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Distinguishing two partition properties of w;
by

Péter Komjath (Budapest)

Abstract. It is consistent that wy — (w1, (w : 2))% but wy 4 (w1, w + 2)%.

One of the classic results in combinatorial set theory is the Dushnik—
Miller theorem [3] which states that w; — (w1, w)? holds and so gives the first
transfinite variant of Ramsey’s theorem. Later Erdés and Rado [4] extended
this to w; — (w1, w+1)? and for a long period it was open if the even stronger
w1 — (w1, w + 2)? holds. This was finally answered by A. Hajnal, who in [5]
showed that if the continuum hypothesis is true then wy 4 (w1, w+2)? holds.
Actually, Hajnal gave a stronger example, he produced a graph witnessing
w1 7 (wi, (w : 2))% (See [2] for applications of his method to topology.)
The consistency of the positive partition relation w; — (wq, (w : 2))? was
then given by J. Baumgartner and A. Hajnal in [1], in fact they deduced
this from MAy,. Only much later did Todorcevié¢ prove the consistency of
the relation w; — (w1,w + 2)? and even that of w; — (wy,)? for any
countable ordinal « (see [6]). In an unpublished work he also showed that
MAy, alone implies w; — (w1, w?)? but at present it seems unsolved if the
full positive result follows from Martin’s axiom. Here we show that the two
variants of the Hajnal partition theorem are indeed different; it is consistent
that w1 — (w1, (w:2))? holds yet wy 4 (w1, w + 2)2.

NOTATION. DEFINITIONS. If (A, <) is an ordered set and A, B C V then
A < B denotes that x < y holds whenever x € A, y € B. A < {a} is denoted
by A < a, etc. If S is a set and & is a cardinal, then [S]" = {X C §: | X| =k}
and [S]<" = {X C S : |X| < k}. A graph is an ordered pair (V, X) where
V is some set (the set of vertices) and X C [V]? (the set of edges). In some
cases we identify the graph and X. If (V, X) is a graph, aset A C V is a
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complete subgraph if [A]*> C X, and it is an independent set if [A]* N X = 0.
If X is a graph on some ordered set (V,<) and 3, v are ordinals, then a
subgraph of type (8 : ) is a subset B x C' C X where the types of B, C are
0, v, respectively, and B < C.

If a, 3, v are ordinals, then the partition relation o — (3,7)? denotes
that the following statement is true: every graph on a vertex set of type
« has either an independent set of type § or a complete subgraph of type
7. The negation of this statement is denoted, of course, by a /4 (8,7)2.
Similarly, o — (3, (v : §))? denotes that in a graph on « if there is no
independent set of type [ then there is a complete bipartite graph of type
(7 :9). Again, the negation is obtained by crossing the arrow.

THEOREM. [t is consistent that wy /> (w1, w—+2)? yet w; — (w1, (w: 2))2.

Proof. Let V be a model of ZFC+GCH. We are going to construct
a finite support iteration of length wa, (P, Q4 @ @ < wa). Qo will give a
counterexample to w; — (wy,w + 2)2, for 0 < a < wo we select a graph Y,
on w; with no subgraph of type (w : 2) and @, will be a forcing which adds
an uncountable independent set.

We define Qq as follows. ¢ = (s,9,f) € Qo iff s € [w1]<¥, g C [s]?,
f : g — w with the property that if aU{x, y} is a complete subgraph of (s, g),
ie., [aU{z,y}]> C g, and a <z <y then [a] < f(z,y). (5,9, f') < (5,9, f)
iff & Ds, f=fnNls]? f 2 f. Itis clear that Qp adds a graph X on w;
with no complete subgraph of type w + 2.

If 0 < a < w9 and the iteration P, is given assume that Y, € VP is a
graph on w; with no subgraph of type (w: 2). We set ¢ € Q,, iff ¢ € [wq]<¥
is an indepedent set of Y,. ¢’ < ¢ iff ¢’ D q. It is well known that Q,, is ccc.
This implies that there is a § < wy such that if ¢ € Q. has ¢ N d = () then
q has extensions to arbitrarily large ordinals. We assume that every ¢ is as
described, or, better, by removing the part of Y, below § we can make § = 0.
With this, @), will really add an uncountable independent subset of Y.

