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For almost every tent map, the turning point is typical

by

Henk B r u i n (Stockholm)

Abstract. Let Ta be the tent map with slope a. Let c be its turning point, and
µa the absolutely continuous invariant probability measure. For an arbitrary, bounded,
almost everywhere continuous function g, it is shown that for almost every a,

T
g dµa =

limn→∞ 1
n

∑n−1
i=0 g(T ia(c)). As a corollary, we deduce that the critical point of a quadratic

map is generically not typical for its absolutely continuous invariant probability measure,
if it exists.

1. Introduction. Let Ta : I → I be the tent map with slope a. Brucks
and Misiurewicz [BM] showed that for a.e. a ∈ [

√
2, 2], the orbit of the

turning point is dense in the dynamical core. It is well known that for a > 1,
the tent map Ta has an absolutely continuous invariant probability measure
(acip), µa, and that µa is ergodic. By Birkhoff’s Ergodic Theorem,

(1)
\
g dµa = lim

n→∞
1
n

n−1∑

i=0

g(T ia(x)) µa-a.e.

Here we take g ∈ G = {h : I → R | h is bounded and continuous a.e.}.
Because µa is absolutely continuous with respect to Lebesgue measure, (1)
holds Lebesgue a.e. If (1) holds for a point x, then x is called typical with
respect to g. Although most points are typical, it is very difficult to identify
a typical point. It is natural to ask if the turning point c of Ta is typical.
We will prove

Theorem 1 (Main Theorem). Let g ∈ G. Then

(2)
\
g dµa = lim

n→∞
1
n

n−1∑

i=0

g(T ia(c))

for a.e. a ∈ [1, 2].
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It follows that for a.e. a ∈ [1, 2], (2) holds for every bounded Riemann
integrable function simultaneously. This answers a question of Brucks and
Misiurewicz [BM]. Schmeling [Sc] recently obtained similar results for β-
transformations. In our proof, as well as in [BM], the properties of the turn-
ing point are used in a few arguments. We think, however, that Theorem 1
is true not only for c, but also for an arbitrary point y ∈ I.

The tent map Ta has topological entropy log a. Hence one can state
Theorem 1 as: For a.e. value of the topological entropy, the turning point
of Ta is typical. Because the measure µa actually maximizes metric entropy
[M], this has a striking consequence for unimodal maps in general:

Corollary 1. For a.e. h ∈ [0, log 2], if f is a unimodal map with
htop(f) = h, then the turning point of f is typical for the measure of maximal
entropy.

A result by Sands [Sa] states that for a.e. h ∈ [0, log 2], every S-unimodal
map f with htop(f) = h satisfies the Collet–Eckmann condition, and there-
fore has an acip. For an S-unimodal map, however, the acip in general does
not maximize entropy, because if it did, and if f is conjugate to a tent
map, the conjugacy ψ would be absolutely continuous. But then ψ has to
be also C1+α in a large neighbourhood of the critical point, as [MS, Ex-
ercise 3.1, page 375] indicates. (In [M] an argument is given for unimodal
maps with a nonrecurrent critical point.) As a consequence, all periodic
points have to have the same Lyapunov exponent, which is very unlikely.
The only exception we are aware of is the full quadratic map x 7→ 4x(1−x).
Hence combining Corollary 1 with Sands’ result, we obtain a large class of
S-unimodal maps satisfying the Collet–Eckmann condition, but for which c
is not typical for the acip. In contrast, Benedicks and Carleson [BC, Theo-
rem 3] show that for the quadratic family fa(x) = ax(1 − x) there is a set
of parameters of positive Lebesgue measure for which fa is Collet–Eckmann
and c is typical for the acip (1). Thus we are led to the conclusion that the
entropy map a 7→ htop(fa), even when we disregard its flat pieces, has very
bad absolute continuity properties.

The proof of the Main Theorem goes in short as follows. First we intro-
duce some induced map of the tent map. We show that if a point is typical
in some strong sense for this induced map, it is also typical for the original
tent map (Proposition 1). In Sections 4 and 5 we prove certain properties
of the induced map. Finally, we show, using a version of the Law of Large

(1) Thunberg [T] showed another kind of typicality: for a positive measured set of
parameters, fa has an acip which can be approximated weakly by Dirac measures on
super-stable orbits of nearby maps.
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Numbers (Lemma 8), that the turning point is indeed typical in this strong
sense for a.e. parameter value (Sections 7 to 9).

Acknowledgments. I want to thank Karen Brucks for many discussions
and Gerhard Keller for his help with Lemma 6. I am also grateful to the
referee for the attentive comments.

2. Preliminaries. The tent map Ta : I = [0, 1]→ I is defined as Ta(x) =
min(ax, a(1 − x)). For a ≤ 1, the dynamics is uninteresting, and for a ∈
(1,
√

2], Ta is finitely renormalizable. By considering the last renormalization
instead of Ta, we reduce to the case a ∈ (

√
2, 2]. Let us only deal with

a ∈ (
√

2, 2].
The point c = 1/2 is the turning point. We write cn = cn(a) = Tna (c).

Another notation is ϕn(a) = Tna (c). The core [c2(a), c1(a)] will be denoted
as J(a).

For a ∈ [
√

2, 2], Ta has an absolutely continuous invariant measure µa
(acip for short). Its precise form can be found in [DGP], although we will
not use that paper here. µa|J(a) is equivalent to Lebesgue measure.

In the Main Theorem we considered g ∈ G. Using a well-known fact from
measure theory (e.g. [P, p. 40]), it suffices to prove the following: Let B be
the algebra of subsets of I whose boundaries have zero Lebesgue measure
(or equivalently, µa-measure), and let B ∈ B. Then for a.e. a ∈ (

√
2, 2],

µa(B) = lim
n→∞

1
n

#{0 ≤ i < n | T ia(c) ∈ B}.
It is this statement that we are going to prove.

The induced map that we will use is closely related to the Hofbauer
tower (Markov extension) of the tent map. This object was introduced by
Hofbauer (e.g. [H]). It is the disjoint union of the intervals {Dn}n≥2, where
D2 = [c2, c1] and for n ≥ 1,

Dn+1 =
{
Ta(Dn) if Dn 63 c,
[cn+1, c1] if Dn 3 c.

