For almost every tent map, the turning point is typical

by
Henk Bruin (Stockholm)

Abstract

Let T_{a} be the tent map with slope a. Let c be its turning point, and μ_{a} the absolutely continuous invariant probability measure. For an arbitrary, bounded, almost everywhere continuous function g, it is shown that for almost every $a, \int g d \mu_{a}=$ $\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=0}^{n-1} g\left(T_{a}^{i}(c)\right)$. As a corollary, we deduce that the critical point of a quadratic map is generically not typical for its absolutely continuous invariant probability measure, if it exists.

1. Introduction. Let $T_{a}: I \rightarrow I$ be the tent map with slope a. Brucks and Misiurewicz $[\mathrm{BM}]$ showed that for a.e. $a \in[\sqrt{2}, 2]$, the orbit of the turning point is dense in the dynamical core. It is well known that for $a>1$, the tent $\operatorname{map} T_{a}$ has an absolutely continuous invariant probability measure (acip), μ_{a}, and that μ_{a} is ergodic. By Birkhoff's Ergodic Theorem,

$$
\begin{equation*}
\int g d \mu_{a}=\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=0}^{n-1} g\left(T_{a}^{i}(x)\right) \quad \mu_{a} \text {-a.e. } \tag{1}
\end{equation*}
$$

Here we take $g \in \mathcal{G}=\{h: I \rightarrow \mathbb{R} \mid h$ is bounded and continuous a.e. $\}$. Because μ_{a} is absolutely continuous with respect to Lebesgue measure, (1) holds Lebesgue a.e. If (1) holds for a point x, then x is called typical with respect to g. Although most points are typical, it is very difficult to identify a typical point. It is natural to ask if the turning point c of T_{a} is typical. We will prove

Theorem 1 (Main Theorem). Let $g \in \mathcal{G}$. Then

$$
\begin{equation*}
\int g d \mu_{a}=\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=0}^{n-1} g\left(T_{a}^{i}(c)\right) \tag{2}
\end{equation*}
$$

for a.e. $a \in[1,2]$.
1991 Mathematics Subject Classification: 58F11, 58F03, 28D20.
Supported by the Deutsche Forschungsgemeinschaft (DFG). The research was carried out at the University of Erlangen-Nürnberg, Germany.

It follows that for a.e. $a \in[1,2]$, (2) holds for every bounded Riemann integrable function simultaneously. This answers a question of Brucks and Misiurewicz [BM]. Schmeling [Sc] recently obtained similar results for β transformations. In our proof, as well as in $[\mathrm{BM}]$, the properties of the turning point are used in a few arguments. We think, however, that Theorem 1 is true not only for c, but also for an arbitrary point $y \in I$.

The tent map T_{a} has topological entropy $\log a$. Hence one can state Theorem 1 as: For a.e. value of the topological entropy, the turning point of T_{a} is typical. Because the measure μ_{a} actually maximizes metric entropy $[\mathrm{M}]$, this has a striking consequence for unimodal maps in general:

Corollary 1. For a.e. $h \in[0, \log 2]$, if f is a unimodal map with $h_{\text {top }}(f)=h$, then the turning point of f is typical for the measure of maximal entropy.

A result by Sands [Sa] states that for a.e. $h \in[0, \log 2]$, every S-unimodal $\operatorname{map} f$ with $h_{\text {top }}(f)=h$ satisfies the Collet-Eckmann condition, and therefore has an acip. For an S-unimodal map, however, the acip in general does not maximize entropy, because if it did, and if f is conjugate to a tent map, the conjugacy ψ would be absolutely continuous. But then ψ has to be also $C^{1+\alpha}$ in a large neighbourhood of the critical point, as [MS, Exercise 3.1, page 375] indicates. (In [M] an argument is given for unimodal maps with a nonrecurrent critical point.) As a consequence, all periodic points have to have the same Lyapunov exponent, which is very unlikely. The only exception we are aware of is the full quadratic map $x \mapsto 4 x(1-x)$. Hence combining Corollary 1 with Sands' result, we obtain a large class of S-unimodal maps satisfying the Collet-Eckmann condition, but for which c is not typical for the acip. In contrast, Benedicks and Carleson [BC, Theorem 3] show that for the quadratic family $f_{a}(x)=a x(1-x)$ there is a set of parameters of positive Lebesgue measure for which f_{a} is Collet-Eckmann and c is typical for the acip $\left(^{1}\right)$. Thus we are led to the conclusion that the entropy map $a \mapsto h_{\text {top }}\left(f_{a}\right)$, even when we disregard its flat pieces, has very bad absolute continuity properties.

The proof of the Main Theorem goes in short as follows. First we introduce some induced map of the tent map. We show that if a point is typical in some strong sense for this induced map, it is also typical for the original tent map (Proposition 1). In Sections 4 and 5 we prove certain properties of the induced map. Finally, we show, using a version of the Law of Large

[^0]Numbers (Lemma 8), that the turning point is indeed typical in this strong sense for a.e. parameter value (Sections 7 to 9).

Acknowledgments. I want to thank Karen Brucks for many discussions and Gerhard Keller for his help with Lemma 6. I am also grateful to the referee for the attentive comments.
2. Preliminaries. The tent map $T_{a}: I=[0,1] \rightarrow I$ is defined as $T_{a}(x)=$ $\min (a x, a(1-x))$. For $a \leq 1$, the dynamics is uninteresting, and for $a \in$ ($1, \sqrt{2}], T_{a}$ is finitely renormalizable. By considering the last renormalization instead of T_{a}, we reduce to the case $a \in(\sqrt{2}, 2]$. Let us only deal with $a \in(\sqrt{2}, 2]$.

The point $c=1 / 2$ is the turning point. We write $c_{n}=c_{n}(a)=T_{a}^{n}(c)$. Another notation is $\varphi_{n}(a)=T_{a}^{n}(c)$. The core $\left[c_{2}(a), c_{1}(a)\right]$ will be denoted as $J(a)$.

For $a \in[\sqrt{2}, 2], T_{a}$ has an absolutely continuous invariant measure μ_{a} (acip for short). Its precise form can be found in [DGP], although we will not use that paper here. $\left.\mu_{a}\right|_{J(a)}$ is equivalent to Lebesgue measure.

In the Main Theorem we considered $g \in \mathcal{G}$. Using a well-known fact from measure theory (e.g. [P, p. 40]), it suffices to prove the following: Let \mathcal{B} be the algebra of subsets of I whose boundaries have zero Lebesgue measure (or equivalently, μ_{a}-measure), and let $B \in \mathcal{B}$. Then for a.e. $a \in(\sqrt{2}, 2]$,

$$
\mu_{a}(B)=\lim _{n \rightarrow \infty} \frac{1}{n} \#\left\{0 \leq i<n \mid T_{a}^{i}(c) \in B\right\}
$$

It is this statement that we are going to prove.
The induced map that we will use is closely related to the Hofbauer tower (Markov extension) of the tent map. This object was introduced by Hofbauer (e.g. $[\mathrm{H}]$). It is the disjoint union of the intervals $\left\{D_{n}\right\}_{n \geq 2}$, where $D_{2}=\left[c_{2}, c_{1}\right]$ and for $n \geq 1$,

$$
D_{n+1}= \begin{cases}T_{a}\left(D_{n}\right) & \text { if } D_{n} \not \supset c \\ {\left[c_{n+1}, c_{1}\right]} & \text { if } D_{n} \ni c\end{cases}
$$

Hence the boundary points of D_{n} are forward images of c, one of which is c_{n}. If $D_{n} \ni c$, then we call n a cutting time. We enumerate the cutting times by $S_{k}: S_{1}=2$, and by abuse of notation $S_{0}=1$. In this way we get $D_{S_{k}+1}=\left[c_{S_{k}+1}, c_{1}\right]$ and an inductive argument shows that $D_{n}=\left[c_{n}, c_{n-S_{k}}\right]$ if $S_{k}<n \leq S_{k+1}$.

The action \check{T}_{a} on the tower is as follows. If $x \in D_{n}$, then

$$
\check{T}_{a}(x)=T_{a}(x) \in \begin{cases}D_{n+1} & \text { if } c \notin\left(c_{n}, x\right] \text { or } x=c=c_{n} \\ D_{r+1} & \text { if } c \in\left(c_{n}, x\right]\end{cases}
$$

where r is determined as follows: Clearly, $c \in\left(c_{n}, x\right]$ implies that $c \in D_{n}$. So n is a cutting time, say S_{k}. Then we set $r=S_{k}-S_{k-1}$. In fact, it is
not hard to show that r itself is a cutting time. One can define a function $Q: \mathbb{N} \rightarrow \mathbb{N}$ by

$$
r=S_{Q(k)}=S_{k}-S_{k-1}
$$

The function Q is called the kneading map. For more details see [B2].
The tower can be viewed as a countable Markov chain with the intervals D_{n} as states. There is a transition from D_{n} to D_{n+1} for each n and a transition from $D_{S_{k}}$ to $D_{1+S_{Q(k)}}$ for each k. This will be used in Section 5 to estimate the number of branches of our induced map.

Another property of the tower is that if U is an interval in the tower, then $\left.\check{T}_{a}^{n}\right|_{U}$ is continuous if and only if $\left.T_{a}^{n}\right|_{U}$ is monotone.

3. The induced map F_{a}

Definition. Let \check{F}_{a} be the first return map to D_{2} in the Hofbauer tower. The induced map F_{a} is the unique map such that $\pi \circ \check{F}_{a}=F_{a} \circ \pi$.