The results of [4] show that @ is ccc and as all the other factors are ccc
this way we get a ccc forcing P,,. (Indeed, we will prove stronger statements
soon.) This makes it possible that with a bookkeeping every appropriate
graph on wy can be some Y, and so we prove the result if we show that X
remains a graph in V= which contains no uncountable independent sets.

For p € P, (1 < a < w9) we denote by supp(p) the support of p, which
is a finite subset of a. If B < «, then p|B is the restriction of p to f. A
condition p € P, is nice if for every 0 < # < « the condition p|3 determines
the finite set p(3), that is, it is not only a name of it, but an actual set.

LEMMA 1. For a < wso the nice conditions form a dense subset of P,.
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Proof (by induction on «). The statement is obvious for o = 1. As
every support is finite, there is nothing to prove for « limit. If p € P,4q
pick a p’ € P,, p’ < p|la determining p(«). Extend p’ to a nice p” < p’. Now
(p",p(a)) is as required. m

From now on we will mostly work with nice conditions.

Assume that 0 < a < wa, po,p1 € Pa, pi(0) = (s U s, 95, f;) for i <
2 with s, sg, s1 disjoint. We call an extension ¢ < pg,p1 edgeless if for
q(0) = (s*, g%, f*) the graph ¢g* contains no edge between sy and s;. We will
frequently use the obvious fact that if p, < p; for i < 2 then every edgeless
extension of p, p| is an edgeless extension of pg, p1.

LEMMA 2. If a < ws, k < w, and Xy conditions are given in P, then
some k of them have an edgeless common extension.

Proof (by induction on «). Let ps € P, be given. We can assume
outright that pe(0) = (sU s¢, ge, fe) with {s,s¢ : £ < w} disjoint, and these
conditions are compatible. We can also suppose that the supports of the
conditions form a A-system.

The statement is obvious if o = 1.

Assume now that « is limit. If c¢f(a) # w; then there is a < « such
that P contains an uncountable subfamily of {p¢ : £ < w1} and we are done
by the inductive hypothesis. If c¢f(«) = w; then there is a 5 < « such that
the supports are pairwise disjoint beyond 3. This follows from the fact that
they form a A-system. These arguments give the result for limit a.

It suffices, therefore, to show the lemma for o+ 1, assuming that it holds
for a. Next we argue that it is enough to show it for £k = 2. This will be
done by remarking that if it is true for some k& > 2 then it is true for 2k.
Indeed, if the conditions {p¢ : £ < w;} are given and we know the lemma for
k then we can inductively choose {g¢ : £ < w1} such that g¢ is an edgeless
extension of {p¢ : £ € s;} where the s;’s are disjoint k-element subsets of
wi. If now ¢, and ¢,, admit an edgeless extension r then r is an edgeless
extension of {p¢ : £ € s, U s, } and so our claim is proved.

Assume therefore that (pg, ge) are nice conditions in P,4q. We can as
well assume that the sets {ge : £ < wi} form a A-system and g¢ = W U Ug
holds for { < w; where |Ug| = n for some n < w. We will ignore W as it will
play no role in finding an appropriate extension. As the sets {Ug : £ < w1}
are disjoint, min(Ug) > £ for almost every (closed unboundedly many) &.

Using the lemma itself for « we can find (by some re-indexing) a sta-
tionary set S C w; and conditions which are edgeless extensions