Hence the boundary points of Dn are forward images of c, one of which
is cn. If Dn 3 c, then we call n a cutting time. We enumerate the cutting
times by Sk: S1 = 2, and by abuse of notation S0 = 1. In this way we get
DSk+1 = [cSk+1, c1] and an inductive argument shows that Dn = [cn, cn−Sk ]
if Sk < n ≤ Sk+1.

The action Ťa on the tower is as follows. If x ∈ Dn, then

Ťa(x) = Ta(x) ∈
{
Dn+1 if c 6∈ (cn, x] or x = c = cn,
Dr+1 if c ∈ (cn, x],

where r is determined as follows: Clearly, c ∈ (cn, x] implies that c ∈ Dn.
So n is a cutting time, say Sk. Then we set r = Sk − Sk−1. In fact, it is
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not hard to show that r itself is a cutting time. One can define a function
Q : N→ N by

r = SQ(k) = Sk − Sk−1.

The function Q is called the kneading map. For more details see [B2].
The tower can be viewed as a countable Markov chain with the intervals

Dn as states. There is a transition from Dn to Dn+1 for each n and a
transition from DSk to D1+SQ(k) for each k. This will be used in Section 5
to estimate the number of branches of our induced map.

Another property of the tower is that if U is an interval in the tower,
then Ťna |U is continuous if and only if Tna |U is monotone.

3. The induced map Fa

Definition. Let F̌a be the first return map to D2 in the Hofbauer tower.
The induced map Fa is the unique map such that π ◦ F̌a = Fa ◦ π.

For a.e. x we can define the transfer time s(x) as the integer such that
Fa(x) = T

s(x)
a . Then Fa has the following properties:

• Each branch of Fa is linear.
• The image closure of each branch is D2 = [c2, c1] = J(a). If a < 2,

then D2 is the only level in the tower that equals J(a). Hence s(x)
is the smallest positive integer n such that there exists an interval H,
x ∈ H ⊂ J(a), such that Tna (H) = J(a) and Tna |H is monotone.

• Fa has countably many branches. The branch domain will be denoted
by Ji(a). They form a partition of J(a). Lemma 1 below shows that
|J(a) \⋃i Ji(a)| = 0.
• s|Ji is constant. Let us denote this number by si.

Let also

Φn(a) = Fna (c3(a)).

The third iterate of c is chosen here, because Fna is well-defined in it for
most parameter values (see Lemma 3).

Lemma 1. For every a ∈ [
√

2, 2] and every n ∈ N, Fna is well-defined for
a.e. x ∈ J(a).

P r o o f. The tent map Ta admits an acip µa with positive metric entropy
log a. According to [K], µ can be lifted to an acip µ̌ on the tower. Further-
more, µ̌(D2) > 0, and due to Birkhoff’s Ergodic Theorem, a.e. x in the tower
visits D2 infinitely often. Hence for every n ∈ N, Fna is defined a.e.

Lemma 2. For each a0 ∈ (
√

2, 2] there exists a neighbourhood U 3 a and
a constant C1 such that for all a ∈ U ,
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∑

i

si|Ji| =
\
J

s(x) dx ≤ C1.

P r o o f.
∑
i si|Ji| =

T
J
s(x) dx <∞ follows from the existence of the acip

(see [B]). In our case, the uniform bound follows because there exist U 3 a0,
C2 > 0 and r ∈ (0, 1) such that for every a ∈ U ,

(3)
∑
si=n

|Ji| ≤ C2r
n.

We will prove this in Lemma 7.

The induced map Fa preserves Lebesgue measure, because every branch
of Fa is linear and surjective. The invariant measure µ of Ta can be written
as

µ(B) = C
∑

i

si−1∑

j=0

|T−ja (B) ∩ Ji|,

where C is the normalizing factor. By Lemma 2, µ(I) = C
∑
i si|Ji| < ∞,

and the measure can indeed be normalized:
∑

i

si|Ji| = 1
C
.

Fix B ∈ B. We call x very typical with respect to B if

(i) For all i ∈ N and 0 ≤ j < si,

lim
n→∞

1
n

#{0 ≤ k < n | F ka (x) ∈ T−ja (B) ∩ Ji} =
1

|c2 − c1| |T
−j
a (B) ∩ Ji|.

In particular, this limit exists.
(ii) For every branch domain Ji of Fa,

1
|c2 − c1| |Ji| = lim

n→∞
1
n

#{0 ≤ j < n | F ja (x) ∈ Ji}.

(iii) The following holds:

1
C

=
∑

i

si|Ji| = lim
n→∞

1
n

n−1∑

i=0

s(F ia(x)).

Proposition 1. If x is very typical with respect to B , then

µ(B) = lim
n→∞

1
n

#{0 ≤ k < n | T ka (x) ∈ B}.
In other words, x is typical with respect to B for the original map.

P r o o f. Choose ε > 0. Let x be very typical. Because of (3), there
exists L such that

∑
sj≥L sj |Jj | ≤ ε. Define Nk(x) =

∑k−1
i=0 s(F

i
a(x)). By
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condition (iii), limn→∞Nn(x)/n = 1/C. We abbreviate v(n, i) = #{(k, j) |
0 ≤ k < n, 0 ≤ j < si, F

k
a (x) ∈ Ji and T ja ◦ F ka (x) ∈ B}. Then

µ(B) = C
∑

i

si−1∑

j=0

|T−ja (B) ∩ Ji|

= C
∑

i

si−1∑

j=0

lim
n→∞

1
n

#{0 ≤ k < n | F ka (x) ∈ T−ja (B) ∩ Ji}

= C
∑

i

lim
n→∞

1
n
v(n, i)

≤ C
∑

si<L

lim
n→∞

1
n
v(n, i) + C

∑

si≥L
si lim
n→∞

#{0 ≤ k < n | F ka (x) ∈ Ji}

≤ C lim
n→∞

1
n

∑

si<L

v(n, i) + C
∑

si≥L
si|Ji|

≤ C lim sup
n→∞

1
n

∑

i

v(n, i) + Cε

≤ C lim sup
n→∞

1
n

#{0 ≤ k < Nn(x) | T ka (x) ∈ B}+ Cε

= C lim
n→∞

Nn(x)
n

lim sup
n→∞

1
Nn(x)

#{0 ≤ k < Nn(x) | T ka (x) ∈ B}+ Cε

= lim sup
n→∞

1
Nn(x)

#{0 ≤ k < Nn(x) | T ka (x) ∈ B}+ Cε.