For a.e. x we can define the transfer time $s(x)$ as the integer such that $F_{a}(x)=T_{a}^{s(x)}$. Then F_{a} has the following properties:

- Each branch of F_{a} is linear.
- The image closure of each branch is $D_{2}=\left[c_{2}, c_{1}\right]=J(a)$. If $a<2$, then D_{2} is the only level in the tower that equals $J(a)$. Hence $s(x)$ is the smallest positive integer n such that there exists an interval H, $x \in H \subset J(a)$, such that $T_{a}^{n}(H)=J(a)$ and $\left.T_{a}^{n}\right|_{H}$ is monotone.
- F_{a} has countably many branches. The branch domain will be denoted by $J_{i}(a)$. They form a partition of $J(a)$. Lemma 1 below shows that $\left|J(a) \backslash \bigcup_{i} J_{i}(a)\right|=0$.
- $\left.s\right|_{J_{i}}$ is constant. Let us denote this number by s_{i}.

Let also

$$
\Phi_{n}(a)=F_{a}^{n}\left(c_{3}(a)\right)
$$

The third iterate of c is chosen here, because F_{a}^{n} is well-defined in it for most parameter values (see Lemma 3).

Lemma 1. For every $a \in[\sqrt{2}, 2]$ and every $n \in \mathbb{N}, F_{a}^{n}$ is well-defined for a.e. $x \in J(a)$.

Proof. The tent map T_{a} admits an acip μ_{a} with positive metric entropy $\log a$. According to $[\mathrm{K}], \mu$ can be lifted to an acip $\check{\mu}$ on the tower. Furthermore, $\check{\mu}\left(D_{2}\right)>0$, and due to Birkhoff's Ergodic Theorem, a.e. x in the tower visits D_{2} infinitely often. Hence for every $n \in \mathbb{N}, F_{a}^{n}$ is defined a.e.

Lemma 2. For each $a_{0} \in(\sqrt{2}, 2]$ there exists a neighbourhood $U \ni a$ and a constant C_{1} such that for all $a \in U$,

$$
\sum_{i} s_{i}\left|J_{i}\right|=\int_{J} s(x) d x \leq C_{1} .
$$

Proof. $\sum_{i} s_{i}\left|J_{i}\right|=\int_{J} s(x) d x<\infty$ follows from the existence of the acip (see [B]). In our case, the uniform bound follows because there exist $U \ni a_{0}$, $C_{2}>0$ and $r \in(0,1)$ such that for every $a \in U$,

$$
\begin{equation*}
\sum_{s_{i}=n}\left|J_{i}\right| \leq C_{2} r^{n} \tag{3}
\end{equation*}
$$

We will prove this in Lemma 7.
The induced map F_{a} preserves Lebesgue measure, because every branch of F_{a} is linear and surjective. The invariant measure μ of T_{a} can be written as

$$
\mu(B)=C \sum_{i} \sum_{j=0}^{s_{i}-1}\left|T_{a}^{-j}(B) \cap J_{i}\right|,
$$

where C is the normalizing factor. By Lemma 2, $\mu(I)=C \sum_{i} s_{i}\left|J_{i}\right|<\infty$, and the measure can indeed be normalized:

$$
\sum_{i} s_{i}\left|J_{i}\right|=\frac{1}{C}
$$

Fix $B \in \mathcal{B}$. We call x very typical with respect to B if
(i) For all $i \in \mathbb{N}$ and $0 \leq j<s_{i}$,

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \#\left\{0 \leq k<n \mid F_{a}^{k}(x) \in T_{a}^{-j}(B) \cap J_{i}\right\}=\frac{1}{\left|c_{2}-c_{1}\right|}\left|T_{a}^{-j}(B) \cap J_{i}\right| .
$$

In particular, this limit exists.
(ii) For every branch domain J_{i} of F_{a},

$$
\frac{1}{\left|c_{2}-c_{1}\right|}\left|J_{i}\right|=\lim _{n \rightarrow \infty} \frac{1}{n} \#\left\{0 \leq j<n \mid F_{a}^{j}(x) \in J_{i}\right\} .
$$

(iii) The following holds:

$$
\frac{1}{C}=\sum_{i} s_{i}\left|J_{i}\right|=\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=0}^{n-1} s\left(F_{a}^{i}(x)\right) .
$$

Proposition 1. If x is very typical with respect to B, then

$$
\mu(B)=\lim _{n \rightarrow \infty} \frac{1}{n} \#\left\{0 \leq k<n \mid T_{a}^{k}(x) \in B\right\} .
$$

In other words, x is typical with respect to B for the original map.
Proof. Choose $\varepsilon>0$. Let x be very typical. Because of (3), there exists L such that $\sum_{s_{j} \geq L} s_{j}\left|J_{j}\right| \leq \varepsilon$. Define $N_{k}(x)=\sum_{i=0}^{k-1} s\left(F_{a}^{i}(x)\right)$. By
condition (iii), $\lim _{n \rightarrow \infty} N_{n}(x) / n=1 / C$. We abbreviate $v(n, i)=\#\{(k, j) \mid$ $0 \leq k<n, 0 \leq j<s_{i}, F_{a}^{k}(x) \in J_{i}$ and $\left.T_{a}^{j} \circ F_{a}^{k}(x) \in B\right\}$. Then

$$
\begin{aligned}
\mu(B) & =C \sum_{i} \sum_{j=0}^{s_{i}-1}\left|T_{a}^{-j}(B) \cap J_{i}\right| \\
& =C \sum_{i} \sum_{j=0}^{s_{i}-1} \lim _{n \rightarrow \infty} \frac{1}{n} \#\left\{0 \leq k<n \mid F_{a}^{k}(x) \in T_{a}^{-j}(B) \cap J_{i}\right\} \\
& =C \sum_{i} \lim _{n \rightarrow \infty} \frac{1}{n} v(n, i) \\
& \leq C \sum_{s_{i}<L} \lim _{n \rightarrow \infty} \frac{1}{n} v(n, i)+C \sum_{s_{i} \geq L} s_{i} \lim _{n \rightarrow \infty} \#\left\{0 \leq k<n \mid F_{a}^{k}(x) \in J_{i}\right\} \\
& \leq C \lim _{n \rightarrow \infty} \frac{1}{n} \sum_{s_{i}<L} v(n, i)+C \sum_{s_{i} \geq L} s_{i}\left|J_{i}\right| \\
& \leq C \limsup _{n \rightarrow \infty} \frac{1}{n} \sum_{i} v(n, i)+C \varepsilon \\
& \leq C \limsup _{n \rightarrow \infty} \frac{1}{n} \#\left\{0 \leq k<N_{n}(x) \mid T_{a}^{k}(x) \in B\right\}+C \varepsilon \\
& =C \lim _{n \rightarrow \infty} \frac{N_{n}(x)}{n} \limsup _{n \rightarrow \infty} \frac{1}{N_{n}(x)} \#\left\{0 \leq k<N_{n}(x) \mid T_{a}^{k}(x) \in B\right\}+C \varepsilon \\
& =\limsup _{n \rightarrow \infty} \frac{1}{N_{n}(x)} \#\left\{0 \leq k<N_{n}(x) \mid T_{a}^{k}(x) \in B\right\}+C \varepsilon .
\end{aligned}
$$

Because ε is arbitrary, and also $\lim _{n \rightarrow \infty}\left(N_{n+1}(x)-N_{n}(x)\right) / n=0$, we obtain

$$
\mu(B) \leq \limsup _{N \rightarrow \infty} \frac{1}{N} \#\left\{0 \leq k<N \mid T_{a}^{k}(x) \in B\right\} .
$$

Combining properties (i) and (ii) gives

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \#\left\{0 \leq k<n \mid F_{a}^{k}(x) \in T_{a}^{-j}(I \backslash B) \cap J_{i}\right\}=\left|T_{a}^{-j}(I \backslash B) \cap J_{i}\right| .
$$

Therefore we can carry out the above computation for the complement $I \backslash B$ as well. Because $\frac{1}{N} \#\left\{0 \leq k<N \mid T_{a}^{k}(x) \in B \cup(I \backslash B)\right\}=1$, it follows that $\mu(B)=\lim _{N \rightarrow \infty} \frac{1}{N} \#\left\{0 \leq k<N \mid T_{a}^{k}(x) \in B\right\}$, as asserted.

Remark. Since \check{F}_{a} is also an induced (in fact, first return) map over \check{T}_{a}, we can use the same argument to show that $x \in D_{2}$ is typical with respect to $B \subset \bigsqcup_{n} D_{n}$ and lifted measure $\check{\mu}_{a}$ on the tower. It was shown in $[\mathrm{B}]$ that many induced maps over (T_{a}, I) correspond to first return maps to some subset A in the tower. As x is typical with respect to $\left.\check{\mu}\right|_{A} / \check{\mu}(A)$ and the first
return map to A, it immediately follows that x is typical for these induced maps.

In order to prove the Main Theorem, we need to show that c, or rather c_{3}, satisfies conditions (i)-(iii) for a.e. a. This will be done in Propositions 2 and 3.

4. Some more properties of J_{i}, φ_{n} and Φ_{n}

Lemma 3. If $\operatorname{orb}(c(a))$ is dense in $J(a)$, then $\Phi_{n}(a)$ is defined for every $n \in \mathbb{N}$.

