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Modules commuting (via Hom) with some limits
by

Robert E1 Bashir and Tomas Kepka (Praha)

Abstract. For every module M we have a natural monomorphism

P: HHomR(Ai,M) — Hompg (HAi, M)
i€l i€l
and we focus attention on the case when @ is also an epimorphism. The corresponding

modules M depend on thickness of the cardinal number card(I). Some other limits are
also considered.

0. Introduction. Let A be a diagram (i.e., a small category) of modules.
Given a module M, we have natural isomorphisms

lim(Hompg (M, A)) = Hompg(M,lim(A)),
lim(Hompg (A, M)) = Hompg(colim(A), M)

and natural (connecting) homomorphisms

& : colim(Hompg(A, M)) — Hompg(lim(A), M),
¥ : colim(Homp(M, A)) — Hompg (M, colim(A)).

It may happen that @ (resp. ¥) is an isomorphism whenever A is a diagram
of certain type and, in such a case, we shall say that M commutes (via Hom)
with limits (resp. colimits) of the diagrams considered.

The present note is concerned with the most important limits: direct
products, pull-backs and limits of downwards-directed spectra. The corre-
sponding (commuting) modules are fully characterized in each case and some
examples are given (for the direct product case). The easier (and more fash-
ionable) colimit case is not treated here (the reader is referred to [12]).
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1. Preliminaries. Throughout the paper, R stands for a non-zero as-
sociative ring with unit and modules are unitary left R-modules. Further, a
will always denote a cardinal number. The category of modules and homo-
morphisms will be denoted by R-MOD (for various basic properties of this
category, we refer e.g. to [29]). The category of sets (including the empty
set ()) and mappings will be denoted by SET.

Let S be a (non-empty) ordered set. By an S-spectrum (in a given cat-
egory) we shall mean any diagram of the type f.s : A, — A, r,s € 5,
r < s. An S-spectrum will be called upwards/downwards-directed if so is the
ordered set S. As a special case, we get a-spectra (a with the usual order)
and a-spectra (a with the dual order).

Let A be a complete boolean algebra. The following easy observation
will be useful in the sequel:

1.1. LEMMA. Let an € A, o < a. Then there are pairwise (meet-) orthog-
onal elements by, € A such that sup,({ae : @ < a}) = sup,({ba : @ < a})
and by, < a,, for every a < a.

An ideal I of A will be called a-complete (in A) if supa(S) € I for every
subset S C I such that card(S) < a. The boolean algebra A will be called
a-measurable if A has at least one a-complete non-principal maximal ideal.
This definition may be weakened in the following obvious way:

1.2. LEMMA. A is a-measurable if and only if A has an a-complete non-
principal ideal I such that the factor algebra A/I is finite.

A set S will be called a-measurable if so is the boolean algebra P(S) of
subsets of S.

A set S will be called measurable if a = card(S) > Ny and S is a-
measurable.

2. Modules commuting with direct products—introduction. Let
I be a non-empty index set and A;,i € I, an idexed family of modules. Put
B = [l,e1Ai € [l,e1Ai = A and suppy(a) = {i € I : a(i) # 0} for every
a € A. If J is a subset of I, then we define A(J) = {a € A : supp;(a) C J}
and B(J) = {a € B : supp;(a) C J}.

Let M be a module. A homomorphism ¢ : A — M is called

e slender if p(A({i})) = 0 for almost all i € I;
o completely slender if p(B) = 0;
e slim if ¢(A(J)) = 0 for a cofinite subset J of I.

We say that a module M is a-slim if every homomorphism [[;.; A; — M,
card(I) < a, is slim, and we say that M is slim if it is a-slim for every
cardinal a.

Slim modules appear in the following obvious context:
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2.1. PROPOSITION. (i) A module M is a-slim if and only if M commutes
with all direct products [],.; A; such that card(I) < a.
(i1) A module M s slim if and only if M commutes with direct products.

N;-slim modules were introduced by J. Los under the name of slender
modules.

2.2. LEMMA ([15, §94]). The following conditions are equivalent for a
module M:

(i) M is slender (i.e., Nq-slim).
(ii) Every homomorphism R¥° — M is slim.
(iii) Pvery homomorphism RY0 — M is slender.
(iv) Every homomorphism [],c; Ai — M s slender (for any index set I).
Proof. (iii)=(iv). Proceeding by contradiction, we easily get a non-
slender homomorphism ¢ : B = Hi<No B; — M. Now, ¢ : R — M
is not slender, where ¥(a) = ¢(>_; y, a(i)bi), bi € B({i}), p(b;) # 0 if
p(B({i})) # 0.
(iil)=-(i). Let ¢ : A = [];y, Ai — M be not slim. For every i, there is
a; € A such that ¢(a;) # 0 and supp(a;) > i. Now, defining ¢ : R¥ — A by
P(a) = a(i)a;, we get a non-slender homomorphism @1 : R¥ — M. m

The following result is a basic criterion for slimness:

2.3. THEOREM. Suppose that a > Ny. A module M is a-slim if and only
if every homomorphism R™ — M is slim, whenever w is a cardinal such
that o < a and either o = Ny or v is measurable.