Because ε is arbitrary, and also limn→∞(Nn+1(x)−Nn(x))/n = 0, we
obtain

µ(B) ≤ lim sup
N→∞

1
N

#{0 ≤ k < N | T ka (x) ∈ B}.

Combining properties (i) and (ii) gives

lim
n→∞

1
n

#{0 ≤ k < n | F ka (x) ∈ T−ja (I \B) ∩ Ji} = |T−ja (I \B) ∩ Ji|.
Therefore we can carry out the above computation for the complement I \B
as well. Because 1

N#{0 ≤ k < N | T ka (x) ∈ B ∪ (I \B)} = 1, it follows that
µ(B) = limN→∞ 1

N#{0 ≤ k < N | T ka (x) ∈ B}, as asserted.

Remark. Since F̌a is also an induced (in fact, first return) map over Ťa,
we can use the same argument to show that x ∈ D2 is typical with respect
to B ⊂ ⊔nDn and lifted measure µ̌a on the tower. It was shown in [B] that
many induced maps over (Ta, I) correspond to first return maps to some
subset A in the tower. As x is typical with respect to µ̌|A/µ̌(A) and the first
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return map to A, it immediately follows that x is typical for these induced
maps.

In order to prove the Main Theorem, we need to show that c, or rather
c3, satisfies conditions (i)–(iii) for a.e. a. This will be done in Propositions 2
and 3.

4. Some more properties of Ji, ϕn and Φn

Lemma 3. If orb(c(a)) is dense in J(a), then Φn(a) is defined for every
n ∈ N.

It immediately follows by [BM] that

Corollary 2. Φn(a) is defined for all n for a.e. a ∈ [
√

2, 2].

P r o o f (of Lemma 3). Let k be such that there exists H, c3 ∈ H ⊂ J(a),
such that T ka |H is monotone and T ka (H) = J(a). Let p be the nonzero fixed
point of Ta. Let

c−v < c−v−2 < . . . < p < . . . < c−v−3 < c−v−1

be pre-turning points closest to p, where v > k. As orb(c(a)) is dense in
J(a), there exists m such that cm ∈ (c−v, c−v−1). Take m minimal. Let
H ′ 3 c3 be the maximal interval such that Tm−3

a |H′ is monotone. Because
∂Tm−3

a (H ′) ⊂ orb(c(a)) and m is minimal, Tn−3
a (H ′) ⊃ [c−v, c−v−1]. Be-

cause T v+2
a ([c−v, c−v−1]) = [c2, c1], we see for k′ = n − 3 + v + 2 > k that

T k
′

a |H′ is monotone and T k
′

a (H ′) = J(a). It follows that Φn(a) is defined for
all n ∈ N.

The previous lemmas showed that there exists a full-measure set A ⊂
[
√

2, 2] of parameters for which Φn(a) is defined for every n. In particular, c is
not periodic for every a ∈ A. We assume from now on that a is always taken
from A. The next lemma shows that all branches of Φn : (

√
2, 2]→ J(a) are

onto.

Lemma 4. Let a ∈ A, and suppose Φn(a) = Tma (c3(a)). Then there exists
an interval U = [a1, a2] 3 a such that ϕm+3 maps U monotonically onto
[c1(a1), c2(a2)] or [c2(a1), c1(a2)].

P r o o f. By definition π−1 ◦ Φn(a) ∩ D2 is the nth return in the tower
of c3 ∈ D2 to D2. Suppose Φn(a) = ϕm+3(a) ∈ intJ(a). Because any point
in π−1(c) is mapped by Ťa to a boundary point of some level in the tower,
and because boundary points are mapped to boundary points, it follows that
ϕj(a) 6= c for j < m+3. Hence ϕm+3 is a diffeomorphism in a neighbourhood
of a. Since this is true for every point a′ such that Φn(a′) ∈ intJ(a′), the
existence of the interval U follows.
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For any C1 function f , let

dis(f, J) = sup
x,y∈J

|Df(x)|
|Df(y)|

be the distortion of f on J .

Lemma 5. Let Un ⊂ [
√

2, 2] be an interval on which ϕn is monotone.
Then

sup
Un⊂[

√
2,2]

dis(ϕn, Un)→ 1 as n→∞.

Moreover , d
daϕn(a) = O(an).

P r o o f. See [BM].

Corollary 3. There exists K > 0 with the following property. Let x =
x(a) ∈ I be such that Tna (x) = c(a) for some n and T ja (x) 6= c(a) for j < n.
Moreover , fix the itinerary of x up to entry n. Then

∣∣dx(a)
da

∣∣ ≤ K.

P r o o f. Write G(a, x) = Tna (x)− c. Then

0 =
d

da
G(a, x) =

∂

∂a
Tna (x) +

∂

∂x
Tna (x)

dx

da
=

∂

∂a
Tna (x) + an

dx

da
.

As Tna is a degree n polynomial with coefficients in [0, 1],
∣∣ ∂
∂aT

n
a

∣∣ ≤ Kan.
The result follows.

The boundary points of Ji(a) are preimages of c. As long as Ji(a) persists,
|Ji(a)| = a−si |J(a)| and Ji(a) moves with speed O(1) as a varies. Take n
large and let Un be such that ϕn|Un is monotone. By Lemma 5, dis(ϕn, Un)
is close to 1. There exists K (K → 1 as n→∞) such that

|ϕ−1
n (Ji(a)) ∩ Un|
|Un| ≤ K|Ji(a)| = Ka−si |J(a)|.

Let us now try to analyze how the branch domains Ji(a) are born and
die if the parameter varies. As |Ji(a)| = a−si |c1(a)− c2(a)|,

d

da
|Ji(a)| = 1

2
a−si(2a− 1− si(a− 1)).