It immediately follows by [BM] that
Corollary 2. $\Phi_{n}(a)$ is defined for all n for a.e. $a \in[\sqrt{2}, 2]$.
Proof (of Lemma 3). Let k be such that there exists $H, c_{3} \in H \subset J(a)$, such that $\left.T_{a}^{k}\right|_{H}$ is monotone and $T_{a}^{k}(H)=J(a)$. Let p be the nonzero fixed point of T_{a}. Let

$$
c_{-v}<c_{-v-2}<\ldots<p<\ldots<c_{-v-3}<c_{-v-1}
$$

be pre-turning points closest to p, where $v>k$. As $\operatorname{orb}(c(a))$ is dense in $J(a)$, there exists m such that $c_{m} \in\left(c_{-v}, c_{-v-1}\right)$. Take m minimal. Let $H^{\prime} \ni c_{3}$ be the maximal interval such that $\left.T_{a}^{m-3}\right|_{H^{\prime}}$ is monotone. Because $\partial T_{a}^{m-3}\left(H^{\prime}\right) \subset \operatorname{orb}(c(a))$ and m is minimal, $T_{a}^{n-3}\left(H^{\prime}\right) \supset\left[c_{-v}, c_{-v-1}\right]$. Because $T_{a}^{v+2}\left(\left[c_{-v}, c_{-v-1}\right]\right)=\left[c_{2}, c_{1}\right]$, we see for $k^{\prime}=n-3+v+2>k$ that $\left.T_{a}^{k^{\prime}}\right|_{H^{\prime}}$ is monotone and $T_{a}^{k^{\prime}}\left(H^{\prime}\right)=J(a)$. It follows that $\Phi^{n}(a)$ is defined for all $n \in \mathbb{N}$.

The previous lemmas showed that there exists a full-measure set $\mathcal{A} \subset$ $[\sqrt{2}, 2]$ of parameters for which $\Phi_{n}(a)$ is defined for every n. In particular, c is not periodic for every $a \in \mathcal{A}$. We assume from now on that a is always taken from \mathcal{A}. The next lemma shows that all branches of $\Phi_{n}:(\sqrt{2}, 2] \rightarrow J(a)$ are onto.

Lemma 4. Let $a \in \mathcal{A}$, and suppose $\Phi_{n}(a)=T_{a}^{m}\left(c_{3}(a)\right)$. Then there exists an interval $U=\left[a_{1}, a_{2}\right] \ni$ a such that φ_{m+3} maps U monotonically onto $\left[c_{1}\left(a_{1}\right), c_{2}\left(a_{2}\right)\right]$ or $\left[c_{2}\left(a_{1}\right), c_{1}\left(a_{2}\right)\right]$.

Proof. By definition $\pi^{-1} \circ \Phi_{n}(a) \cap D_{2}$ is the nth return in the tower of $c_{3} \in D_{2}$ to D_{2}. Suppose $\Phi_{n}(a)=\varphi_{m+3}(a) \in \operatorname{int} J(a)$. Because any point in $\pi^{-1}(c)$ is mapped by \check{T}_{a} to a boundary point of some level in the tower, and because boundary points are mapped to boundary points, it follows that $\varphi_{j}(a) \neq c$ for $j<m+3$. Hence φ_{m+3} is a diffeomorphism in a neighbourhood of a. Since this is true for every point a^{\prime} such that $\Phi_{n}\left(a^{\prime}\right) \in \operatorname{int} J\left(a^{\prime}\right)$, the existence of the interval U follows.

For any C^{1} function f, let

$$
\operatorname{dis}(f, J)=\sup _{x, y \in J} \frac{|D f(x)|}{|D f(y)|}
$$

be the distortion of f on J.
Lemma 5. Let $U_{n} \subset[\sqrt{2}, 2]$ be an interval on which φ_{n} is monotone. Then

$$
\sup _{U_{n} \subset[\sqrt{2}, 2]} \operatorname{dis}\left(\varphi_{n}, U_{n}\right) \rightarrow 1 \quad \text { as } n \rightarrow \infty .
$$

Moreover, $\frac{d}{d a} \varphi_{n}(a)=\mathcal{O}\left(a^{n}\right)$.
Proof. See [BM].
Corollary 3. There exists $K>0$ with the following property. Let $x=$ $x(a) \in I$ be such that $T_{a}^{n}(x)=c(a)$ for some n and $T_{a}^{j}(x) \neq c(a)$ for $j<n$. Moreover, fix the itinerary of x up to entry n. Then $\left|\frac{d x(a)}{d a}\right| \leq K$.

Proof. Write $G(a, x)=T_{a}^{n}(x)-c$. Then

$$
0=\frac{d}{d a} G(a, x)=\frac{\partial}{\partial a} T_{a}^{n}(x)+\frac{\partial}{\partial x} T_{a}^{n}(x) \frac{d x}{d a}=\frac{\partial}{\partial a} T_{a}^{n}(x)+a^{n} \frac{d x}{d a} .
$$

As T_{a}^{n} is a degree n polynomial with coefficients in $[0,1],\left|\frac{\partial}{\partial a} T_{a}^{n}\right| \leq K a^{n}$. The result follows.

The boundary points of $J_{i}(a)$ are preimages of c. As long as $J_{i}(a)$ persists, $\left|J_{i}(a)\right|=a^{-s_{i}}|J(a)|$ and $J_{i}(a)$ moves with speed $\mathcal{O}(1)$ as a varies. Take n large and let U_{n} be such that $\left.\varphi_{n}\right|_{U_{n}}$ is monotone. By Lemma $5, \operatorname{dis}\left(\varphi_{n}, U_{n}\right)$ is close to 1 . There exists $K(K \rightarrow 1$ as $n \rightarrow \infty)$ such that

$$
\frac{\left|\varphi_{n}^{-1}\left(J_{i}(a)\right) \cap U_{n}\right|}{\left|U_{n}\right|} \leq K\left|J_{i}(a)\right|=K a^{-s_{i}}|J(a)| .
$$

Let us now try to analyze how the branch domains $J_{i}(a)$ are born and die if the parameter varies. As $\left|J_{i}(a)\right|=a^{-s_{i}}\left|c_{1}(a)-c_{2}(a)\right|$,

$$
\frac{d}{d a}\left|J_{i}(a)\right|=\frac{1}{2} a^{-s_{i}}\left(2 a-1-s_{i}(a-1)\right) .
$$

It is easy to see that for $s_{i} \geq 5$ and $a \in[\sqrt{2}, 2], \frac{d}{d a}\left|J_{i}(a)\right|<0$. These branch domains shrink as a increases, and therefore cannot be born in a point. The only way a branch domain can be created is by merging (countably) many smaller branch domains, with larger transfer times, into a new one. This happens whenever c is n-periodic, and the central branch of T_{a}^{n} covers a point of $T_{a}^{-1}(c)$. This is the same moment at which the central branch of T_{a}^{n+2} covers $\left(c_{2}, c_{1}\right)$.

As the kneading invariant (and topological entropy) of T_{a} increases with a, branch domains cannot disappear either, except in this merging process.

5. The proof of statement (3)

Lemma 6. For every $a_{0} \in(\sqrt{2}, 2]$ for which c is not periodic under $T_{a_{0}}$, there exist $C_{2}, \delta>0$ such that for every $a \in\left(a_{0}-\delta / 2, a_{0}+\delta / 2\right)$ and every $n \geq 1$,

$$
\#\left\{j \mid s_{j}(a)=n\right\} \leq C_{2}\left(a_{0}-\delta\right)^{n} .
$$

Proof. It is shown in $[\mathrm{H}]$ that $a=\exp h_{\text {top }}\left(T_{a}\right)$ is the exponential growth rate of the number of paths in the tower starting from D_{2}. Let $G(a, n)=$ $\#\left\{j \mid s_{j}(a)=n\right\}$ be the number of n-loops from D_{2} to D_{2} that do not visit D_{2} in between. We will choose $\delta>0$ below such that the combinatorics of the tower up to some level remains the same for all $a \in\left(a_{0}-\delta, a_{0}+\delta\right)$. Then we argue that the exponential growth rate $\lim \sup _{n} \frac{1}{n} \log G(a, n)$ for all $a \in\left(a_{0}-\delta / 2, a_{0}+\delta / 2\right)$ is smaller than $h_{\text {top }}\left(T_{a_{0}-\delta}\right)=\log \left(a_{0}-\delta\right)$. From this the lemma follows. We will compute these exponential growth rates by means of the characteristic polynomials of well-chosen submatrices of the transition matrix corresponding to the tower.

Choice of δ. The assumption $a_{0}>\sqrt{2}$ implies that c_{3} lies to the left of the non-zero fixed point of $T_{a_{0}}$. It is easy to verify that for some integer $u \geq 0, c_{3}, \ldots, c_{2 u+2}$ lie to the right of c while $c_{2 u+3}$ lies to the left again. This corresponds to the fact that $T_{a_{0}}$ is not renormalizable. In terms of the kneading map renormalizability is equivalent to the following statement ([B2, Proposition 1]): There exists $k \geq 1$ such that

$$
Q(k)=k-1 \quad \text { and } \quad Q(k+j) \geq k-1 \quad \text { for all } j \geq 1 .
$$

Here S_{k} is the period of renormalization. In our case, this formula is false for $S_{k}=S_{1}=2$. Therefore there exists $u \geq 0$ such that

$$
Q(1)=0, \quad Q(j)=1 \quad \text { for } 2 \leq j \leq u+1, \quad Q(u+2)=0 .
$$

Take δ maximal such that the cutting times S_{0}, \ldots, S_{u+2} are the same for all $a \in\left(a_{0}-\delta, a_{0}+\delta\right)$. As c is not periodic under $T_{a_{0}}, \delta$ is positive.