Proof. In view of 2.2, let a > Ny and let M be a slender module such
that M is not a-slim. Consider the smallest cardinal w with a non-slim
homomorphism ¢ : A =[], ., Aa — M. Then X; < 1 < a and we can take
o to be completely slender.

Let a € A be such that g(a) # 0 and define ¢ : T = R® — A by
(s(v))(a) = v(a)a(w) for all v € T and a < ro. Then p = o5 : T'— M is a
completely slender non-slim homomorphism.

Put P =P(w)andZ =Z, = {P € P : (T (P)) = 0}. Then 7 is an ideal
of the boolean algebra P and our first aim is to show that the factor algebra
G = P/T is finite. Suppose this is not true. Then G contains an infinite set
of non-zero pairwise (meet-) orthogonal elements and consequently we can
find pairwise disjoint sets Q; € P\ Z, i < Xy. Now, ¢ induces a non-slender
homomorphism [[7(Q;) — M, a contradiction. We have thus proved that
G is finite.

Further, using 1.1 and the fact that M is to-slim (due to the minimality
of ), we conclude that Z is mw-complete. Finally, one sees directly from the
properties of ¢ that 7 is not principal. By 1.2, tv is a measurable cardinal. m
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The first part of the next useful result is folklore, while the second one is
an improved version of [7, 1.6] (see also [15, 94.4], [21, 3.(4)] and [9, I11.3.3]).

2.4. PROPOSITION. Let to be a cardinal.

(i) If o is a-measurable, then card(M) > a for every non-zero w™ -slim
module M.
(ii) If o is not a-measurable, then every a-slim module is vo -slim.

Proof. (i) Let Z be an a-complete non-principal maximal ideal of P ()
and let M be a non-zero module with less than a elements. For every a €
A = M™ there is just one element ¢(a) € M such that {a < w : a(«a) #
¢(a)} € T and thus we get a non-slim homomorphism ¢ : A — M.

(ii)) We use 2.3; we can assume that X; < a < to. Let M be an a-
slim module and let t be a measurable cardinal, ¢+ < tv. Since to is not
a-measurable, we must have vt < a, and hence every homomorphism R* — M
is slim. m

2.5. REMARK. Let a > Ny and let M be a slender module that is not
a-slim. Consider the smallest cardinal to with a non-slim homomorphism
R® — M (see 2.3 and its proof). Then N; < tv < a and w is measurable.
Now, we are going to show that there exists a non-zero completely slender
(non-slim) homomorphism ¢ : R® — M such that the corresponding ideal
T, of P(w) is non-principal, maximal and to-complete.

We start with a non-zero completely slender homomorphism ¢ : T =
R™ — M. If Z,, is not maximal, then there are two disjoint subsets P and
Qo of w such that o = Py U Qo, Py & Zy, Qo & Zy and card(Fp) = v =
card(Qo). The restrictions ¢ [T(Py) and ¢ [T(Qo) are non-zero completely
slender homomorphisms. If the ideal Z,, N P(Fp) is maximal in P(Fp), then
our claim is proved. Otherwise, Py = PLUQ1, PPN Q1 = 0, Pi & Iy,
Q1 € Iy, card(P1) = 1o = card(Q1), etc. Proceeding in this way, we arrive
at a non-slender homomorphism [];  7(Q:) — M, a contradiction. Thus
our procedure yields a maximal ideal Z,, N P(P,) (of P(F,)) after finitely
many steps and the rest is clear.

2.6. PROPOSITION. (i) The class of a-slim modules is closed under sub-
modules and extensions.

(ii) The class of slender modules is closed under submodules and exten-
s0MS.

(iii) The class of slim modules is closed under submodules and extensions.

Proof. Easy. =
2.7. REMARK. It follows readily from 2.6 that (a-) slim modules are

closed under finite direct sums. In fact, these modules are closed under
arbitrary direct sums: we shall prove it in the next section.
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3. Direct sums of slim modules. E. Lady proved in [21, 3.(2)] that
slender modules are closed under taking arbitrary direct sums; now we are
going to show the same for a-slim modules:

3.1. THEOREM. The class of a-slim modules is closed under direct sums.

Proof. We proceed by contradiction. Let v be the smallest cardinal
such that there exist a-slim modules Mg, § < ¢, with M = H[Kt M3 not
a-slim and let v be the smallest cardinal such that there exists a non-slim
homomorphism ¢ : A =[], ., Aa — M; we have Ry < v and Rg <w < a.