It is easy to see that for si ≥ 5 and a ∈ [
√

2, 2], d
da |Ji(a)| < 0. These branch

domains shrink as a increases, and therefore cannot be born in a point. The
only way a branch domain can be created is by merging (countably) many
smaller branch domains, with larger transfer times, into a new one. This
happens whenever c is n-periodic, and the central branch of Tna covers a
point of T−1

a (c). This is the same moment at which the central branch of
Tn+2
a covers (c2, c1).

As the kneading invariant (and topological entropy) of Ta increases with
a, branch domains cannot disappear either, except in this merging process.
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5. The proof of statement (3)

Lemma 6. For every a0 ∈ (
√

2, 2] for which c is not periodic under Ta0 ,
there exist C2, δ > 0 such that for every a ∈ (a0 − δ/2, a0 + δ/2) and every
n ≥ 1,

#{j | sj(a) = n} ≤ C2(a0 − δ)n.
P r o o f. It is shown in [H] that a = exphtop(Ta) is the exponential growth

rate of the number of paths in the tower starting from D2. Let G(a, n) =
#{j | sj(a) = n} be the number of n-loops from D2 to D2 that do not visit
D2 in between. We will choose δ > 0 below such that the combinatorics of
the tower up to some level remains the same for all a ∈ (a0 − δ, a0 + δ).
Then we argue that the exponential growth rate lim supn

1
n logG(a, n) for

all a ∈ (a0 − δ/2, a0 + δ/2) is smaller than htop(Ta0−δ) = log(a0 − δ). From
this the lemma follows. We will compute these exponential growth rates by
means of the characteristic polynomials of well-chosen submatrices of the
transition matrix corresponding to the tower.

Choice of δ. The assumption a0 >
√

2 implies that c3 lies to the left
of the non-zero fixed point of Ta0 . It is easy to verify that for some integer
u ≥ 0, c3, . . . , c2u+2 lie to the right of c while c2u+3 lies to the left again.
This corresponds to the fact that Ta0 is not renormalizable. In terms of
the kneading map renormalizability is equivalent to the following statement
([B2, Proposition 1]): There exists k ≥ 1 such that

Q(k) = k − 1 and Q(k + j) ≥ k − 1 for all j ≥ 1.

Here Sk is the period of renormalization. In our case, this formula is false
for Sk = S1 = 2. Therefore there exists u ≥ 0 such that

Q(1) = 0, Q(j) = 1 for 2 ≤ j ≤ u+ 1, Q(u+ 2) = 0.

Take δ maximal such that the cutting times S0, . . . , Su+2 are the same for
all a ∈ (a0 − δ, a0 + δ). As c is not periodic under Ta0 , δ is positive.

A lower bound for the entropy . The tower
⊔
n≥2Dn gives rise to a count-

able transition matrix M = (mi,j)∞i,j=2, where mi,j = 1 if and only if a
transition Di → Dj is possible. Therefore mi,i+1 = 1 and mSk,1+SQ(k) = 1
for all i, k, and all other entries are zero. For a ∈ (a0 − δ, a0 + δ) let M(u)
be the (2u + 2) × (2u + 2) left upper submatrix of M . Denote the spectral
radius of this matrix by %0(u). For example,

M(2) =




1 1 0 0 0 0
0 0 1 0 0 0
0 1 0 1 0 0
0 0 0 0 1 0
0 1 0 0 0 1
1 0 0 0 0 0



.
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Because M(u) is the transition matrix of
⊔2u+3
n=2 Dn, we see that log %0(u),

the exponential growth rate of the paths from D2 in
⊔2u+3
n=2 Dn, is less

than or equal to the exponential growth rate of the paths from D2 in the
whole tower. Therefore log %0(u) ≤ inf{htop(Ta) | a ∈ (a0 − δ, a0 + δ)}
= log(a0 − δ).

An upper bound for G(a, n). In order to estimate G(a, n), we use a larger
submatrix of M . Assume that Su+3 = Su+2 + v = 2u + 3 + v. Let M̃(u, v)
be the (2u + 2 + v) × (2u + 2 + v) left upper submatrix of M in which we
set m̃2,2 = m̃2,3 = 0 and m̃2u+3+v,2u+4 = 1 + m2u+3+v,2u+4. Denote the
spectral radius by %1(u, v). For example,

M̃(2, 4) =




0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 1 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 1 0 0 0 1 0 0 0 0
1 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1
0 0 0 1 0 0 1 0 0 0




.

We claim that for a ∈ (a0 − δ/2, a0 + δ2), i.e. u fixed,

lim sup
1
n

logG(a, n)

≤ max{log %1(u, v) | v = 1, 2, 4, . . . , 2u, 2u+ 2, 2u+ 3}.
Clearly, G(a, 1) = 1 and, for n ≥ 2, G(a, n) is the number of paths of length
n − 1 from D3 to D2 that do not visit D2 in between. The total number
of paths of length n − 1 from D3 to D2 is mn−1

3,2 , the appropriate entry of
the matrix Mn−1. By putting m̃2,2 = m̃2,3 = 0 we avoid counting the paths
that visit D2 in between. The tower

⊔
n≥2Dn can be pictured as a graph;

the branch points are the cutting levels DSk .
From DSu+2 there is a path DSu+2 → D2 and a path upwards in the

tower. This path splits again at DSu+3 into a path to D1+SQ(u+3) and an-
other to D1+Su+3 . This gives two paths DSu+2 ] → D1+Su+3 and DSu+2 →
D1+SQ(u+3) , both of length v = SQ(u+3) ∈ {1, 2, 4, 6, . . . , 2u, 2u+ 2, 2u+ 3}.
At the branch point DSu+3 the same situation occurs: there are paths DSu+3

→ D1+Su+4 and DSu+3 → D1+SQ(u+4) , both of length v′ = SQ(u+4) ∈
{1, 2, 4, 6, . . . , 2u, 2u+ 2, 2u+ 3, 2u+ 3 + v}. The number of paths of length
n from D2 increases if the path lengths between branch points decrease.
Therefore the choice v′ = 2u + 3 + v will give smaller values of G(a, n) for
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large n than the choice v′ = 2u + 3. And if v is chosen such that G(a, n)
is maximized (i.e. the largest values for G(a, n) are obtained for those a
for which SQ(u+3) = v), then choosing v′ = v (i.e. choosing a such that
SQ(u+4) = v) will also maximize G(a, n). By induction we should take the
same value for SQ(k) for each k ≥ u+3. Therefore we can identify all branch

points DSk , k ≥ u+ 3. This gives rise to the transition matrix M̃(u, v) and
hence proves the claim.