A lower bound for the entropy. The tower $\bigsqcup_{n \geq 2} D_{n}$ gives rise to a countable transition matrix $M=\left(m_{i, j}\right)_{i, j=2}^{\infty}$, where $m_{i, j}=1$ if and only if a transition $D_{i} \rightarrow D_{j}$ is possible. Therefore $m_{i, i+1}=1$ and $m_{S_{k}, 1+S_{Q(k)}}=1$ for all i, k, and all other entries are zero. For $a \in\left(a_{0}-\delta, a_{0}+\delta\right)$ let $M(u)$ be the $(2 u+2) \times(2 u+2)$ left upper submatrix of M. Denote the spectral radius of this matrix by $\varrho_{0}(u)$. For example,

$$
M(2)=\left(\begin{array}{llllll}
1 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

Because $M(u)$ is the transition matrix of $\bigsqcup_{n=2}^{2 u+3} D_{n}$, we see that $\log \varrho_{0}(u)$, the exponential growth rate of the paths from D_{2} in $\bigsqcup_{n=2}^{2 u+3} D_{n}$, is less than or equal to the exponential growth rate of the paths from D_{2} in the whole tower. Therefore $\log \varrho_{0}(u) \leq \inf \left\{h_{\text {top }}\left(T_{a}\right) \mid a \in\left(a_{0}-\delta, a_{0}+\delta\right)\right\}$ $=\log \left(a_{0}-\delta\right)$.

An upper bound for $G(a, n)$. In order to estimate $G(a, n)$, we use a larger submatrix of M. Assume that $S_{u+3}=S_{u+2}+v=2 u+3+v$. Let $\widetilde{M}(u, v)$ be the $(2 u+2+v) \times(2 u+2+v)$ left upper submatrix of M in which we set $\widetilde{m}_{2,2}=\widetilde{m}_{2,3}=0$ and $\widetilde{m}_{2 u+3+v, 2 u+4}=1+m_{2 u+3+v, 2 u+4}$. Denote the spectral radius by $\varrho_{1}(u, v)$. For example,

$$
\widetilde{M}(2,4)=\left(\begin{array}{cccccccccc}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0
\end{array}\right) .
$$

We claim that for $a \in\left(a_{0}-\delta / 2, a_{0}+\delta_{2}\right)$, i.e. u fixed,

$$
\begin{aligned}
& \limsup \frac{1}{n} \log G(a, n) \\
& \quad \leq \max \left\{\log \varrho_{1}(u, v) \mid v=1,2,4, \ldots, 2 u, 2 u+2,2 u+3\right\}
\end{aligned}
$$

Clearly, $G(a, 1)=1$ and, for $n \geq 2, G(a, n)$ is the number of paths of length $n-1$ from D_{3} to D_{2} that do not visit D_{2} in between. The total number of paths of length $n-1$ from D_{3} to D_{2} is $m_{3,2}^{n-1}$, the appropriate entry of the matrix M^{n-1}. By putting $\widetilde{m}_{2,2}=\widetilde{m}_{2,3}=0$ we avoid counting the paths that visit D_{2} in between. The tower $\bigsqcup_{n \geq 2} D_{n}$ can be pictured as a graph; the branch points are the cutting levels $\bar{D}_{S_{k}}$.

From $D_{S_{u+2}}$ there is a path $D_{S_{u+2}} \rightarrow D_{2}$ and a path upwards in the tower. This path splits again at $D_{S_{u+3}}$ into a path to $D_{1+S_{Q(u+3)}}$ and another to $D_{1+S_{u+3}}$. This gives two paths $\left.D_{S_{u+2}}\right] \rightarrow D_{1+S_{u+3}}$ and $D_{S_{u+2}} \rightarrow$ $D_{1+S_{Q(u+3)}}$, both of length $v=S_{Q(u+3)} \in\{1,2,4,6, \ldots, 2 u, 2 u+2,2 u+3\}$. At the branch point $D_{S_{u+3}}$ the same situation occurs: there are paths $D_{S_{u+3}}$ $\rightarrow D_{1+S_{u+4}}$ and $D_{S_{u+3}} \rightarrow D_{1+S_{Q(u+4)}}$, both of length $v^{\prime}=S_{Q(u+4)} \in$ $\{1,2,4,6, \ldots, 2 u, 2 u+2,2 u+3,2 u+3+v\}$. The number of paths of length n from D_{2} increases if the path lengths between branch points decrease. Therefore the choice $v^{\prime}=2 u+3+v$ will give smaller values of $G(a, n)$ for
large n than the choice $v^{\prime}=2 u+3$. And if v is chosen such that $G(a, n)$ is maximized (i.e. the largest values for $G(a, n)$ are obtained for those a for which $S_{Q(u+3)}=v$), then choosing $v^{\prime}=v$ (i.e. choosing a such that $S_{Q(u+4)}=v$) will also maximize $G(a, n)$. By induction we should take the same value for $S_{Q(k)}$ for each $k \geq u+3$. Therefore we can identify all branch points $D_{S_{k}}, k \geq u+3$. This gives rise to the transition matrix $\widetilde{M}(u, v)$ and hence proves the claim.

The rome technique. To prove the lemma, it suffices to show that $\varrho_{1}(u, v)$ $\leq \varrho_{0}(u)$. The spectral radius is the leading root of the characteristic polynomial. We will compute the characteristic polynomials of $M(u)$ and $\widetilde{M}(u, v)$ (denoted as $c p_{0}$ and $c p_{1}$ respectively) by means of the rome technique from [BGMY, Theorem 1.7]. Let M be some $n \times n$ matrix with nonnegative integer entries. A path p is a sequence $p_{0} \ldots p_{l}$ of states such that $m_{p_{i-1}, p_{i}}>0$ for all $1 \leq i \leq l$. The length of the path is $l(p)=l$ and $w(p)=\prod_{i=1}^{l(p)} m_{p_{i-1}, p_{i}}$ is the width. A rome $R=\left\{r_{1} \ldots r_{k}\right\}$ (i.e. $\left.\#(R)=k\right)$ is a subset of the states with the property that every closed path (i.e. $p_{0}=p_{l}$) contains at least one state from R. A path $p=p_{0} \ldots p_{l}$ is simple if $p_{0}, p_{l} \in R$ but $p_{i} \notin R$ for $1 \leq i<l$.

Theorem (Rome Theorem). The characteristic polynomial of M equals

$$
(-1)^{n-k} x^{n} \operatorname{det}\left(A_{R}(x)-I\right),
$$

where I is the identity on \mathbb{R}^{k} and $A=\left(a_{i, j}\right)_{i, j=1}^{k}$ is the matrix with entries $a_{i, j}=\sum_{p} w(p) x^{-l(p)}$. Here the sum runs over all simple paths from r_{i} to r_{j}.

The characteristic polynomials. Let $D_{i} \rightarrow k D_{j}$ stand for a path of length k from D_{i} to D_{j}. For $M(u)$, the states D_{2} and D_{3} form a rome. The corresponding simple paths are $D_{2} \rightarrow_{1} D_{2}, D_{2} \rightarrow_{1} D_{3}, D_{3} \rightarrow_{2 u+1} D_{2}$ and $D_{3} \rightarrow_{j} D_{3}$ for $j=2,4, \ldots, 2 u$. Therefore the characteristic polynomial of $M(u)$ is

$$
\begin{aligned}
c p_{0}(u) & =x^{2 u+2} \operatorname{det}\left(\begin{array}{cc}
\frac{1}{x}-1 & \frac{1}{x} \\
\frac{1}{x^{2 u+1}} & \frac{1}{x^{2}}+\ldots+\frac{1}{x^{2 u}}-1
\end{array}\right) \\
& =\frac{x^{2 u+3}-2 x^{2 u+1}-1}{x+1}
\end{aligned}
$$

For $\widetilde{M}(u, v)$ we distinguish four cases.
(a) $v=1$. In this case $\left\{D_{2}, D_{3}, D_{2 u+4}\right\}$ forms a rome and the simple paths are $D_{3} \rightarrow_{2 u+1} D_{2}, D_{3} \rightarrow_{2 u+1} D_{2 u+4}, D_{3} \rightarrow_{j} D_{3}$ for $j=2,4, \ldots, 2 u$, $D_{2 u+4} \rightarrow_{1} D_{2}$ and $D_{2 u+4} \rightarrow_{1} D_{2 u+4}$. We give the characteristic polynomial
the sign that makes the leading coefficient positive:

$$
\begin{aligned}
-c p_{1}(u, 1) & =-x^{2 u+3} \cdot \operatorname{det}\left(\begin{array}{ccc}
-1 & 0 & 0 \\
\frac{1}{x^{2 u+1}} & \frac{1}{x^{2}}+\ldots+\frac{1}{x^{2 u}}-1 & \frac{1}{x^{2 u+1}} \\
\frac{1}{x} & 0 & \frac{1}{x}-1
\end{array}\right) \\
& =\frac{x^{2}\left(x^{2 u+2}-2 x^{2 u}+1\right)}{(x+1)}
\end{aligned}
$$

Hence $-\frac{1}{x} c p_{1}(u, v)-c p_{0}(u)=1$. As $\frac{1}{x}$ is positive on $(1, \infty), \varrho_{0}(u)>\varrho_{1}(u, 1)$.
(b) $v=2$. In this case $\left\{D_{2}, D_{3}, D_{2 u+4}\right\}$ forms a rome and the simple paths are $D_{3} \rightarrow_{2 u+1} D_{2}, D_{3} \rightarrow_{2 u+1} D_{2 u+4}, D_{3} \rightarrow_{j} D_{3}$ for $j=2,4, \ldots, 2 u$, $D_{2 u+4} \rightarrow_{2} D_{3}$ and $D_{2 u+4} \rightarrow_{2} D_{2 u+4}$. The characteristic polynomial is

$$
\begin{aligned}
c p_{1}(u, 2) & =-x^{2 u+4} \cdot \operatorname{det}\left(\begin{array}{ccc}
-1 & 0 & 0 \\
\frac{1}{x^{2 u+1}} & \frac{1}{x^{2}}+\ldots+\frac{1}{x^{2 u}}-1 & \frac{1}{x^{2 u+1}} \\
0 & \frac{1}{x^{2}} & \frac{1}{x^{2}}-1
\end{array}\right) \\
& =x\left(x^{2 u+3}-2 x^{2 u+1}+x-1\right) .
\end{aligned}
$$

