈(xji , Cji ) : j ∈ ω〉 be its decomposition sequence such
that (xji , C

j
i ) is an αji -pair inX. Let K = {Ki : i ∈ ω} be an increasing family
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of compact subsets of X determining the topology of X. Let us consider two
cases.

Case 1. There are K ∈ K and N ∈ ω such that {xji : j ∈ ω} \K is finite
for any i ≥ N .

It follows from (19) that for any Ki and any k ∈ ω there is nik ∈ ω such
that Ki∩ (Cjk \{xjk}) = ∅ for j ≥ nik. Since K is a metrizable compact space
there is a sequence 〈xj(n)

i(n) : n ∈ ω〉 converging to x such that for every n ∈ ω
we have i(n+ 1) > i(n) and j(n) ≥ max{nii(n) : i ≤ i(n)}. Put C ′n = C

j(n)
i(n) ,

x′n = x
j(n)
i(n) , α′n = α

j(n)
i(n) , C =

⋃
n∈ω C

′
n ∪ {x}.

Let us show that (x,C) is an α-pair with a decomposition sequence
〈(x′n, C ′n) : n ∈ ω〉 satisfying the conclusion of the lemma. By (∗), the fact
that C ′n ⊆ Ci(n) and (21) one has is(C) =

⋃
n∈ω is(C ′n) ⊆ E and by (22),

x′n ∈ [is(C ′n)]α
′
n and x ∈ [is(C)]sup{α′n:n∈λ}+1 for any infinite λ ⊆ ω. So

sup{α′n : n ∈ λ} + 1 = α for any infinite λ ⊆ ω and (15) is satisfied. It
is now enough to check property (19). Suppose dn ∈ C ′n \ {x′n} for every
n ∈ λ for some infinite λ ⊆ ω and the set {dn : n ∈ λ} is not a closed
discrete subset of X. Then without loss of generality we may assume that
{dn : n ∈ λ} ⊆ Ki for some i ∈ ω. Pick n ∈ λ such that i(n) > i. Then
j(n) ≥ nii(n) and Ki ∩ (Cj(n)

i(n) \ {x
j(n)
i(n)}) = ∅, which contradicts the fact that

dn ∈ Ki ∩ (C ′n \ {x′n}) = Ki ∩ (Cj(n)
i(n) \ {x

j(n)
i(n)}).

Case 2. For any K ∈ K and any N ∈ ω there is i ≥ N such that
{xji : j ∈ ω} \K is infinite.

Let 〈i(n) : n ∈ ω〉 be such that i(n+ 1) > i(n) and {xji(n) : j ∈ ω} \Kn

is infinite. Using (24) choose C ′n ⊆ (Ci(n) \Kn) ∪ {xi(n)} so that (xi(n), C
′
n)

is an αi(n)-pair and is(C ′n) ⊆ is(Ci(n)). Put C =
⋃
n∈ω C

′
n. Using the fact

that {Kn : n ∈ ω} is an increasing family and an argument similar to that
of Case 1 one can prove that (x,C) is an α-pair in X with a decomposition
sequence 〈(xi(n), C

′
n) : n ∈ ω〉 satisfying the conclusion of the lemma.

In the lemma above the restriction of being a kω-space cannot be dropped
for there exists a regular countable sequential space X of sequential order
ω+ 1 such that X is a quotient image of a separable metric space and there
is no C ⊆ X, x ∈ X such that (x,C) is an (ω + 1)-pair in X.

Lemma 3.4. Let (x,C) be an α-pair in a sequential space X for some
α < ω1 and y ∈ C be a nonisolated point of C. Then there exists a sequence
SC(y) ⊆ C converging to y such that for any β-pair (y,D) in X such that
β ≥ 1 and D ⊆ C the set SC(y) ∩D is infinite.
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P r o o f. It is enough to prove that for any y ∈ C there is SC(y) ⊆
C converging to y such that for any infinite D ⊆ C converging to y the
set SC(y) ∩ D is infinite. Suppose we have proved this for every β-pair
(x′, C ′) where β < α and let (x,C) be an α-pair. Let 〈(xi, Ci) : i ∈ ω〉 be a
decomposition sequence for (x,C) such that each (xi, Ci) is an αi-pair for
some αi < α. Put SC(x) = {xi : i ∈ ω} and for any y ∈ Ci where i ∈ ω put
SC(y) = SCi(y). Let D ⊆ C be an infinite set converging to some y ∈ C. It
follows from (19) that we may assume that either D ⊆ Ci for some i ∈ ω or
D ⊆ {xi : i ∈ ω}. In either case it is easy to check that the set D ∩ SC(y) is
infinite.