The rome technique. To prove the lemma, it suffices to show that %1(u, v)
≤ %0(u). The spectral radius is the leading root of the characteristic polyno-
mial. We will compute the characteristic polynomials of M(u) and M̃(u, v)
(denoted as cp0 and cp1 respectively) by means of the rome technique from
[BGMY, Theorem 1.7]. Let M be some n×n matrix with nonnegative inte-
ger entries. A path p is a sequence p0 . . . pl of states such that mpi−1,pi > 0

for all 1 ≤ i ≤ l. The length of the path is l(p) = l and w(p) =
∏l(p)
i=1mpi−1,pi

is the width. A rome R = {r1 . . . rk} (i.e. #(R) = k) is a subset of the states
with the property that every closed path (i.e. p0 = pl) contains at least one
state from R. A path p = p0 . . . pl is simple if p0, pl ∈ R but pi 6∈ R for
1 ≤ i < l.

Theorem (Rome Theorem). The characteristic polynomial of M equals

(−1)n−kxn det(AR(x)− I),

where I is the identity on Rk and A = (ai,j)ki,j=1 is the matrix with entries
ai,j =

∑
p w(p)x−l(p). Here the sum runs over all simple paths from ri to rj.

The characteristic polynomials. Let Di →k Dj stand for a path of length
k from Di to Dj . For M(u), the states D2 and D3 form a rome. The cor-
responding simple paths are D2 →1 D2, D2 →1 D3, D3 →2u+1 D2 and
D3 →j D3 for j = 2, 4, . . . , 2u. Therefore the characteristic polynomial of
M(u) is

cp0(u) = x2u+2 det




1
x
− 1

1
x

1
x2u+1

1
x2 + . . .+

1
x2u − 1




=
x2u+3 − 2x2u+1 − 1

x+ 1
.

For M̃(u, v) we distinguish four cases.

(a) v = 1. In this case {D2, D3, D2u+4} forms a rome and the simple
paths are D3 →2u+1 D2, D3 →2u+1 D2u+4, D3 →j D3 for j = 2, 4, . . . , 2u,
D2u+4 →1 D2 and D2u+4 →1 D2u+4. We give the characteristic polynomial
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the sign that makes the leading coefficient positive:

−cp1(u, 1) = − x2u+3 · det




−1 0 0
1

x2u+1

1
x2 + . . .+

1
x2u − 1

1
x2u+1

1
x

0
1
x
− 1




=
x2(x2u+2 − 2x2u + 1)

(x+ 1)
.

Hence − 1
xcp1(u, v)−cp0(u) = 1. As 1

x is positive on (1,∞), %0(u) > %1(u, 1).
(b) v = 2. In this case {D2, D3, D2u+4} forms a rome and the simple

paths are D3 →2u+1 D2, D3 →2u+1 D2u+4, D3 →j D3 for j = 2, 4, . . . , 2u,
D2u+4 →2 D3 and D2u+4 →2 D2u+4. The characteristic polynomial is

cp1(u, 2) = − x2u+4 · det




−1 0 0
1

x2u+1

1
x2 + . . .+

1
x2u − 1

1
x2u+1

0
1
x2

1
x2 − 1




= x(x2u+3 − 2x2u+1 + x− 1).

Therefore 1
xcp1(u, v)−(x+1)cp0(u) = x, which is positive on (1,∞). Because

also 1
x and x+ 1 are positive on (1,∞), %0(u) > %1(u, 2).

(c) v = 4, 6, . . . , 2u. Here {D2, D3, Dv+1, D2u+4} forms a rome and the
paths are D3 →v−2 Dv+1, D3 →j D3 for j = 2, 4, . . . , v − 2, Du+1 →j D3

for j = 2, . . . , 2u − v + 2, Du+1 →2u−v+3 D2u+4, Du+1 →2u−v+3 D2,
D2u+4 →v D2u+4, D2u+4 →v Du+1 and D2u+4 →2 D2u+4. The charac-
teristic polynomial is

cp1(u, v) = x2u+v+2

× det




−1 0 0 0

0
1
x2 + . . .+

1
xv−2 − 1

1
xv−2 0

1
x2u+3−v

1
x2 + . . .+

1
x2u+2−v −1

1
x2u+3−v

0 0
1
xv

1
xv
− 1




=
x(xv − 1)(x2u+3 − 2x2u+1 + x+ 1)

(x− 1)(x2 − 1)
.

It follows that
(x− 1)(x2 − 1)
x(xv − 1)

cp1(u, v)− (x+ 1)cp0(u) = (x+ 2),



Tent maps 227

which is positive on (1,∞). Because (x− 1)(x2 − 1)/x(xv − 1) and x+1 are
also positive in (1,∞), %0(u) > %1(u, v).

(d) v = 2u + 3. Again {D2, D3, D2u+4} forms a rome. The paths are
D3 →2u+1 D2, D3 →2u+1 D2u+4, D3 →j D3 for j = 2, 4, . . . , 2u and
D2u+4 →2u+3 D2u+4. This last path has width 2. We obtain

−cp1(u, 2u+ 3) = − x4u+5

× det




−1 0 0
1

x2u+1

1
x2 + . . .+

1
x2u − 1

1
x2u+1

0 0
2

x2u+3 − 1




=
x(x2u+3 − 2)(x2u+2 − 2x2u + 1)

(x2 − 1)
.

Therefore
− x− 1
x2u+3 − 2

cp1(u, v)− cp0(u) = 1.

Because 1/(x2u+3 − 2) and x − 1 are positive on (21/(2u+3),∞) and
cp0(21/(2u+3)) < 0 it follows that %0(u) > %1(u, 2u+ 3).