In order to get our contradiction, we construct two sequences aq, as, . ..
and by, bg,... of elements of A. First, choose a; € A such that ¢(a;) # 0
and put g1 = max(supp.(¢(a1))) and v4 = py + 1. If 1y : M — Ny =
H6<u1 Mg is the natural projection, then m¢p : A — Nj is slim and there
is a non-empty finite subset 77 of tv such that ¢(A(r \ 71)) € M(P,,),
P, ={0:1 <<t} and we put 01 = max(7y) and 71 = o1 + 1. Now, we
define b; € A by b1(«) = a1(a) for a < 11 and by(a) = 0 for 11 < o < 1.
Clearly, supp,,(b1) < 01,01 —a1 € A(w\ T1),p(by —a1) € M(P,,) and
0# ¢(a1) € M(Qy,), Qu, = {8 : 5 < wv1}. Moreover, ¢(by) # 0 and we put
1 = max(p1,supp,(¢(b1))) and & = ¢ +1 (& =0).

Further, proceeding similarly, we get a non-empty finite subset S; of
o such that (A(ro \ S1)) € M (P, ) and we put 7; = max(S;,71) and
go = 71 (61 = 0). Using the minimality of to, we see that there exists
as € A such that supp,(az) > €2 and 0 # ¢(az) € M(P: ). Again,
put po = max(supp,(¢(az))), v2 = p2 +1 and No = ][5, Mpg. Then
w(A(w \ Tz)) € M(P,,) for a non-empty finite subset 75 of w. Now, as
usual, set oo = max(T5,71), 72 = 02 + 1 and define by € A by ba(a) = az(«)
for o < 75 and ba(a) = 0 for 72 < a < ro. Clearly, supp,, (b2) C {e2,...,02},
by —az € A(m \ T2)7 gp(bg - a2) S M<P7/2) and 0 7é (p(a2> € M(Qyz)a
Qu, = {8 : & < B < vao}. Moreover, 0 # ¢(by) € M(FPg,) and we put
S2 = max (g, supp, (¢(b2))) and £ = ¢ + 1.

Proceeding by induction, we get a sequence by, bo, ... of elements of A
and sequences €1,€9,..., 01,09,..., 1,82, ..., ¢1,$2, ... of ordinal numbers
such that supp,, (b;) C {€i,...,0i}, €i < 0 < €it1, p(bi) # 0, supp.(p(b;))
C{&,...,s} and & < ¢ < &4 for every i = 1,2,... Now, we can define

b € A such that b(«) # 0 iff b;(«) # 0 for some ¢ > 1 and then b(a) = b;(«).

Finally, let v < v be such that v € supp,(¢(b;)) for some j > 1. We
claim that v € supp.(¢(b)). To show this, let 7 : M — M, denote the
natural projection. Then mp : A — M, is slim and it follows that there is
a non-empty finite subset 7' of w such that p(A(ro \ 7)) C M(W), W =
{B:8<r, B#~} Clearly, j € Z = {i > 1: T Nsupp,(b;) # 0}. The
set Z is finite and we put ¢ = > .., b; € A. Then b —c € A(w \ T') and

(@(0))(7) = (p(e)) (7). But ((e))(7) = 25z (#(0:))(7) = (#(b;))(7) # 0.
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We have proved our claim and we immediately conclude that the set
supp, (¢(b)) is not finite, a contradiction with the fact that ¢(b) € [[ Mp. =

3.2. COROLLARY. (i) ([21]) The class of slender modules is closed under
direct sums.
(ii) The class of slim modules is closed under direct sums.

The original proof of [21, 3.(2)] (i.e., 3.2(i)) makes use of the Baire Cate-
gory Theorem. A similar idea works also for a-slim modules and we shall give
an alternative proof of 3.1. For this purpose, we need a special generalized
version of the B.C.T. as described in the following observation:

3.3. OBSERVATION. Suppose that a is both infinite and regular and put
A = R°.

(i) For every o < a, let A, = A(a\ @). Then F = {4, : a < a} is
a (downwards-directed) filtration of the module A and we have the corre-

sponding closure operator clsz on A : clsz(S) =) Ao + S) for every
S eP(A).

3.3.1. LEMMA. A is F-complete, i.e., every Cauchy F-net of elements of
A is convergent.

3.3.2. LEMMA. Let I be a finitely generated right ideal of R and P € P(a).
Then I A(P) is an F-closed subgroup of A(+).

3.3.3. LEMMA. Let T, o < a, be F-closed subsets of A such that intz(Ty,)
=0 for every a. Then |, ., To # A.

Proof. Put Z = {P € P(a) : card(P) < a} and find sets P, € Z and
elements a,, € A such that the following three conditions are satisfied:

(a) P3 C Py and ag —a, € A(a\ Pg) for < a < a;
(b) an € A(P,) for every a < a;
(c) ap —b& A(a\ P,) for all &« < a and b € Tj,.