The next lemma is used in the proof of Lemma 3.7 below.

Lemma 3.5. Let (x,C) be an α-pair in a sequential space X for some
α < ω1. Let 〈(xi, Ci) : i ∈ ω〉 be such that each (xi, Ci) is an αi-pair for
some αi ≤ α, Ci ⊆ C, the sequence 〈xi : i ∈ ω〉 converges to some y ∈ C
and xi 6= xj if i 6= j. If β < ω1 is such that {αi : i ∈ λ} + 1 = β for any
infinite λ ⊆ ω then for every i ∈ ω there is C ′i ⊆ Ci such that (xi, C ′i) is
an αi-pair in X for all but finitely many i ∈ ω and 〈(xi, C ′i) : i ∈ ω〉 is a
decomposition sequence for the β-pair (y,

⋃
i∈ω C

′
i ∪ {y}).

P r o o f. By induction on α < ω1. Suppose that the lemma is proved for
all α < γ and let (x,C) be a γ-pair. Let 〈(xi, Ci) : i ∈ ω〉 be a decomposition
sequence for (x,C) such that each (xi, Ci) is a βi-pair for some βi < γ. Using
(20) and (23) we may assume that for any n ∈ ω if xi ∈ Cn then Ci ⊆ Cn.
Using property (19) we may assume that either there is n ∈ ω such that
xi ∈ Cn for every i ∈ ω or xi = xn(i) for every i ∈ ω. In the first case
each Ci ⊆ Cn and the induction hypothesis gives the desired result. In the
second case the conclusion follows from the fact that 〈(xi, Ci) : i ∈ ω〉 is a
decomposition sequence and Ci ⊆ Cn(i). Part (15) of the definition of an
α-pair is satisfied by the property of {αi : i ∈ ω}.

The following lemma easily follows from the fact that if 〈xi : i ∈ ω〉
converges to x and 〈yi : i ∈ ω〉 converges to y in a topological group G then
〈xi + yi : i ∈ ω〉 converges to x+ y in G.

Lemma 3.6. Let G be a sequential topological group, K be a metrizable
compact subset of G, and A be a convergent sequence with a limit point
x ∈ A such that A ⊆ B + K for some closed B ⊆ G. Then there is an
infinite A′ ⊆ A such that either A′ ∪ {x} ⊆ b + K for some b ∈ B or
there is a homeomorphism f : B′ → A′ ∪ {x} for some B′ ⊆ B such that
(f(b)− b) ∈ K for any b ∈ B′.

Lemma 3.7. Let G be a sequential topological group, K be a metrizable
compact subset of G, (x,A) be an α-pair in G for some 2 ≤ α < ω1 and
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(y,B) be a β-pair in G for some β < ω1 such that A ⊆ B +K. Then there
exist α-pairs (x,C) and (z,D) and a homeomorphism f : D → C such that :

(25) C ⊆ A, D ⊆ B,
(26) f(z) = x,
(27) (f(d)− d) ∈ K for any d ∈ D.

P r o o f. Suppose that the lemma is true for all ordinals less than α. Let
〈(xi, Ai) : i ∈ ω〉 be a decomposition sequence for (x,A) where each (xi, Ai)
is an αi-pair where 1 ≤ αi < α. Let us first consider the case α = 2. Then
each Ai is a converging sequence with the limit point xi. Using Lemma 3.6
for every i ∈ ω choose an infinite Ci ⊆ Ai and Di ⊆ B so that xi ∈ Ci
and either Di consists of a single point and Ci ⊆ Di + K or there is a
homeomorphism fi : Di → Ci such that (fi(d) − d) ∈ K for any d ∈ Di.
Suppose the set λ = {i ∈ ω : |Di| = 1} is infinite. Let Di = {d′i} for every
i ∈ λ. Then xi = d′i + pi for every i ∈ λ where pi ∈ K. Using the fact
that K is a metrizable compact space one can choose an infinite λ′ ⊆ λ so
that 〈pi : i ∈ λ′〉 converges to some p ∈ K. Then 〈d′i : i ∈ λ′〉 converges
to some d ∈ B. Since Ci ⊆ d′i + K one can choose for every i ∈ λ′ a point
ai ∈ Ci \ {xi} so that {ai : i ∈ λ′} ⊆ ({d′i : i ∈ λ′} ∪ {d}) + K. But the set
({d′i : i ∈ λ′} ∪ {d}) + K is compact while by (19) the set {ai : i ∈ λ′} is a
closed discrete subset of X. Hence λ is finite and we may assume without
loss of generality that each fi is a homeomorphism.