Therefore $\frac{1}{x} c p_{1}(u, v)-(x+1) c p_{0}(u)=x$, which is positive on $(1, \infty)$. Because also $\frac{1}{x}$ and $x+1$ are positive on $(1, \infty), \varrho_{0}(u)>\varrho_{1}(u, 2)$.
(c) $v=4,6, \ldots, 2 u$. Here $\left\{D_{2}, D_{3}, D_{v+1}, D_{2 u+4}\right\}$ forms a rome and the paths are $D_{3} \rightarrow v-2 ~ D_{v+1}, D_{3} \rightarrow_{j} D_{3}$ for $j=2,4, \ldots, v-2, D_{u+1} \rightarrow_{j} D_{3}$ for $j=2, \ldots, 2 u-v+2, D_{u+1} \rightarrow_{2 u-v+3} D_{2 u+4}, D_{u+1} \rightarrow_{2 u-v+3} D_{2}$, $D_{2 u+4} \rightarrow_{v} D_{2 u+4}, D_{2 u+4} \rightarrow_{v} D_{u+1}$ and $D_{2 u+4} \rightarrow_{2} D_{2 u+4}$. The characteristic polynomial is

$$
\begin{aligned}
c p_{1}(u, v)= & x^{2 u+v+2} \\
& \times \operatorname{det}\left(\begin{array}{cccc}
-1 & 0 & 0 & 0 \\
0 & \frac{1}{x^{2}}+\ldots+\frac{1}{x^{v-2}}-1 & \frac{1}{x^{v-2}} & 0 \\
\frac{1}{x^{2 u+3-v}} & \frac{1}{x^{2}}+\ldots+\frac{1}{x^{2 u+2-v}} & -1 & \frac{1}{x^{2 u+3-v}} \\
0 & \frac{1}{x^{v}} & \frac{1}{x^{v}}-1
\end{array}\right) \\
& =\frac{x\left(x^{v}-1\right)\left(x^{2 u+3}-2 x^{2 u+1}+x+1\right)}{(x-1)\left(x^{2}-1\right)} .
\end{aligned}
$$

It follows that

$$
\frac{(x-1)\left(x^{2}-1\right)}{x\left(x^{v}-1\right)} c p_{1}(u, v)-(x+1) c p_{0}(u)=(x+2)
$$

which is positive on $(1, \infty)$. Because $(x-1)\left(x^{2}-1\right) / x\left(x^{v}-1\right)$ and $x+1$ are also positive in $(1, \infty), \varrho_{0}(u)>\varrho_{1}(u, v)$.
(d) $v=2 u+3$. Again $\left\{D_{2}, D_{3}, D_{2 u+4}\right\}$ forms a rome. The paths are $D_{3} \rightarrow_{2 u+1} D_{2}, D_{3} \rightarrow_{2 u+1} D_{2 u+4}, D_{3} \rightarrow_{j} D_{3}$ for $j=2,4, \ldots, 2 u$ and $D_{2 u+4} \rightarrow{ }_{2 u+3} D_{2 u+4}$. This last path has width 2 . We obtain

$$
-c p_{1}(u, 2 u+3)=-x^{4 u+5}
$$

$$
\begin{aligned}
& \times \operatorname{det}\left(\begin{array}{ccc}
-1 & 0 & 0 \\
\frac{1}{x^{2 u+1}} & \frac{1}{x^{2}}+\ldots+\frac{1}{x^{2 u}}-1 & \frac{1}{x^{2 u+1}} \\
0 & 0 & \frac{2}{x^{2 u+3}}-1
\end{array}\right) \\
= & \frac{x\left(x^{2 u+3}-2\right)\left(x^{2 u+2}-2 x^{2 u}+1\right)}{\left(x^{2}-1\right)}
\end{aligned}
$$

Therefore

$$
-\frac{x-1}{x^{2 u+3}-2} c p_{1}(u, v)-c p_{0}(u)=1
$$

Because $1 /\left(x^{2 u+3}-2\right)$ and $x-1$ are positive on $\left(2^{1 /(2 u+3)}, \infty\right)$ and $c p_{0}\left(2^{1 /(2 u+3)}\right)<0$ it follows that $\varrho_{0}(u)>\varrho_{1}(u, 2 u+3)$.

Hence in all cases $\varrho_{0}(u)>\varrho_{1}(u, v)$. Therefore $\limsup \frac{1}{n} \log G(a, n) \leq$ $\max \left\{\varrho_{1}(u, v) \mid v=1,2,4,6, \ldots, 2 u, 2 u+2,2 u+3\right\}<\varrho_{0}(u) \leq a_{0}-\delta$, proving the lemma.

Lemma 7. For every $a_{0} \in[\sqrt{2}, 2]$, there exist $C_{2}, \delta>0$ and $r \in(0,1)$ such that for every $a \in\left(a_{0}-\delta / 2, a_{0}+\delta / 2\right)$,

$$
\begin{equation*}
\sum_{s_{j}=n}\left|J_{i}(a)\right| \leq C_{2} r^{n} \tag{3}
\end{equation*}
$$

Proof. Because $\left|J_{i}(a)\right|=\left|c_{2}(a)-c_{1}(a)\right| a^{-s_{i}} \leq a^{-s_{i}}$, the statement follows immediately from Lemma 6 . We can take δ and C_{2} as in Lemma 6 and $r=\left(a_{0}-\delta\right) /\left(a_{0}-\delta / 2\right)<1$.
6. Probabilistic lemmas. For each $n \in \mathbb{N}$ we consider the set of branch domains of the map Φ_{n} as a partition \mathcal{Z}_{n} of the parameter space $[\sqrt{2}, 2]$. For $m<n, \mathcal{Z}_{n}$ is finer than \mathcal{Z}_{m}, and $\bigvee_{n} \mathcal{Z}_{n}$ contains no nondegenerate intervals. An element of \mathcal{Z}_{n} will be denoted by $Z_{e_{1} \ldots e_{n}}$, where $e_{j}=i$ if $\Phi_{j-1}\left(Z_{e_{1} \ldots e_{n}}\right) \subset J_{i}(a)$.

Lemma 8. Let $\left\{X_{m}\right\}$ be a sequence of random variables with the following properties:
(a) There exists $V<\infty$ such that for every $m \in \mathbb{N}, \operatorname{Var}\left(X_{m} \mid Z_{e_{1} \ldots e_{m}}\right)<$ V for every branch domain $Z_{e_{1} \ldots e_{m}}$.
(b) X_{m-1} is constant on each interval $Z_{e_{1} \ldots e_{m}}$.
(c) There exist $M \in \mathbb{R}, N \in \mathbb{N}$ and $\varepsilon>0$ such that for every $m>N$,

$$
\left|M-\mathbb{E}\left(X_{m} \mid Z_{e_{1} \ldots e_{m}}\right)\right|<\varepsilon
$$

Then

$$
\limsup _{m \rightarrow \infty}\left|M-\frac{1}{m} \sum_{i=0}^{m-1} X_{i}\right| \leq \varepsilon \quad \text { a.s. }
$$

Notice that the random variables X_{m} are not independent, but only "eventually almost independent". We will use this lemma twice in the next two sections. In the next section, however, we will only consider a subsequence of the branch domain partitions $\left\{Z_{e_{1} \ldots e_{n}}\right\}$. This does not affect the validity of the lemma.

Proof (of Lemma 8). Define $Y_{m}=X_{m}-\mathbb{E}\left(X_{m} \mid Z_{e_{1} \ldots e_{m}}\right)$. Then $\mathbb{E}\left(Y_{m} \mid Z_{e_{1} \ldots e_{m}}\right)=0$ and $\operatorname{Var}\left(Y_{m} \mid Z_{e_{1} \ldots e_{m}}\right)=\mathbb{E}\left(Y_{m}^{2} \mid Z_{e_{1} \ldots e_{m}}\right)<V$ for all m and all branch domains $Z_{e_{1} \ldots e_{m}}$. Let $S_{n}=\sum_{m=1}^{n} Y_{m}$, so $\mathbb{E}\left(S_{1}^{2}\right)=\mathbb{E}\left(Y_{1}^{2}\right) \leq$ V. By property (b), S_{n-1} is constant on each set $Z_{e_{1} \ldots e_{n}}$. Suppose by induction that $\mathbb{E}\left(S_{n-1}^{2}\right) \leq(n-1) V$; then

$$
\begin{aligned}
\mathbb{E}\left(S_{n}^{2}\right) & =\mathbb{E}\left(S_{n-1}^{2}\right)+\mathbb{E}\left(Y_{n}^{2}\right)+2 \mathbb{E}\left(Y_{n} S_{n-1}\right) \\
& \leq(n-1) V+V+2 \sum_{Z_{e_{1} \ldots e_{n}}} \mathbb{E}\left(Y_{n} S_{n-1} \mid Z_{e_{1} \ldots e_{n}}\right) \\
& \leq n V+2 \sum_{Z_{e_{1} \ldots e_{n}}} S_{n-1} \cdot \mathbb{E}\left(Y_{n} \mid Z_{e_{1} \ldots e_{n}}\right)=n V .
\end{aligned}
$$