Since clsz(Th) # A, there are Py € 7 and x € A\ T such that © — b &
A(a\ Py) for every b € Ty. Now, put ap = x — y, where y € A(a\ Py) and
ag € A(P())

Let 1 < 8 < a be such that P, and a,,a < 3, are already found. Then
P =U,c3 P €T and, due to (a), there is a € A(P) such that a —a, €
A(a\ P,) for every o < . We have a+ A(a\ P) € Tg = clsx(1p),a+2 ¢ T3
for some z € A(a\ P) and there exists @ € Z such that a+z—b & A(a\ Q)
for every b € Tj. It is sufficient to put Pg = P U Q and to take ag € A(Pg)
and v € A(a \ Pg) such that a + z = ag + v.

Now, according to (a), there is ¢ € A such that ¢ — a,, € A(a\ P,) for
every a < a. By (¢), c¢ JT,. =

a<a(
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(ii) Let I, a < a, be finitely generated right ideals of R such that
I, C Ig for § < a. Then G = {I,A, : @ < a} is a filtration of A(+); we
have clsg C clsz.

3.3.4. LEMMA. The subgroups I, A, are F-closed and A(+) is G-complete.
Proof. Use 3.3.1 and 3.3.2. =

(iii) Let G, < a, be subgroups of R(+) and let H, denote the set
of a € A such that a(f8) = 0 for § < a and a(y) € G, for o < 7. Again,
H={H, :«a<a}is a filtration of A(+) and clsy; C clsg.

3.3.5. LEMMA. Let T,, a < a, be H-closed subsets of A such that inty (T, )
= for every o.. Then |J,cq Ta # A.

Proof. Similar to that of 3.1.3. =
If G, = I, (see (ii)), then H, C I, A,, and hence clsy C clsg C clsg.

3.4. REMARK. Now, we present another proof of 3.1 (based on 3.3.3):

Again we argue by contradiction. Let v be the smallest cardinal such that
M =]l Mp is not a-slim for some a-slim modules M (we have v > R
by 2.7) and let to be the smallest cardinal such that there exists a non-slim
homomorphism ¢ : A = R® — M. Then tv is infinite and it follows from
2.3 that tv is also regular.

For every v <, let N, =[], Mg C M, B, = ¢ 1(N,) C A and let
my : M — N, denote the natural projection. The module N, is a-slim, and
hence the composition 1., = m,¢ : A — N, is slim. This means that v, is
(F, Z)-continuous, where F is the filtration in A in 3.3(i) and Z is the zero
filtration of N,. Now, By = [\, <5, Y51 (N,) is an F-closed submodule
of A and it follows from 3.3.3 that intz(B.) # 0 for at least one ¢ < t.
Equivalently, A, C B, and p(A,) C N. for suitable p < v. But IV is a-slim,
and so there is v such that ¢ < v < v and ¢(A4,) = 0. Finally, ¢[A(v) is
slim and we conclude that the homomorphism ¢ : A — M is also slim, a
contradiction.

4. Examples of slender modules. The notion of slenderness and some
of the basic results for the non-measurable case (e.g., 2.2 and 2.4 for a =
R;) are due to J. Lo§ and were published in [13]. A generalization to the
measurable case can be found in [5]-[7] (see also [9, Chapter III]). The
following characterization of slender modules was given by R. Dimitri¢ in
[4] (see also [17] and [3]):

A module M is slender if and only if Homgr(W, M) = 0, where W =
RYo /R(NU), and M is not complete (i.e., M is not E-complete, whenever
E ={M; :i <Ny} is a downwards-directed filtration of M such that (€ =0
and M; # 0 for every i < Wp).
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This result is a useful criterion for slenderness. In particular, when
card(M) < 2%, we have to check only that Hompz(W, M) = 0. However,
in many particular cases, this is a rather complicated task, and hence vari-
ous indirect methods are also used (see the following examples).

4.1. EXAMPLE ([27]). Every reduced torsionfree abelian group containing
less than 2% elements is slender.

4.2. EXAMPLE ([10]). Let R be a prime ring with less than 2% elements.
Then R is slender if and only if R is not isomorphic to a (full) matrix ring
over a division ring.

4.3. EXAMPLE ([10]). Let R be a strongly regular ring with less than 2%°
elements. Then R is slender if and only if Soc(R) = 0.

4.4. EXAMPLE ([28]). Let R be a countable simple regular ring, not com-
pletely reducible. Then all completely reducible modules and all modules of
finite length are slender.