Hence in all cases %0(u) > %1(u, v). Therefore lim sup 1
n logG(a, n) ≤

max{%1(u, v) | v = 1, 2, 4, 6, . . . , 2u, 2u+2, 2u+3} < %0(u) ≤ a0−δ, proving
the lemma.

Lemma 7. For every a0 ∈ [
√

2, 2], there exist C2, δ > 0 and r ∈ (0, 1)
such that for every a ∈ (a0 − δ/2, a0 + δ/2),

(3)
∑
sj=n

|Ji(a)| ≤ C2r
n.

P r o o f. Because |Ji(a)| = |c2(a) − c1(a)|a−si ≤ a−si , the statement
follows immediately from Lemma 6. We can take δ and C2 as in Lemma 6
and r = (a0 − δ)/(a0 − δ/2) < 1.

6. Probabilistic lemmas. For each n ∈ N we consider the set of branch
domains of the map Φn as a partition Zn of the parameter space [

√
2, 2].

For m < n, Zn is finer than Zm, and
∨
nZn contains no nondegenerate

intervals. An element of Zn will be denoted by Ze1...en , where ej = i if
Φj−1(Ze1...en) ⊂ Ji(a).

Lemma 8. Let {Xm} be a sequence of random variables with the following
properties:

(a) There exists V <∞ such that for every m ∈ N, Var(Xm | Ze1...em) <
V for every branch domain Ze1...em .

(b) Xm−1 is constant on each interval Ze1...em .
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(c) There exist M ∈ R, N ∈ N and ε > 0 such that for every m > N ,

|M − E(Xm|Ze1...em)| < ε.

Then

lim sup
m→∞

∣∣∣∣M −
1
m

m−1∑

i=0

Xi

∣∣∣∣ ≤ ε a.s.

Notice that the random variables Xm are not independent, but only
“eventually almost independent”. We will use this lemma twice in the next
two sections. In the next section, however, we will only consider a subse-
quence of the branch domain partitions {Ze1...en}. This does not affect the
validity of the lemma.

P r o o f (of Lemma 8). Define Ym = Xm − E(Xm|Ze1...em). Then
E(Ym|Ze1...em) = 0 and Var(Ym|Ze1...em) = E(Y 2

m|Ze1...em) < V for all m
and all branch domains Ze1...em . Let Sn =

∑n
m=1 Ym, so E(S2

1) = E(Y 2
1 ) ≤

V . By property (b), Sn−1 is constant on each set Ze1...en . Suppose by in-
duction that E(S2

n−1) ≤ (n− 1)V ; then

E(S2
n) = E(S2

n−1) + E(Y 2
n ) + 2E(YnSn−1)

≤ (n− 1)V + V + 2
∑

Ze1...en

E(YnSn−1|Ze1...en)

≤ nV + 2
∑

Ze1...en

Sn−1 · E(Yn|Ze1...en) = nV.

By the Chebyshev inequality, P (Sn > nδ) ≤ nV /(n2δ2) = V/(nδ2). In
particular, P (Sn2 > n2δ) ≤ V/(n2δ2). Therefore

∑
n P (Sn2 > n2δ2) <

∞ and by the Borel–Cantelli Lemma, P (Sn2 > n2δ2 i.o.) = 0. As δ is
arbitrary, Sn2/n2 → 0 a.s. For the intermediate values of n, let Dn =
maxn2<k<(n+1)2 |Sk − Sn2 |. Because |Sk − Sn2 | = |∑k

j=n2+1Xj |, we have
E(|Sk − Sn2 |2) ≤ (k − n2)V ≤ 2nV . Hence

E(D2
n) ≤ E

( (n+1)2−1∑

k=n2+1

|Sk − Sn2 |2
)
≤

(n+1)2−1∑

k=n2+1

2nV = 4n2V.

Using Chebyshev’s inequality again we obtain P (Dn ≥ n2δ) ≤ 4n2V /(n4δ2)
= 4V /(n2δ2). By the Borel–Cantelli Lemma, P (Dn ≥ n2δ i.o.) = 0, and
Dn/n

2 → 0 a.s. Combining things and taking n2 ≤ k < (n+ 1)2, we get

Sk
k
≤ Sn2 +Dn

n2 → 0 a.s.
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Because Xm ∈ Ym + [M − ε,M + ε] for m > N ,

lim sup
n→∞

1
n

n∑

i=1

Xi = lim sup
n→∞

1
n

N∑

i=1

Xi + lim sup
n→∞

1
n

n∑

i=N+1

Xi

≤ lim sup
n→∞

1
n
SN + lim sup

n→∞
1
n

n∑

i=N+1

(Yi +M + ε)

≤ lim sup
n→∞

1
n
SN + lim sup

n→∞
n−N
n

(M + ε) ≤M + ε.

The other inequality is proved similarly.

An additional lemma is needed to deal with the a-dependence of the
acip.

Lemma 9. Let A be an interval , and let M : A→ R and gn : A→ R be
functions with the following properties:

(a) M is continuous a.e. on A.
(b) Let A(a0, ε) = {a ∈ A | lim supn→∞ |gn(a) −M(a0)| ≤ ε}. If ε > 0,

then a.e. a0 ∈ A is a density point of A(a0, ε).

Then limn→∞ gn(a) = M(a) a.e.

P r o o f. Set Bk = {a ∈ A | lim supn→∞ |gn(a) −M(a)| ≥ 1/k}. Assume
for a contradiction that there exists k such that |Bk| > 0. Take ε < 1/(3k)
and let a0 ∈ Bk be a density point, both of Bk and of A(a0, ε). Assume also
that M is continuous at a0. Let A′ be a neighbourhood of a0 so small that

• |M(a)−M(a0)| ≤ ε for all a ∈ A′,
• |A′ ∩A(a0, ε)| ≥ 3

4 |A′|, and
• |A′ ∩Bk| ≥ 3

4 |A′|.
Then a ∈ A′ ∩A(a0, ε) ∩Bk 6= ∅ and for all a ∈ A′ ∩A(a0, ε) ∩Bk,

lim sup
n→∞

|gn(a)−M(a)| ≤ lim sup
n→∞

|gn(a)−M(a0)|+ |M(a)−M(a0)|

≤ 2ε < 1/k.