By the Chebyshev inequality, $P\left(S_{n}>n \delta\right) \leq n V /\left(n^{2} \delta^{2}\right)=V /\left(n \delta^{2}\right)$. In particular, $P\left(S_{n^{2}}>n^{2} \delta\right) \leq V /\left(n^{2} \delta^{2}\right)$. Therefore $\sum_{n} P\left(S_{n^{2}}>n^{2} \delta^{2}\right)<$ ∞ and by the Borel-Cantelli Lemma, $P\left(S_{n^{2}}>n^{2} \delta^{2}\right.$ i.o. $)=0$. As δ is arbitrary, $S_{n^{2}} / n^{2} \rightarrow 0$ a.s. For the intermediate values of n, let $D_{n}=$ $\max _{n^{2}<k<(n+1)^{2}}\left|S_{k}-S_{n^{2}}\right|$. Because $\left|S_{k}-S_{n^{2}}\right|=\left|\sum_{j=n^{2}+1}^{k} X_{j}\right|$, we have $\mathbb{E}\left(\left|S_{k}-S_{n^{2}}\right|^{2}\right) \leq\left(k-n^{2}\right) V \leq 2 n V$. Hence

$$
\mathbb{E}\left(D_{n}^{2}\right) \leq \mathbb{E}\left(\sum_{k=n^{2}+1}^{(n+1)^{2}-1}\left|S_{k}-S_{n^{2}}\right|^{2}\right) \leq \sum_{k=n^{2}+1}^{(n+1)^{2}-1} 2 n V=4 n^{2} V .
$$

Using Chebyshev's inequality again we obtain $P\left(D_{n} \geq n^{2} \delta\right) \leq 4 n^{2} V /\left(n^{4} \delta^{2}\right)$ $=4 V /\left(n^{2} \delta^{2}\right)$. By the Borel-Cantelli Lemma, $P\left(D_{n} \geq n^{2} \delta\right.$ i.o. $)=0$, and $D_{n} / n^{2} \rightarrow 0$ a.s. Combining things and taking $n^{2} \leq k<(n+1)^{2}$, we get

$$
\frac{S_{k}}{k} \leq \frac{S_{n^{2}}+D_{n}}{n^{2}} \rightarrow 0 \quad \text { a.s. }
$$

Because $X_{m} \in Y_{m}+[M-\varepsilon, M+\varepsilon]$ for $m>N$,

$$
\begin{aligned}
\limsup _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n} X_{i} & =\limsup _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{N} X_{i}+\limsup _{n \rightarrow \infty} \frac{1}{n} \sum_{i=N+1}^{n} X_{i} \\
& \leq \limsup _{n \rightarrow \infty} \frac{1}{n} S_{N}+\limsup _{n \rightarrow \infty} \frac{1}{n} \sum_{i=N+1}^{n}\left(Y_{i}+M+\varepsilon\right) \\
& \leq \limsup _{n \rightarrow \infty} \frac{1}{n} S_{N}+\limsup _{n \rightarrow \infty} \frac{n-N}{n}(M+\varepsilon) \leq M+\varepsilon
\end{aligned}
$$

The other inequality is proved similarly.
An additional lemma is needed to deal with the a-dependence of the acip.

Lemma 9. Let A be an interval, and let $M: A \rightarrow \mathbb{R}$ and $g_{n}: A \rightarrow \mathbb{R}$ be functions with the following properties:
(a) M is continuous a.e. on A.
(b) Let $A\left(a_{0}, \varepsilon\right)=\left\{a \in A\left|\lim \sup _{n \rightarrow \infty}\right| g_{n}(a)-M\left(a_{0}\right) \mid \leq \varepsilon\right\}$. If $\varepsilon>0$, then a.e. $a_{0} \in A$ is a density point of $A\left(a_{0}, \varepsilon\right)$.

Then $\lim _{n \rightarrow \infty} g_{n}(a)=M(a)$ a.e.
Proof. Set $B_{k}=\left\{a \in A\left|\lim \sup _{n \rightarrow \infty}\right| g_{n}(a)-M(a) \mid \geq 1 / k\right\}$. Assume for a contradiction that there exists k such that $\left|B_{k}\right|>0$. Take $\varepsilon<1 /(3 k)$ and let $a_{0} \in B_{k}$ be a density point, both of B_{k} and of $A\left(a_{0}, \varepsilon\right)$. Assume also that M is continuous at a_{0}. Let A^{\prime} be a neighbourhood of a_{0} so small that

- $\left|M(a)-M\left(a_{0}\right)\right| \leq \varepsilon$ for all $a \in A^{\prime}$,
- $\left|A^{\prime} \cap A\left(a_{0}, \varepsilon\right)\right| \geq \frac{3}{4}\left|A^{\prime}\right|$, and
- $\left|A^{\prime} \cap B_{k}\right| \geq \frac{3}{4}\left|A^{\prime}\right|$.

Then $a \in A^{\prime} \cap A\left(a_{0}, \varepsilon\right) \cap B_{k} \neq \emptyset$ and for all $a \in A^{\prime} \cap A\left(a_{0}, \varepsilon\right) \cap B_{k}$,

$$
\begin{aligned}
\limsup _{n \rightarrow \infty}\left|g_{n}(a)-M(a)\right| & \leq \limsup _{n \rightarrow \infty}\left|g_{n}(a)-M\left(a_{0}\right)\right|+\left|M(a)-M\left(a_{0}\right)\right| \\
& \leq 2 \varepsilon<1 / k
\end{aligned}
$$

This contradicts $a \in B_{k}$, proving the lemma.
7. Concerning condition (i). Choose $B \in \mathcal{B}$. Hence ∂B is a closed zero-measure set.

Lemma 10. Choose $\varepsilon>0, a_{0} \in \mathcal{A}, k_{1} \in \mathbb{N}$ and $0 \leq k_{2}<s_{k_{1}}\left(a_{0}\right)$. For a close or equal to a_{0} let $B^{\prime}(a)=T_{a}^{-k_{2}}(B) \cap J_{k_{1}}(a)$. Then there exists a neighbourhood $A \ni a_{0}$ such that

$$
\limsup _{n \rightarrow \infty}\left|\frac{1}{n} \#\left\{0 \leq i<n \mid \Phi_{i}(a) \in B^{\prime}(a)\right\}-\frac{\left|B^{\prime}\left(a_{0}\right)\right|}{\left|J\left(a_{0}\right)\right|}\right| \leq \varepsilon
$$

Proof. Suppose we have chosen $a_{0} \in \mathcal{A}$ and $\varepsilon>0$. Let $\mathcal{J}=\left\{J_{i}\right\}_{i}$ be the partition of $J\left(a_{0}\right)$ into branch domains of $F_{a_{0}}$. The partition $\mathcal{J} \vee F_{a_{0}}^{-1} \mathcal{J} \vee$ $F_{a_{0}}^{-2} \mathcal{J} \vee \ldots$ contains no nondegenerate intervals. Furthermore, as $B \in \mathcal{B}$, also $\partial B^{\prime}\left(a_{0}\right)$ is a closed set of zero Lebesgue measure. Therefore we can find N and a neighbourhood U of $\partial B^{\prime}\left(a_{0}\right)$ with the following properties:

- $|U| \leq \varepsilon / 8$.
- U consists of a finite number of intervals, say $U_{i}, i=1, \ldots, L$.
- The boundary points of each U_{i} are boundary points of cylinder sets in $\mathcal{J} \vee F_{a_{0}}^{-1} \mathcal{J} \vee \ldots \vee F_{a_{0}}^{-N} \mathcal{J}$.

In this way, we have chosen at most $2 L$ cylinder sets, say $K_{i}, i=$ $1, \ldots, 2 L$, which determine the neighbourhood U in a topological way: U can be defined persistently under small changes of the parameter. Let us write $U=U(a)$.

Let $Z_{e_{1} \ldots e_{n}} \subset A$ denote a branch domain of Φ_{n}. Fix $R \in \mathbb{N}$ and an interval $A \ni a_{0}$ such that

- $J_{k_{1}}(a)$ persists as a varies in A.
- $\operatorname{dis}\left(\Phi_{r}, Z_{e_{1} \ldots e_{r}}\right) \leq 1+\varepsilon / 4$ for every $r \geq R$ and every branch domain $Z_{e_{1} \ldots e_{r}}$ such that $Z_{e_{1} \ldots e_{r}} \cap A \neq \emptyset$.
- The intervals $K_{i}, i=1, \ldots, 2 L$, persist as a varies in A, and $|U(a)| \leq$ $\varepsilon / 4$ for all $a \in A$.
- $\left|\frac{\left|B_{a}^{\prime}\right|}{|J(a)|}-\frac{\left|B_{a_{0}}^{\prime}\right|}{\left|J\left(a_{0}\right)\right|}\right| \leq \frac{\varepsilon}{4}$ for all $a \in A$.