4.5. ExaMPLE ([1], [3], [9], [26]). A Dedekind domain R is slender if and
only if R is neither a field nor a complete discrete valuation domain.

4.6. ExaMPLE ([1], [3], [21], [26]). Let R be a Dedekind domain such that
the set M of maximal ideals is countable. A module M is slender if and only
if M is reduced torsionfree, RN is not isomorphic to a submodule of M and,
for every P € M, the P-adic completion Rp of R is not isomorphic to a
submodule of M.

4.7. REMARK. Further results on and examples of slender modules may
be found in [8], [11], [14], [16], [22]-[24].

4.8. REMARK. (i) As we have seen (2.6(ii), 3.2(i)), the class Sg of slender
modules is closed under submodules, direct sums and extensions. On the
other hand, if Sg # 0, then Sg is not closed under direct products and
there exist slender modules that are neither finitely generated nor finitely
cogenerated. (Conversely, there always exist finitely cogenerated modules
that are not slender.)

(ii) The class of rings with Sg = 0 is rather interesting but enigmatic so
far. Among these rings we shall certainly find many left semiartinian rings,
all right perfect rings and all complete discrete valuation domains.

4.9. PROPOSITION. Let R be a ring such that card(R) < 2%0. The follow-
ing conditions are equivalent:

(i) R is left noetherian and Sg = 0.
(ii) R is left noetherian and Sg is closed under homomorphic images.
(iii) R is left artinian.
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Proof. (ii)=(iii). Suppose that, on the contrary, R is not left artinian.
Then R is not perfect and there is a prime ideal P of R such that M = R/P
is not completely reducible. Now, M is slender by 4.2, and hence N = M (®),
where a = card(M)Yo, is slender by 3.2(i). On the other hand, the non-
slender module M™° is a homomorphic image of N, a contradiction. =

5. Approximation property. Following [7, 2.1], we say that a module
M has the a-approzimation property if there exist finitely generated right
ideals I, of R and subsets S, of M, a < a, such that the following five
conditions are satisfied:

(1) Is C 1, and S, C S for a < B < @

(2) Inz #0 for all &« < a and = € M,z # 0;

(3) IaM NS, =0 for every o < a;

(4) 0 € Sy and S, = =8, for every a < a;

(5) If « < a and x € M, then 4+ S, C Sp for some (3 < a.

5.1. PROPOSITION ([7, 2.2, k = Rgl). Let M be a module with the Ng-
approzimation property. Then M is slender.

Proof. For methodological reasons, we present a proof different from
the original one:

Consider the filtration G of A(+) according to 3.3(ii) and the filtration
E ={LM :i < Ny} of M(+). It follows easily from (5) that all the sets
S; are E-closed, and hence T; = ¢~ 1(S;) are G-closed, ¢ : A = R® — M
being a homomorphism. Now, |J7; = A and consequently, by the Baire
Category Theorem, we have intg(7,) # 0 for at least one n < Ry. Then
there are a € A and k > m > n such that ¢(a) + I,,p(A[m]) C S,, (where
Alm] = ARo \ m)), Irp(Alk]) C Inp(A[m]) C S, — ¢(a) C Sk and so
Ip(A[k]) = 0. By (2), p(A[k]) = 0 and we have proved that ¢ is slim. m

5.2. REMARK. It is tempting to formulate the following generalization
of 5.1 (see [7, 2.2]):

Let M be a module with the a-approximation property for a regular car-
dinal a. If p : A= R* — M is a homomorphism, then p(A(a\ «)) =0 for
some a < a.

However, if we try to generalize the proof of 5.1, we find that the analogue
of 3.3.3 for the filtration G is not available (cf. 3.4). Of course, we have 3.3.5,
but this assertion is not powerful enough.

There seems to be a gap in the original proof [7, 2.2] (the limit step is not
behaving well) and we doubt that the result remains true even for k = N;.
At this moment, we do not know any counterexample for Ry, but 5.4 or 5.5
might be useful in this respect (possibly some maximal valuation domains
should be considered).
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5.3. REMARK. Combining 2.3 and [7, 2.2] would easily give the following
result:

Let M be a module with the w-approzimation property for every cardinal
o < a such that either o = Xy or v is measurable. Then M is a-slim.

Now, this assertion is certainly true for a not 8;-measurable (see 5.1 and
2.3) but fails for every measurable a. A counterexample will be constructed
in the next section (see 6.9).

5.4. PROPOSITION. Let a be an infinite reqular cardinal number and let
M be a module such that card(M) < a and there ezist finitely generated
right ideals K, of R, a < a, satisfying the following three conditions:

(a) Kg C K, fora<p<a
(b) Koz #0 for alla < a and x € M, x # 0;
(¢) No<ca KaM = 0.