ﬁg Spw&pwﬁ-&-la-”ypw&-i-n (565)

with § < Uye < Upgq1 < ... < Uygqn and we can even assume that Pe
determines a bound 7(§) < w¢ for those points v < w{ which are joined
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to two or more points in Uye U ... U Uy¢qpn. This bound exists as there are
only finitely many ordinals 7 as described above (by the condition that Y,
has no subgraph of type (w : 2)). By the pressing-down lemma there is a
stationary subset S C S on which the function 7(£) is constant, 7(§) = 7.
Using the lemma for « there are 7 < &y < & with an edgeless extension
7 < P¢,:De,- Now observe that r forces that any of the n points in Uyg, is
joined to at most one point in Uye, U ... U Uyg, 4. Again, we can assume
that r determines these points. As there are only n elements in U,¢, and
n+ 1 sets Uy, ..., Upg,4n there is some 0 < i < n with no edge between
Uwe, and Uy, +i. This means that (7, gue, U gue, +:) is an edgeless extension

of (pwﬁov qwfo) and (pw£1+i7 qw€1+i)' L

LEMMA 3. If 1 < a < wg, pe € P, for & < w1, pe(0) = (s U sg, ge, fe)
with the sets {s,s¢ : € < w1} disjoint, x¢ € s¢ and tg C s¢ is independent in
ge, then there are & < & with a common extension r with r(0) = (s*, g*, f*)
such that {x¢} % ter C g*.

Proof (by induction on «). Assume first that & = 1. We can assume
that we are given py = (s U so, g0, fo), p1 = (sUs1, 91, f1), so < s1, Zo € So,
t1 C s with go N [s]? = g1 N [s]?, fol(g0 N g1) = f1l(90 N g1), t1 independent
in g1. We try to extend pg, p1 to r = (s*, g%, f*) where s* = sU so U s1,
g  =goUg1U({zo} X t1), f* 2 fo, f1 satisfying f*(wo,y) = |s| for y € t;.
We only have to show that r is a condition. Assume that a < y < z form a
complete subgraph of g* yet |a|] > f*(y, z). A moment’s reflection shows that
the only problematic case is if ¥,z € s1. A “new” point joined to them can
only be xzy but this is excluded by our assumption that ¢; be independent.
We therefore proved the case o = 1.

The case when « is limit can be treated exactly as in Lemma 2.

Assume now that we are given the nice conditions (pe,qe) € Pyy1 with
pe(0) = (s U ¢, ge, fe) where the sets {s,s¢ : £ < wi} are disjoint, and we
are also given z¢ € s¢, and the independent t¢ C s¢. We will call z¢ the
distinguished element of pe and t¢ the distinguished subset of pe. Again, as
in Lemma 2 we assume that the sets {g¢ : £ < wy} form a A-system, and
g¢ = W U Ug holds for £ < w; where |Ug] = n for some n < w. Using
Lemma 2 X; times we can create the edgeless extensions

Tjg Spw&apw£+la---7pw£+n (ées)

for a stationary S C w; with w§ < Uge < ... < Uyeyqn. We let z,¢ be the
distinguished element and f,¢ U ... Utygts the distinguished subset of p;.
This is possible, as we made an edgeless extension, so the above set is inde-
pendent. As in Lemma 2, we assume that p, forces a bound T(§) < w¢
for those points below wf which are joined to two or more vertices in
Upe U ... U Uygqn. On a stationary set, 7(§) = 7. Pick two elements of
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it, 7 < & < &, for which the inductive hypothesis applies, that is, there
is a condition r < Pg,Pes in which z,¢ is joined to t,e U... U fweqn and
also determining the edges between U,e and Uyer U ... U Uyerqpn. As every
point of U, is joined to at most one point in Uyer U...UUyg¢r 4r, there is a
0 <4 < n such that r IF Uye U U,y is independent. Now (7, gue U que/+i)
is an extension of (Pu¢, que), (Pwe’+i» que+i) as required. m

With Lemma 3 we can conclude the proof of the Theorem. Assume that
p € P, forces that A is an uncountable independent subset of X in Vw2,
There exist, for £ < wq, conditions pe < p, and distinct ordinals ¢, such
that pe IF z¢ € A. We assume that pe(0) = (s U s¢, g¢, fe) with z¢ € s¢. Let
x¢ be the distinguished element and {z¢} the distinguished subset of pe. By
Lemma 3 we can find £ < ¢’ with a common extension of pe¢, pes which adds
the edge {z¢, z¢ } to X, and therefore forces a contradiction. m
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