This contradicts a ∈ Bk, proving the lemma.

7. Concerning condition (i). Choose B ∈ B. Hence ∂B is a closed
zero-measure set.

Lemma 10. Choose ε > 0, a0 ∈ A, k1 ∈ N and 0 ≤ k2 < sk1(a0). For
a close or equal to a0 let B′(a) = T−k2

a (B) ∩ Jk1(a). Then there exists a
neighbourhood A 3 a0 such that

lim sup
n→∞

∣∣∣∣
1
n

#{0 ≤ i < n | Φi(a) ∈ B′(a)} − |B
′(a0)|
|J(a0)|

∣∣∣∣ ≤ ε.
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P r o o f. Suppose we have chosen a0 ∈ A and ε > 0. Let J = {Ji}i be the
partition of J(a0) into branch domains of Fa0 . The partition J ∨ F−1

a0
J ∨

F−2
a0
J ∨ . . . contains no nondegenerate intervals. Furthermore, as B ∈ B,

also ∂B′(a0) is a closed set of zero Lebesgue measure. Therefore we can find
N and a neighbourhood U of ∂B′(a0) with the following properties:

• |U | ≤ ε/8.
• U consists of a finite number of intervals, say Ui, i = 1, . . . , L.
• The boundary points of each Ui are boundary points of cylinder sets

in J ∨ F−1
a0
J ∨ . . . ∨ F−Na0

J .

In this way, we have chosen at most 2L cylinder sets, say Ki, i =
1, . . . , 2L, which determine the neighbourhood U in a topological way: U
can be defined persistently under small changes of the parameter. Let us
write U = U(a).

Let Ze1...en ⊂ A denote a branch domain of Φn. Fix R ∈ N and an
interval A 3 a0 such that

• Jk1(a) persists as a varies in A.
• dis(Φr, Ze1...er ) ≤ 1 + ε/4 for every r ≥ R and every branch domain

Ze1...er such that Ze1...er ∩A 6= ∅.
• The intervals Ki, i = 1, . . . , 2L, persist as a varies in A, and |U(a)| ≤

ε/4 for all a ∈ A.

•
∣∣∣∣
|B′a|
|J(a)| −

|B′a0
|

|J(a0)|

∣∣∣∣ ≤
ε

4
for all a ∈ A.

Let

X̃+
r =

{
1 if Φr(a) ∈ B′(a) ∪ U(a),
0 otherwise,

and

X̃−r =
{

1 if Φr(a) ∈ B′(a) \ U(a),
0 otherwise.

Hence X̃±r are constant on Ze1...er+N . We claim that for any set Ze1...er ⊂ A,

E(X̃+
r |Ze1...er ) ≤

|B′a0
|

|J(a0)| + ε.

Here the expectation is taken with respect to normalized Lebesgue measure
on A. Indeed, we have

E(X̃+
r |Ze1...er ) ≤

(
1 +

ε

4

) |B′(a) ∪ U(a)|
|J(a)| ≤

(
1 +

ε

4

)( |B′a|
|J(a)| +

ε

4

)

≤
(

1 +
ε

4

)( |B′a0
|

|J(a0)| +
ε

2

)
≤ |B′a0

|
|J(a0)| + ε.
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Similarly one shows that

E(X̃−r |Ze1...er ) ≥
|B′a0
|

|J(a0)| − ε.

The variances of X̃+
r and X̃−r are clearly bounded. We can use Lemma 8

for M = |B′a0
|/|J(a0)|, X±i = X̃±iN+j and the corresponding partitions

{Ze1...eiN+j}. It follows that

M − ε ≤ lim inf
i→∞

1
m

m−1∑

i=0

X−i ≤ lim sup
m→∞

1
m

m−1∑

i=0

X+
i ≤M + ε.

Since this is true for j = 1, . . . , N , also

M − ε ≤ lim inf
m→∞

1
m

m−1∑

i=0

X̃−i ≤ lim sup
m→∞

1
m

m−1∑

i=0

X̃+
i ≤M + ε.

Because
m−1∑

i=0

X̃−i ≤ #{0 ≤ i < m | Φi(a) ∈ B′a} ≤
m−1∑

i=0

X̃+
i ,

the lemma follows.

Proposition 2. Let B, Jk1 , B′ and A be as above. Then for a.e. a ∈ A,

lim
n→∞

#{0 ≤ k < n | Φk(a) ∈ B′a} =
|B′a|
|J(a)| .

P r o o f. Combine the previous lemma and Lemma 9. Clearly, a 7→
|B′a|/|J(a)| is continuous in A and we can indeed use Lemma 9, with M(a) =
|B′(a)|/|J(a)| and gn = 1

n#{0 ≤ i ≤ n | Φi(a) ∈ B′(a)}.

8. Concerning condition (ii). Condition (ii) can be proved exactly as
(i). In fact, we recover it by taking B = I, i = i and j = 0 in (i).

9. Concerning condition (iii). For a ∈ A let M(a) =
∑
i si(a)|Jj(a)|.

Let as before Ze1...em be the set of parameters a such that Φj−1(a) ∈ Jej (a)
for 1 ≤ j ≤ m.

Lemma 11. Let a0 ∈ A. For every ε > 0 there exists N , a neighbourhood
A 3 a0 and sets Wn ⊂ A such that

• For every n ≥ N , |Wn| ≤ O(a−n0 )|A|.
• For every n ≥ N and Ze1...en ⊂ A,

|E(s ◦ Φn|Ze1...en \Wn)−M(a0)| ≤ ε.
• Moreover , there exists V , independent of ε, such that

Var(s ◦ Φn|Ze1...en \Wn) ≤ V.
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P r o o f. Let a0 ∈ A. Choose ε arbitrarily. By Lemma 7, one can find
C2, δ > 0 such that for every a ∈ (a0−δ/2, a0+δ/2) we have |⋃sj(a)=n Ji(a)|
≤ C2r

n, where r = (2− δ)/(2− δ/2) < 1. Choose t0 so that

(4)
∑
t>t0

∑

s≥t
srs ≤ ε

8C2
.