For i ∈ ω let Ci ⊆ Ai, Di ⊆ B, zi ∈ Di and fi : Di → Ci be such that:

(28) (xi, Ci) and (zi, Di) are αi-pairs,
(29) fi(zi) = xi,
(30) fi is a homeomorphism,
(31) (fi(d)− d) ∈ K for any d ∈ Di.

Such Ci, Di, zi and fi have been constructed above for α = 2. In the general
case the induction hypothesis is used. Suppose that there is z′ ∈ B such that
the set λ = {i ∈ ω : zi = z′} is infinite. Using Lemma 3.4 choose S(z′) such
that S(z′) is a sequence converging to z′ and for any i ∈ λ the set Di∩S(z′)
is infinite. Since each fi is a 1-1 map one can choose a point di ∈ Di ∩S(z′)
for every i ∈ λ so that fi(di) ∈ Ci\{xi} ⊆ Ai\{xi}. By (19) the set {fi(di) :
i ∈ λ} is a closed discrete subset of X. But {fi(di) : i ∈ λ} ⊆ K +S(z′) and
the set K + S(z′) is compact. Hence for every i ∈ ω the set {zj : zj = zi} is
finite.

Using the fact that K is compact and metrizable one can choose for
every i ∈ ω a point pi ∈ K and ni ∈ ω so that 〈pi : i ∈ ω〉 converges to some
p ∈ K, fni(zni)− zni = pi and zni 6= znj if i 6= j. Then since fni(zni) = xni
and 〈xi : i ∈ ω〉 converges to x, the sequence 〈zni : i ∈ ω〉 converges to some
w ∈ B. Using Lemma 3.5 for every i ∈ ω choose D′i ⊆ Dni so that each
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(zni , D
′
i) is an αni -pair and 〈(zni , D′i) : i ∈ ω〉 is a decomposition sequence for

an α-pair (w,
⋃
i∈ωD

′
i∪{w}). Set D =

⋃
i∈ωD

′
i∪{w} and define f : D → C

as follows: f(w) = x; if d ∈ D′i then f(d) = fni(d). Now f is a 1-1 map from
D onto f(D). That f maps D onto f(D) homeomorphically follows from the
easily proved fact that if 〈(xi, Ci) : i ∈ ω〉 is a decomposition sequence of
an α-pair (x′, C ′), 〈(yi, Di) : i ∈ ω〉 is a decomposition sequence of a β-pair
(y′, D′) and g : D′ → C ′ is a 1-1 map such that g(yi) = xi and g|Di is a
homeomorphism for every i ∈ ω, then g is a homeomorphism. Now (25)–(27)
are easy to prove.

As a consequence of the previous lemma and Lemma 3.3 one has the
following statement.

Lemma 3.8. Let G be a topological group which is a countable kω-space,
(x,C) be an α-pair in G for some α < ω1, K be a compact subset of G.
Then so(C +K) = α.

The lemma above says that the sequential order of an α-pair is stable
under addition of a compact subset. This is not true for arbitrary subsets of
a topological group for it is easy to prove that if A is a copy of Sω in G and
K is a nontrivial compact subset of G where G is a sequential topological
group then so(A+K) ≥ 2.

The stability of the sequential order of an α-pair is used in the next
lemma to add a new converging sequence to a kω-topology without touching
the existing α-pairs.

Lemma 3.9. Let K be a countable family of compact subsets of Q, U be
a countable family of open subsets of G(K), 〈(0, Ci) : i ∈ ω〉 be such that
each (0, Ci) is a θi-pair in G(K) for some θi < ω1 and sup{θi : i ∈ ω} = θ,
and E ⊆ G(K) be such that 0 ∈ [E]δ for some δ > θ and 0 6∈ [E]γ for any
γ < δ. Then there is S ⊆ E such that S converges to 0 in τ(K,U) and for
any K ∈ C(K ∪ {S ∪ {0}}) and any i ∈ ω there is Pi ∈ C(K) such that
K ∩ Ci ⊆ Pi ∩ Ci.