Let

$$
\widetilde{X}_{r}^{+}= \begin{cases}1 & \text { if } \Phi_{r}(a) \in B^{\prime}(a) \cup U(a), \\ 0 & \text { otherwise },\end{cases}
$$

and

$$
\widetilde{X}_{r}^{-}= \begin{cases}1 & \text { if } \Phi_{r}(a) \in B^{\prime}(a) \backslash U(a) \\ 0 & \text { otherwise }\end{cases}
$$

Hence $\widetilde{X}_{r}^{ \pm}$are constant on $Z_{e_{1} \ldots e_{r+N}}$. We claim that for any set $Z_{e_{1} \ldots e_{r}} \subset A$,

$$
\mathbb{E}\left(\widetilde{X}_{r}^{+} \mid Z_{e_{1} \ldots e_{r}}\right) \leq \frac{\left|B_{a_{0}}^{\prime}\right|}{\left|J\left(a_{0}\right)\right|}+\varepsilon .
$$

Here the expectation is taken with respect to normalized Lebesgue measure on A. Indeed, we have

$$
\begin{aligned}
\mathbb{E}\left(\widetilde{X}_{r}^{+} \mid Z_{e_{1} \ldots e_{r}}\right) & \leq\left(1+\frac{\varepsilon}{4}\right) \frac{\left|B^{\prime}(a) \cup U(a)\right|}{|J(a)|} \leq\left(1+\frac{\varepsilon}{4}\right)\left(\frac{\left|B_{a}^{\prime}\right|}{|J(a)|}+\frac{\varepsilon}{4}\right) \\
& \leq\left(1+\frac{\varepsilon}{4}\right)\left(\frac{\left|B_{a_{0}}^{\prime}\right|}{\left|J\left(a_{0}\right)\right|}+\frac{\varepsilon}{2}\right) \leq \frac{\left|B_{a_{0}}^{\prime}\right|}{\left|J\left(a_{0}\right)\right|}+\varepsilon .
\end{aligned}
$$

Similarly one shows that

$$
\mathbb{E}\left(\widetilde{X}_{r}^{-} \mid Z_{e_{1} \ldots e_{r}}\right) \geq \frac{\left|B_{a_{0}}^{\prime}\right|}{\left|J\left(a_{0}\right)\right|}-\varepsilon
$$

The variances of \widetilde{X}_{r}^{+}and \widetilde{X}_{r}^{-}are clearly bounded. We can use Lemma 8 for $M=\left|B_{a_{0}}^{\prime}\right| /\left|J\left(a_{0}\right)\right|, X_{i}^{ \pm}=\widetilde{X}_{i N+j}^{ \pm}$and the corresponding partitions $\left\{Z_{e_{1} \ldots e_{i N+j}}\right\}$. It follows that

$$
M-\varepsilon \leq \liminf _{i \rightarrow \infty} \frac{1}{m} \sum_{i=0}^{m-1} X_{i}^{-} \leq \limsup _{m \rightarrow \infty} \frac{1}{m} \sum_{i=0}^{m-1} X_{i}^{+} \leq M+\varepsilon
$$

Since this is true for $j=1, \ldots, N$, also

$$
M-\varepsilon \leq \liminf _{m \rightarrow \infty} \frac{1}{m} \sum_{i=0}^{m-1} \widetilde{X}_{i}^{-} \leq \limsup _{m \rightarrow \infty} \frac{1}{m} \sum_{i=0}^{m-1} \widetilde{X}_{i}^{+} \leq M+\varepsilon .
$$

Because

$$
\sum_{i=0}^{m-1} \widetilde{X}_{i}^{-} \leq \#\left\{0 \leq i<m \mid \Phi_{i}(a) \in B_{a}^{\prime}\right\} \leq \sum_{i=0}^{m-1} \widetilde{X}_{i}^{+}
$$

the lemma follows.
Proposition 2. Let $B, J_{k_{1}}, B^{\prime}$ and A be as above. Then for a.e. $a \in A$,

$$
\lim _{n \rightarrow \infty} \#\left\{0 \leq k<n \mid \Phi_{k}(a) \in B_{a}^{\prime}\right\}=\frac{\left|B_{a}^{\prime}\right|}{|J(a)|}
$$

Proof. Combine the previous lemma and Lemma 9. Clearly, $a \mapsto$ $\left|B_{a}^{\prime}\right| /|J(a)|$ is continuous in A and we can indeed use Lemma 9 , with $M(a)=$ $\left|B^{\prime}(a)\right| /|J(a)|$ and $g_{n}=\frac{1}{n} \#\left\{0 \leq i \leq n \mid \Phi_{i}(a) \in B^{\prime}(a)\right\}$.
8. Concerning condition (ii). Condition (ii) can be proved exactly as (i). In fact, we recover it by taking $B=I, i=i$ and $j=0$ in (i).
9. Concerning condition (iii). For $a \in \mathcal{A}$ let $M(a)=\sum_{i} s_{i}(a)\left|J_{j}(a)\right|$. Let as before $Z_{e_{1} \ldots e_{m}}$ be the set of parameters a such that $\Phi_{j-1}(a) \in J_{e_{j}}(a)$ for $1 \leq j \leq m$.

Lemma 11. Let $a_{0} \in \mathcal{A}$. For every $\varepsilon>0$ there exists N, a neighbourhood $A \ni a_{0}$ and sets $W_{n} \subset A$ such that

- For every $n \geq N,\left|W_{n}\right| \leq \mathcal{O}\left(a_{0}^{-n}\right)|A|$.
- For every $n \geq N$ and $Z_{e_{1} \ldots e_{n}} \subset A$,

$$
\left|\mathbb{E}\left(s \circ \Phi_{n} \mid Z_{e_{1} \ldots e_{n}} \backslash W_{n}\right)-M\left(a_{0}\right)\right| \leq \varepsilon .
$$

- Moreover, there exists V, independent of ε, such that

$$
\operatorname{Var}\left(s \circ \Phi_{n} \mid Z_{e_{1} \ldots e_{n}} \backslash W_{n}\right) \leq V .
$$

Proof. Let $a_{0} \in \mathcal{A}$. Choose ε arbitrarily. By Lemma 7, one can find $C_{2}, \delta>0$ such that for every $a \in\left(a_{0}-\delta / 2, a_{0}+\delta / 2\right)$ we have $\left|\bigcup_{s_{j}(a)=n} J_{i}(a)\right|$ $\leq C_{2} r^{n}$, where $r=(2-\delta) /(2-\delta / 2)<1$. Choose t_{0} so that

$$
\begin{equation*}
\sum_{t>t_{0}} \sum_{s \geq t} s r^{s} \leq \frac{\varepsilon}{8 C_{2}} . \tag{4}
\end{equation*}
$$

Next choose N so large that $\varepsilon /\left(2 C_{1}\right) \gg a^{-N / 2}$ and also so large that for every $n \geq N$ and every $Z_{e_{1} \ldots e_{n}}$ satisfying $Z_{e_{1} \ldots e_{n}} \cap\left(a_{0}-\delta / 2, a_{0}+\delta / 2\right) \neq \emptyset$,

$$
\operatorname{dis}\left(\Phi \mid Z_{e_{1} \ldots e_{n}}\right) \leq 1+\frac{\varepsilon}{8 C_{1}} .
$$

Here C_{1} is taken from Lemma 2, so it is an upper bound for $\sum_{i} s_{i}\left|J_{i}(a)\right|$ for each $a \in\left(a_{0}-\delta / 2, a_{0}+\delta / 2\right)$. Finally, choose a neighbourhood $a_{0} \in A \subset$ ($a_{0}-\delta / 2, a_{0}+\delta / 2$) so small that for every $a \in A$, and every j such that $s_{j}<t_{0}, J_{j}(a)$ persists in A, no new branch domain of transfer time $s_{j}<t_{0}$ is created, and

$$
\begin{equation*}
1-\frac{\varepsilon}{8 s_{j} 2^{j}} \leq \frac{\left|J_{j}(a)\right|}{\left|J_{j}\left(a_{0}\right)\right|} \leq 1+\frac{\varepsilon}{8 s_{j} 2^{j}} . \tag{5}
\end{equation*}
$$

Take from now on $n \geq N$ and $a \in A$. Let $J_{j}(a) \ni \Phi_{n}(a)$. If $s_{j}<t_{0}$, then by (4) and (5),

$$
\begin{aligned}
\left|J_{j}(a)\right|\left(1-\frac{\varepsilon}{8 s_{j} 2^{j}}\right)\left(1-\frac{\varepsilon}{8 C_{1}}\right) & \leq \frac{\left|Z_{e_{1} \ldots e_{n} j}\right|}{\left|Z_{e_{1} \ldots e_{n}}\right|} \\
& \leq\left|J_{j}(a)\right|\left(1+\frac{\varepsilon}{8 s_{j} 2^{j}}\right)\left(1+\frac{\varepsilon}{8 C_{1}}\right) .
\end{aligned}
$$

If $s_{j} \geq t_{0}$, we do not know whether $J_{j}(a)$ persists in A. An extra set of arguments is necessary.

Let $\left(a_{1}, a_{2}\right)=Z_{e_{1} \ldots e_{n}} \subset A$ be any cylinder. By Lemma 4 , there exists m such that $c_{m}\left(a_{1}\right)=c_{1}\left(a_{1}\right)$ or $c_{2}\left(a_{1}\right)$. Hence $c_{2}\left(a_{1}\right) \in T_{a_{1}}^{-m+\gamma}(c)$ for $\gamma \in$ $\{1,2\}$. Let $x(a)$ be the continuation of this preimage in $\left(a_{1}, a_{2}\right)$. Let

$$
W_{e_{1} \ldots e_{n}}=\left\{a \in Z_{e_{1} \ldots e_{n}} \mid \Phi_{n}(a)<x(a)\right\} .
$$

As $\left|x\left(a_{2}\right)-c_{2}\left(a_{2}\right)\right| \approx\left|Z_{e_{1} \ldots e_{n}}\right|$, it follows that $\left|W_{e_{1} \ldots e_{n}}\right| \approx\left|Z_{e_{1} \ldots e_{n}}\right|^{2}$. Next take $W_{n}=\bigcup_{Z_{e_{1} \ldots e_{n}} \subset A} W_{e_{1} \ldots e_{n}}$. As $\left|Z_{e_{1} \ldots e_{n}}\right| \leq a^{-n}$, it follows that $W_{n} \leq$ $\mathcal{O}\left(a^{-n}\right)|A|$, as asserted.