Then M has the a-approximation property.

Proof. We have M = {z, : @ < a}. Put Sy =0and gg = 0. If a < q,
then Soq1 = (Sa + Sa) U {xa, —xo}. Since a is regular, there is €441 < a
such that e, < €qq41 and K., M NSy11 = 0. If 0 < o < a, o limit,

then So = Uz, Sp and o = sup,({es : B < a}). Now, it suffices to put
Ion=K. . =

5.5. PROPOSITION. Let a be an infinite regular cardinal and let R be a
prime ring such that card(R) < a and Soc,(R) = 0. Suppose that (), ., La
% 0 whenever w < a and Lo, o < v, are non-zero principal right ideals
such that Lg C Lo for o < 3. Then rR has the a-approzimation property.

Proof. For every ordinal o < a*t, we shall find certain non-zero elements
re € R.

We put g = 1. Now, r, R is not a minimal right ideal, and hence r, ¢
ror1 R for some 0 # ro11 € 7o R. Let o > 0 be limit and K, = ﬂﬁ<a rgR. If
K, # 0, we choose 0 # r € K. If v is the first limit ordinal with K, = 0,
then a < 5. On the other hand, since card(R) < a, we must have K, = 0
for some limit v < a™. Then card(y) = a and the rest is clear from 5.4. m

In the preceding section, we mentioned various examples of slender (i.e.,
N;-slim) modules; we now proceed to the a-slim case, where a > No. If a
is not Nj-measurable, then every slender module is a-slim (2.4(ii)), and so
there is nothing to be done in case there exist no measurable cardinals. But
what to do when the opposite is true? K. Eda seems to be the first to try
to construct examples of a-slim modules regardless of measurability (see
[7, 2.4(4),(5)]; notice that Eda uses the term “a-slender” for what we call
“a-slim”). In order to check his examples, K. Eda applied [7, 2.2, 2.3] (see 5.2
and 5.3). Although [7, 2.2] is correct for k = Ry, we do not know whether
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it remains true for k = Ny (see 5.2). Of course, [7, 2.3] is true for p not
N;-measurable (in our terminology), but fails for a measurable p (see 5.3),
and so we have to develop new methods for constructing a-slim modules
(7.2, 7.5) or to find better arguments for justifying at least some of Eda’s
examples (6.3).

6. Examples of a-slim modules—endomorphism rings. Through-
out this section, let a be an infinite cardinal, M = R(®) and E = End(zM),
so that M is both a left R-module and a left E-module. The (left R-) module
rM is free and its canonical basis is the set {e, : @ < a} where e,(a) =1
and e, (08) = 0 for every 8 < a, 8 # a. The (left E-) module g M is faithful
and cyclic.

For every non-zero cardinal o < a, write a as a disjoint union a =
Ua<cw P(0, ), where card(P(w,«)) = a for w < a and P(a,a) = {a}.
Let N(w,a) = > 5cp(w,a) Ltes © M be the corresponding (inner) direct
sum; then zrN(w,a) = pR® = zrM for v < a and rN(a,a) = rM(a)
~ rR. Now, M = S(w,a) & L(w,a), where S(w,a) = > 5, N(w,3)
and L(w,a) = > 5., N(10,3), and we denote by py o the (uniquely
determined) endomorphism of gpM such that Ker(py o) = S(w,a) and
Pro,o | L(t0, &) = id. Notice that pw g = Pr,aPw,s for a < 8 < to.

For a, 8 < a, define ko3 € E by ko glea) = eg and ko g(ey) = 0 for
every v < a, v # .

6.1. PROPOSITION. Let to be an infinite cardinal, to < a, and let D be a
subring of I such that py.o € D and kg, € D for all o < vo and 3,7 < a.
Then the (left D-) module pM has the w-approzimation property.

Proof. It is sufficient to put I, = pp.oD and S, = S(w,a) for every
a<to. =

6.2. COROLLARY. g M has the w-approzimation property for every (in-
finite) cardinal o < a.

For a < a, let hy € E be such that hq(eg) = e, for every § < a.
6.3. THEOREM. The (left E-) module g M is a™-slim.

Proof. By 6.2 and 5.1, gM is a slender module. Assume that, on the
contrary, there exists a non-slim homomorphism ¢ : pG = F* — g M. We
are going to show that ¢ is not slender.