P r o o f. Let C(K) = {Ki : i ∈ ω} and τ0(U ,K) = {Ui : i ∈ ω}. Put
p−1 = 0 and choose pk ∈ Q for k ∈ ω by induction so that

pk 6∈
⋃

nQ(a)≤k
~a∈Qk, j≤k

(
Cj −

( ⋃

i≤k
Ki + ~a〈{pi : i < k}〉

))
· a−1(32)

pk ∈ Uk ∩ E.(33)

The set in (32) is a union of sets of the form (Cj + K) · a−1 where K is
compact in G(K). Therefore its sequential order is less than or equal to θ
by Lemma 3.8. Since each Uk is open in G(K), it follows that 0 ∈ [Uk ∩E]δ
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and 0 6∈ [Uk ∩E]γ for any γ < δ where δ > θ. Hence Uk ∩ E is not a subset
of the set in (32) and it is possible to choose pk satisfying (32) and (33).

Put S = {pk : k ∈ ω}. Then it follows from (33) that S converges to 0 in
τ(U ,K). Let K ∈ C(K∪{S ∪{0}}) and i ∈ ω. Then by (13) we may assume
that K = ~a〈S ∪ {0}〉+Kn for some n ∈ ω. The following argument is very
similar to that of [S1, Lemma 2.10].

One has ~a = (a1, . . . , ak) for some k ∈ ω and ~a ∈ QN for some N ∈ ω.
Put A = {〈~a,~b〉 : ~b ∈ {0, 1}k} \ {0} and r = max{nQ(a) : a ∈ A}. Let
Mi = max{N, r, n, i}. Let us call a point (i1, . . . , ik) ∈ (ω∪{−1})k essential
if for every m ≤ k we have

∑
iν=im aν 6= 0 or pim = 0. Let Ω ⊆ (ω ∪ {−1})k

be the set of all essential points. Since p−1 = 0 it follows that

K =
⋃

(i1,...,ik)∈Ω
a1 · pi1 + . . .+ ak · pik +Kn.

Put
Li =

⋃

(i1,...,ik)∈Ω\{j:j≤Mi}k
a1 · pi1 + . . .+ ak · pik +K.

Suppose Ci ∩ Li 6= ∅. Then there is a point c ∈ Ci such that

c = a1 · pi1 + . . .+ ak · pik + f

where (i1, . . . , ik) ∈ Ω \ {j : j ≤ Mi}k and f ∈ Kn. Let im = max{ij :
j ≤ k}. Then im > Mi and one has

pim = (c− (a1 · pj1 + . . .+ ak · pjk + f) · a−1

where a =
∑
iν=im aν 6= 0 (because (i1, . . . , ik) ∈ Ω) and jν = iν if iν 6= im

and jν = −1 otherwise for ν ≤ k. So jν < im for ν ≤ k, nQ(a) ≤ r ≤ Mi <
im, f ∈ Kn, n ≤Mi < im, c ∈ Ci, i ≤Mi < im and ~a ∈ QN , N ≤Mi < im,
which contradicts (32). So Ci ∩ Li = ∅.

Now K = (~a〈{pj : j ≤ Mi}〉 + Kn) ∪ Li so Pi = ~a〈{pj : j ≤ Mi}〉 + Kn

is as desired.

Let {Oα : α ∈ ω1} list all the subsets of Q such that O0 = ∅ and each
Oα repeats ω1 times. Let S1 ⊆ Q be a nontrivial convergent sequence and
put S = {S1}. The proof of the next lemma is very similar to the proof of
[S1, Lemma 2.11] with some simplifications.

Lemma 3.10 (CH). Let 〈(0, Ci) : i ∈ ω〉 be such that each (0, Ci) is a
θi-pair in G(S) for some θi < ω1 and sup{θi : i ∈ ω} = θ. Then for every
α < ω1 there exist a countable family Kα of compact subsets of Q and a
countable family Uα of subsets of Q such that

(34) Kβ ⊆ Kα if β ≤ α, and S1 ∈ Kα,
(35) if 0 ∈ [Oα]δ for some δ > θ and 0 6∈ [Oα]γ for any γ < δ in the

topology of G(
⋃
β<αKβ) then there is S ⊆ Oα such that S converges

to 0 in G(Kα),
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(36) the topology of G(Kα) is finer than τ(Uβ ,Kβ) for β ≤ α,
(37) if Oα is open in G(Kα) then Oα ∈ Uα,
(38) for any K ∈ C(Kα) and any i ∈ ω there is Pi ∈ C(S) such that

K ∩ Ci ⊆ Pi ∩ Ci.
P r o o f. Set K0 = S and U0 = {∅}. Then (34)–(38) are easy to check.