Next choose N so large that ε/(2C1) � a−N/2 and also so large that for
every n ≥ N and every Ze1...en satisfying Ze1...en ∩ (a0 − δ/2, a0 + δ/2) 6= ∅,

dis(Φ|Ze1...en) ≤ 1 +
ε

8C1
.

Here C1 is taken from Lemma 2, so it is an upper bound for
∑
i si|Ji(a)|

for each a ∈ (a0− δ/2, a0 + δ/2). Finally, choose a neighbourhood a0 ∈ A ⊂
(a0 − δ/2, a0 + δ/2) so small that for every a ∈ A, and every j such that
sj < t0, Jj(a) persists in A, no new branch domain of transfer time sj < t0
is created, and

(5) 1− ε

8sj2j
≤ |Jj(a)|
|Jj(a0)| ≤ 1 +

ε

8sj2j
.

Take from now on n ≥ N and a ∈ A. Let Jj(a) 3 Φn(a). If sj < t0, then by
(4) and (5),

|Jj(a)|
(

1− ε

8sj2j

)(
1− ε

8C1

)
≤ |Ze1...enj ||Ze1...en |

≤ |Jj(a)|
(

1 +
ε

8sj2j

)(
1 +

ε

8C1

)
.

If sj ≥ t0, we do not know whether Jj(a) persists in A. An extra set of
arguments is necessary.

Let (a1, a2) = Ze1...en ⊂ A be any cylinder. By Lemma 4, there exists
m such that cm(a1) = c1(a1) or c2(a1). Hence c2(a1) ∈ T−m+γ

a1
(c) for γ ∈

{1, 2}. Let x(a) be the continuation of this preimage in (a1, a2). Let

We1...en = {a ∈ Ze1...en | Φn(a) < x(a)}.
As |x(a2) − c2(a2)| ≈ |Ze1...en |, it follows that |We1...en | ≈ |Ze1...en |2. Next
take Wn =

⋃
Ze1...en⊂AWe1...en . As |Ze1...en | ≤ a−n, it follows that Wn ≤

O(a−n)|A|, as asserted.
From now on we concentrate on parameters a ∈ Ze1...en \Wn. Assume

Φn(a) ∈ Ji(a), where si ≥ t0. We will try to reconstruct what happens to
Ji(a) as a moves down to a1. Because Ji(a) ≥ x(a) we can indeed trace
back Ji and remain in the core [c2(a), c1(a)]. As we remarked in Section 4,
d
da |Ji(a)| < 0. If Ji(a) already existed at a1, then |Ji(a1)| ≥ |Ji(a)|. If Ji(a) is
created between a1 and a, then it was created from countably many merging
branch domains with larger transfer times. Each of these domains may have
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been created in another merging process and so on. But in any case, we
arrive at ∣∣∣

⋃

si≥t
Ji(a)

∣∣∣ ≤
∣∣∣
⋃

si≥t
Ji(a1)

∣∣∣ ≤ C2

∑

s≥t
rs.

Using the small distortion of Φn, we obtain
∑

sj≥t
Ze1...enj 6⊂We1...en

t|Ze1...enj | ≤ C2|Ze1...en \We1...en |
∑

s≥t

(
1 +

ε

8C1

)
srs.

Combining all this, we get

E(s(Φn(a))|Ze1...en \Wn)

≤
∑
t<t0

t
∑
sj=t

|Ze1...enj |
|Ze1...en \Wn| +

∑

t≥t0

∑

sj≥t
Ze1...enj 6⊂We1...en

sj
|Ze1...enj |

|Ze1...en \Wn|

≤
∑
sj<t0

sj |Jj(a0)| |Ze1...en |
|Ze1...en \We1...en |

(
1 +

ε

8sj2j

)(
1 +

ε

8C1

)

+
∑

t≥t0

∑

s≥t
s

(
1 +

ε

8C1

)
C2r

s

≤
∑
sj<t0

sj |Jj(a0)|(1 +O(1)|Ze1...en |) +
ε

2
≤M(a0) + ε.

A similar proof shows that also E(s(Φn(a))|Ze1...en \Wn) ≥M(a0)− ε. For
the variance one obtains

Var(s(Φn(a))|Ze1...en \Wn) ≤ E(s(Φn(a))2|Ze1...en \Wn)

≤ O(1)
∑
t

∑

s≥t
s2C2r

s <∞.

Proposition 3. For a.e. a ∈ [
√

2, 2],

lim
n→∞

1
n

n−1∑

i=0

s(Φi(a)) =
∑

i

si(a)|Ji(a)|.

In other words, condition (iii) is satisfied for x = c3(a) for a.e. a ∈ [
√

2, 2].

P r o o f. Take a0 as in the previous lemma. Apply Lemma 8 with Xm =
s(Φm(a0)) on A \⋃n≥N Wn. Then the conditions of Lemma 8 are satisfied.
For every ε > 0,

(6) lim sup
n

∣∣∣∣
1
n

n−1∑

i=0

s(Φi(a))−M(a0)
∣∣∣∣ ≤ ε for a.e. a ∈ A \

⋃

n≥N
Wn.
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Now |⋃n≥N Wn|/|A| ≤ O(1)
∑
n≥N a

−n = O(a−N ) → 0 as N → ∞. Be-
cause (6) is true for every N , we indeed obtain

lim sup
n

∣∣∣∣
1
n

n−1∑

i=0

s(Φi(a))−M(a0)
∣∣∣∣ ≤ ε for a.e. a ∈ A.

Now we show that M : [
√

2, 2] → R is continuous in a0. Let η > 0
be arbitrary. Find a neighbourhood A 3 a0 such that for each a ∈ A the
following properties hold:

• The integer N > 0 (by Lemma 7) is such that
∑

sj(a)>N

sj(a)|Ji(a)| ≤ η

3
.

• No interval Jj with sj ≤ N is created as a varies in A.
• For each j such that sj(a) ≤ N ,∣∣|Jj(a)| − |Jj(a0)|

∣∣ ≤ η/2j .
Then it follows that |M(a)−M(a0)| < η for all a ∈ A, proving continuity.

Hence we can apply Lemma 9, with gn(a) = 1
n

∑n−1
i=0 s(Φi(a)). The

proposition follows.
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