If @ € G and ¢(a) # 0, we put o(a) = min(supp,(¢(a))) and we
define w(a) € G by (w(a))(a) = ko(a),ako(a),o@ala) for every a < a.
Then ky(0),0(a)@ = ho(ayw(a), and therefore ¢(w(a)) # 0. Moreover,
supp,(w(w(a))) = {o(w(a))}. Now, proceeding by induction, we find ele-
ments b; € G, i < Ny, such that ¢(b;) # 0 and the sets suppq(b;) = {3;} are
one-element and pairwise disjoint.
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Let ag € G be such that p(ag) # 0. Put by = w(w(ao)), Bo = o(w(ap))
and assume that n < Ry is such that the elements by, ..., b, are already
found. Since ¢ is not slim, there is a,4+1 € G(a\ {bo,...,0n}) such that
¢(ant1) # 0 and we put bpy1 = w(w(an+1)) and B = o(w(ant1)). =

6.4. REMARK. Let D be a subring of F containing all the endomorphisms
DPRo,i» ka,p and hq, @ < N, o < a, B < a. Then, using 6.1 and proceeding as
in the proof of Theorem 6.3, we can show that pM is at-slim (cf. 6.10).

For fe Fand f<a,let T(f) ={a <a: f(en) & Rea} and T(f, ) =
{a<a:(f(ea))(B) # 0}. The following lemma is obvious:

6.5. LEMMA. (i) T(0) = T(1g) = T(ka,a) = 0 for every a < a.

(i) (ko) = {0} for all @, < a, 0 % 5.

(ili) T'(ha) = a\ {a} for every o < a.

(iv) T(Pr.a) =0 for all a < w < a.

(V) T(=f) =T(f) and T(f +g) UT(fg) S T(f)UT(g) for all f,g € E.
(vi) T(f,a) \{a} CT(f) forall f € E and o < a.

6.6. COROLLARY. The set F'={f € E: card(T(f)) < a} is a subring of
E and the (left F-) module pM has the vwo-approzimation property for every
(infinite) cardinal v < a.

In the remaining part of this section, we assume that a is a measurable

cardinal and card(R) < a. Let Z be an a-complete non-principal maximal
ideal of P(a).

For a € G = E* f < aand r € R, let Q(a,0,7r) = {a < a
((a(a))(e0))(B) = 7‘} It is clear that there exists just one element t(a,B) € R
such that Q(a,B) = Q(a,B,t(a,3)) ¢ Z and we put P(a) = {f < a :

t(a,B) # 0} and Q(a) = ﬂgep(a) Q(a, 3), while Q(a) = a if P(a) = 0.
6.7. LEMMA. P(a) is a finite set and Q(a) ¢ Z.

Proof. Assume that there are pairwise different elements 3; € P(a), i <
Rg. Then V = (J(a\Q(a, 5i)) € Z and we take v € a\V. Now, v € (Q(a, 5;)
and consequently the set suppq((a(7y))(ep)) is infinite, a contradiction. m

Due to the preceding lemma, we can define a mapping ¢ : G — M by
p(a) = 5-4t(a, B)eg and check easily that ¢ is additive.

6.8. LEMMA. ¢ : pG — p M is a homomorphism of F-modules.
Proof.Let a e G, f € F, 0 < a and
Q=Qn ) Q,a).
a€T(f,0)
We have @ ¢ 7 and if v € Q and P = supp,((a(vy))(eo)), then

fela) = (fa(v))(eo) — f(2),
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where

z= Y (((a()(€))(B)es.
BEP\P(a)
But (f(2))(0) =0, (fe(a))(o) = ((fa(7))(en))(o) and we have proved that
Q< Q(fa,o0, (fso( ))(0)) ¢ I. Thus (fe(a))(o) = t(fa,0) = (¢f(a))(o). =

6.9. THEOREM. The (left F'-) module g M has the to-approximation prop-
erty for every (infinite) cardinal w < a, nevertheless, pM is not a™-slim.

Proof. Define a, € G, 0 < a, by a,(a) = 0 and a, () = ko, for all
a,f < a, a <o <. Then p(a,) = €y, and hence ¢ is not slim. (Notice
that a, € F'°.) m

6.10. REMARK. Let F; designate the set of f € E such that ¢(fa) =
fo(a) for every a € G. Then F C F; and Fj is a subring of E. Now, if D,
is a subring of Fy, then ¢ : p,G — p, M is not slim, and therefore p, M is
not a®-slim.

6.11. REMARK. There is another way to exploit a measurable cardinal
to construct a non-slim homomorphism ¢ : pG — pM (see 6.8, 6.9). First,
the existence of a measurable cardinal is equivalent to the existence of a
non-identical elementary embedding ¢ : V — M, where V is the class of
all sets and M(C V) is an inner model of set theory (ZFC, see e.g. [19]).
Next, let a = crit(¢) be the first ordinal such that ¢(a) # a; then a is a
measurable cardinal. Moreover, M = ((R(®)) = R‘®)) ¢ M, ((E) = E is an
endomorphism ring of kM and G = «(E*) = (E)"(®),

Now, we are going to construct ¢:

n

Here, 7 is the ath projection, v is the Eo-substitution, o is the natural projec-
tion of the free R-modules and the desired F-homomorphism ¢ : pG — pM
is just the composition ¢ = gime; use the fact that ¢ : E — E can be viewed
as a ring homomorphism yielding an F-module structure.