Suppose that Kβ and Uβ have already been constructed for all β < α so
that they satisfy (34)–(38). Define

(39) U =
⋃

β<α

τ0(Uβ ,Kβ), K =
⋃

β<α

Kβ .

If Oα is open in C(K) put

(40) Uα = U ∪ {Oα}.
Otherwise put Uα = U . Let us prove that any U ∈ Uα is open in G(K). It is
enough to show that U ∩K is relatively open in Q for any K ∈ C(K). By
induction, (36), Lemma 2.2 and (34) we may assume that U ∈ τ0(Uβ ,Kβ)
and K ∈ C(Kβ) for some β < α. Then it follows from (12) that U ∩K is
relatively open.

Suppose that 0 ∈ [Oα]δ for some δ > θ and 0 6∈ [Oα]γ for any γ < δ in
G(K). Using Lemma 3.9 find S ⊆ Oα converging to 0 in τ(Uα,K) and such
that for any K ∈ C(K ∪ {S ∪ {0}}) and any i ∈ ω there is Pi ∈ C(K) such
that K ∩ Ci ⊆ Pi ∩ Ci. Put Kα = K ∪ {S ∪ {0}}. Then (34) and (35) are
satisfied. Let us show that any U ∈ Uα is open in G(Kα). Let K ∈ C(Kα).
By (13), K ⊆ ~a〈S ∪ {0}〉 + K ′ for some ~a ∈ Q∞ and K ′ ∈ C(K). So K is
compact in τ(Uα,K) by (7) and the choice of S. Since U is open in τ(Uα,K)
as has been proved above the set K ∩U is relatively open in Q. By (39) and
(11) the topology τ(Uα,Kα) is finer than τ(Uβ ,Kβ) for any β ≤ α and by
(10) the topology of G(Kα) is finer than τ(Uα,Kα). So (36) is satisfied.

Now (37) follows from (40). If K ∈ C(Kα) and i ∈ ω then by the choice
of Kα there is P ′ ∈ C(K) such that P ′ ∩ Ci ⊆ K ∩ Ci. By Lemma 2.2,
P ′ ∈ C(Kβ) for some β < α. So by the induction hypothesis and (38) there
is Pi ∈ C(S) such that P ′ ∩ Ci ⊆ Pi ∩ Ci. Hence (38) holds.

Lemma 3.11. For any countable family K of nontrivial compact subsets
of Q and any θ+ 1 < ω1 there is C ⊆ Q such that (0, C) is a (θ+ 1)-pair in
G(K).

P r o o f. It is enough to prove that G(K) is not metrizable since then the
conclusion will follow from Lemmas 2.6 and 3.3. Now ifG(K) were metrizable
it would be homeomorphic to the space of rationals, being a countable space
without isolated points. Since Q is not a kω-space [M] we get a contradic-
tion.
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Let θ < ω1. Using the lemma above fix a sequence 〈(0, Ci) : i ∈ ω〉 of
θi-pairs in G(S) so that sup{θi : i ∈ ω} = θ.

Example 3.12. Let K =
⋃
α<ω1

C(Kα) where Kα have been constructed
in Lemma 3.10. Define a topology on Q as follows: U ⊆ Q is open if and
only if U ∩K is relatively open for every K ∈ K. Denote this space by G.
It follows from (36), (37), (9) and the definition of the topology of G that
O ⊆ G is open in G if and only if O ∈ τ(Uα,Kα) for some α < ω1. So the
topology of G is the common refinement of the topologies τ(Uα,Kα). Since
every τ(Uα,Kα) is a group topology, G is a topological group. That G is
sequential follows from the fact that G is a quotient space of the topological
sum of K under the obvious quotient map. It easily follows from (38) that
each (0, Ci) is a θi-pair in G so by (22), so(G) ≥ θ. If so(G) > θ let E ⊆ G
be such that 0 ∈ [E]θ+1 and 0 6∈ [E]θ. Then it follows from countability of G
and the definition of the topology of G that there is α < ω1 such that 0 ∈ E
in the topology of G(

⋃
β<αKβ). We may also assume that E = Oα. Since

the topology of G(Kα) is finer than the topology of G, we have 0 6∈ [E]θG(Kα).
Then by (35) there is S ⊆ E such that S convereges to 0 in G(Kα) and thus
in a coarser topology of G. A contradiction.
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