From now on we concentrate on parameters $a \in Z_{e_{1} \ldots e_{n}} \backslash W_{n}$. Assume $\Phi_{n}(a) \in J_{i}(a)$, where $s_{i} \geq t_{0}$. We will try to reconstruct what happens to $J_{i}(a)$ as a moves down to a_{1}. Because $J_{i}(a) \geq x(a)$ we can indeed trace back J_{i} and remain in the core $\left[c_{2}(a), c_{1}(a)\right]$. As we remarked in Section 4, $\frac{d}{d a}\left|J_{i}(a)\right|<0$. If $J_{i}(a)$ already existed at a_{1}, then $\left|J_{i}\left(a_{1}\right)\right| \geq\left|J_{i}(a)\right|$. If $J_{i}(a)$ is created between a_{1} and a, then it was created from countably many merging branch domains with larger transfer times. Each of these domains may have
been created in another merging process and so on. But in any case, we arrive at

$$
\left|\bigcup_{s_{i} \geq t} J_{i}(a)\right| \leq\left|\bigcup_{s_{i} \geq t} J_{i}\left(a_{1}\right)\right| \leq C_{2} \sum_{s \geq t} r^{s}
$$

Using the small distortion of Φ_{n}, we obtain

$$
\sum_{\substack{s_{j} \geq t \\ Z_{e_{1} \ldots e_{n} j \not \subset W_{e_{1} \ldots e_{n}}}}} t\left|Z_{e_{1} \ldots e_{n} j}\right| \leq C_{2}\left|Z_{e_{1} \ldots e_{n}} \backslash W_{e_{1} \ldots e_{n}}\right| \sum_{s \geq t}\left(1+\frac{\varepsilon}{8 C_{1}}\right) s r^{s}
$$

Combining all this, we get

$$
\begin{aligned}
& \mathbb{E}\left(s\left(\Phi_{n}(a)\right) \mid Z_{e_{1} \ldots e_{n}} \backslash W_{n}\right) \\
& \leq \sum_{t<t_{0}} t \sum_{s_{j}=t} \frac{\left|Z_{e_{1} \ldots e_{n} j}\right|}{\left|Z_{e_{1} \ldots e_{n}} \backslash W_{n}\right|}+\sum_{t \geq t_{0}} \sum_{\substack{s_{j} \geq t \\
Z_{e_{1} \ldots e_{n} j} \not \subset W_{e_{1} \ldots e_{n}}}} s_{j} \frac{\left|Z_{e_{1} \ldots e_{n} j}\right|}{\left|Z_{e_{1} \ldots e_{n}} \backslash W_{n}\right|} \\
& \leq \sum_{s_{j}<t_{0}} s_{j}\left|J_{j}\left(a_{0}\right)\right| \frac{\left|Z_{e_{1} \ldots e_{n}}\right|}{\left|Z_{e_{1} \ldots e_{n}} \backslash W_{e_{1} \ldots e_{n}}\right|}\left(1+\frac{\varepsilon}{8 s_{j} 2^{j}}\right)\left(1+\frac{\varepsilon}{8 C_{1}}\right) \\
&+\sum_{t \geq t_{0}} \sum_{s \geq t} s\left(1+\frac{\varepsilon}{8 C_{1}}\right) C_{2} r^{s} \\
& \leq \sum_{s_{j}<t_{0}} s_{j}\left|J_{j}\left(a_{0}\right)\right|\left(1+\mathcal{O}(1)\left|Z_{e_{1} \ldots e_{n}}\right|\right)+\frac{\varepsilon}{2} \leq M\left(a_{0}\right)+\varepsilon .
\end{aligned}
$$

A similar proof shows that also $\mathbb{E}\left(s\left(\Phi_{n}(a)\right) \mid Z_{e_{1} \ldots e_{n}} \backslash W_{n}\right) \geq M\left(a_{0}\right)-\varepsilon$. For the variance one obtains

$$
\begin{aligned}
\operatorname{Var}\left(s\left(\Phi_{n}(a)\right) \mid Z_{e_{1} \ldots e_{n}} \backslash W_{n}\right) & \leq \mathbb{E}\left(s\left(\Phi_{n}(a)\right)^{2} \mid Z_{e_{1} \ldots e_{n}} \backslash W_{n}\right) \\
& \leq \mathcal{O}(1) \sum_{t} \sum_{s \geq t} s^{2} C_{2} r^{s}<\infty
\end{aligned}
$$

Proposition 3. For a.e. $a \in[\sqrt{2}, 2]$,

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=0}^{n-1} s\left(\Phi_{i}(a)\right)=\sum_{i} s_{i}(a)\left|J_{i}(a)\right|
$$

In other words, condition (iii) is satisfied for $x=c_{3}(a)$ for a.e. $a \in[\sqrt{2}, 2]$.
Proof. Take a_{0} as in the previous lemma. Apply Lemma 8 with $X_{m}=$ $s\left(\Phi_{m}\left(a_{0}\right)\right)$ on $A \backslash \bigcup_{n \geq N} W_{n}$. Then the conditions of Lemma 8 are satisfied. For every $\varepsilon>0$,
(6) $\quad \underset{n}{\lim \sup }\left|\frac{1}{n} \sum_{i=0}^{n-1} s\left(\Phi_{i}(a)\right)-M\left(a_{0}\right)\right| \leq \varepsilon \quad$ for a.e. $a \in A \backslash \bigcup_{n \geq N} W_{n}$.

Now $\left|\bigcup_{n \geq N} W_{n}\right| /|A| \leq \mathcal{O}(1) \sum_{n \geq N} a^{-n}=\mathcal{O}\left(a^{-N}\right) \rightarrow 0$ as $N \rightarrow \infty$. Because (6) is true for every N, we indeed obtain

$$
\underset{n}{\limsup }\left|\frac{1}{n} \sum_{i=0}^{n-1} s\left(\Phi_{i}(a)\right)-M\left(a_{0}\right)\right| \leq \varepsilon \quad \text { for a.e. } a \in A
$$

Now we show that $M:[\sqrt{2}, 2] \rightarrow \mathbb{R}$ is continuous in a_{0}. Let $\eta>0$ be arbitrary. Find a neighbourhood $A \ni a_{0}$ such that for each $a \in A$ the following properties hold:

- The integer $N>0$ (by Lemma 7) is such that

$$
\sum_{s_{j}(a)>N} s_{j}(a)\left|J_{i}(a)\right| \leq \frac{\eta}{3} .
$$

- No interval J_{j} with $s_{j} \leq N$ is created as a varies in A.
- For each j such that $s_{j}(a) \leq N$,

$$
\left|\left|J_{j}(a)\right|-\left|J_{j}\left(a_{0}\right)\right|\right| \leq \eta / 2^{j} .
$$

Then it follows that $\left|M(a)-M\left(a_{0}\right)\right|<\eta$ for all $a \in A$, proving continuity.
Hence we can apply Lemma 9 , with $g_{n}(a)=\frac{1}{n} \sum_{i=0}^{n-1} s\left(\Phi_{i}(a)\right)$. The proposition follows.

References

[BC] M. Benedicks and L. Carleson, On iterations of $1-a x^{2}$ on ($-1,1$), Ann. of Math. (2) 122 (1985), 1-25.
[BGMY] L. Block, J. Guckenheimer, M. Misiurewicz and L.-S. Young, Periodic points and topological entropy of one dimensional maps, in: Lecture Notes in Math. 819, Springer, 1980, 18-34.
[BM] K. Brucks and M. Misiurewicz, Trajectory of the turning point is dense for almost all tent maps, Ergodic Theory Dynam. Systems 16 (1996), 1173-1183.
[B] H. Bruin, Induced maps, Markov extensions and invariant measures in onedimensional dynamics, Comm. Math. Phys. 168 (1995), 571-580.
[B2] -, Combinatorics of the kneading map, Internat. J. Bifur. Chaos Appl. Sci. Engrg. 5 (1995), 1339-1349.
[DGP] B. Derrida, A. Gervois and Y. Pomeau, Iteration of endomorphisms on the real axis and representations of numbers, Ann. Inst. H. Poincaré Phys. Théor. 29 (1978), 305-356.
[H] F. Hofbauer, The topological entropy of the transformation $x \mapsto a x(1-x)$, Monatsh. Math. 90 (1980), 117-141.
[K] G. Keller, Lifting measures to Markov extensions, ibid. 108 (1989), 183-200.
[MS] W. de Melo and S. van Strien, One-Dimensional Dynamics, Ergeb. Math. Grenzgeb. (3) 25, Springer, Berlin, 1993.
[M] M. Misiurewicz, Absolutely continuous measures for certain maps of an interval, Inst. Hautes Études Sci. Publ. Math. 53 (1981), 17-51.
[P] K. R. Parthasarathy, Probability Measures on Metric Spaces, Academic Press, New York, 1967.
[Sa] D. Sands, Topological conditions for positive Lyapunov exponents in unimodal maps, Ph.D. thesis, Cambridge, 1994.
[Sc] J. Schmeling, Symbolic dynamics for β-shifts and self-normal numbers, Ergodic Theory Dynam. Systems 17 (1997), 675-694.
[T] H. Thunberg, Absolutely continuous invariant measures and superstable periodic orbits: weak ${ }^{*}$-convergence of natural measures, Ph.D. thesis, Stockholm, 1996.

KTH, Department of Mathematics
10044 Stockholm, Sweden
E-mail: bruin@math.kth.se

> Received 12 August 1996;
in revised form 15 May 1997

[^0]: ${ }^{(1)}$ Thunberg $[T]$ showed another kind of typicality: for a positive measured set of parameters, f_{a} has an acip which can be approximated weakly by Dirac measures on super-stable orbits of nearby maps.