Q—— Q\
:;
4>Dj\

7. Examples of a-slim modules—boolean rings. We say that an
ordered set S is

e downwards-a-inductive if every non-empty chain containing less than
a elements of S has a lower bound in S;

e strongly downwards-a-inductive if every non-empty downwards-dir-
ected set containing less than a elements of S has a lower bound in S.
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Let R be a boolean ring (or algebra). We say that R is (strongly) a-
inductive if the ordered set R\ {0} is (strongly) downwards-a-inductive.

7.1. PROPOSITION. Let R be an Ni-inductive boolean ring such that
Soc(R) = 0. Then R is slender.

Proof. Suppose that, on the contrary, R is not slender. One may easily
see that there exists a (module) homomorphism ¢ : T = R* — R such that
Sn = p(en), n < Ng, are non-zero and pairwise orthogonal. Define a € T' by
a(n) = sp,. Then s = p(a) =supr({sn : n < No}) and g ... ¢, # 0 for every
m < Ny, where t,, = s+ s,. Consequently, there is t € R such that ¢ # 0 and
t < t, for every n. Now, ts,, = tt,s, = 0, and hence t = tt,, = t(s+s,) = ts.
On the other hand, (1+1t)s, = s,, andso s <1++¢. Thusts =0and t =0,
a contradiction. m

7.2. THEOREM. Let a be an uncountable cardinal and let R be an a-
inductive boolean ring such that Soc(R) = 0. Then R is a-slim.

Proof. The case a = N is settled by 7.1 and we now assume that a > N,
and R is not a-slim (notice that R is slender by 7.1).

According to 2.5, there are a measurable cardinal w and a non-zero
completely slender (module) homomorphism ¢ : T'= R® — R such that
v < a and the ideal Z,, corresponding to ¢ is a maximal ideal of P(1v). Now,
we need to show that ¢(b.) = r for at least one non-zero element r € R,
where b, € T' is such that b,(a) = r for every a < w.

First, take a € T such that ¢(a) # 0 and a(«) < ¢(a) for every ordinal
a < 1o and denote by M the set of ordered triples (v, f, @), where v is an
ordinal such that v < w™, f : v — w is an injective mapping and @ : f(vy) —
R\{0} is a mapping such that &(f (%)) < a(f(51)) and &(f (%)) < &(f(3))
for all B; < B3 < «. The set M is ordered in the obvious way and we take
a maximal element of M, say (J,g,¥). Since 0 < a, there is r € R such
that » # 0 and ¥ (g(3)) = r for every f < 9; then (ra)(g(8)) = r. On
the other hand, the maximality of (¢, g, ¥) yields that (ra)(e) = 0 for every
e €\ g(d). Clearly, w \ g() € Z,, and hence p(b,) = r.

We have thus found our element r. Further, taking into account that the
boolean ring R is a-inductive and contains no atoms and that w < a, we
can easily find pairwise different elements s, € R, a < to, such that so <r
and s, < sg whenever § < v < w. Let ¢ € T be such that ¢(a) = s,. We
now check ¢(c) = infr({sq : @ < 10}).

Indeed, if o < 1o, then

{6:0 <w, c(B) # (sa0)(B)} ={0: f < a} € I,

and hence ¢(c) = p(sac) = sap(c). On the other hand, if s is a lower bound
of the set considered, then s = p(bs) = p(sc) = sp(c).
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Now, the set {s, +¢(c) : @ < a} is a chain of non-zero elements of R and
it has a non-zero lower bound ¢t in R. We have t¢(c) = t(sq + ¢(c))p(c) =0
and t = t(sq + p(c)) = tsa,a < w. Consequently, 0 # t = tp(c) = 0, a
contradiction. m

7.3. REMARK. A crucial step in the preceding proof is to show the
existence of 0 # r € R with ¢(b,) = r. We can proceed in an easier way in
case the ring R is strongly a-inductive:

Put Ry = {a(a) : @ <w} C R. As R; contains some non-zero elements,
consider Ry C Ry such that Rs is maximal with respect to the property
that all finite products of elements of Ry are non-zero. Since R is strongly
a-inductive, there is 0 # r € R such that » < Rs. Now, (ra)(a) =r for a €
P={a<w:a(a) € Ry} and (ra)(a) =0 for a € Q = w\ P. Consequently,
e[T(P)#0,Q €I, and ¢[T(Q) = 0. Thus r = ¢(ra) = ¢(br).

The following simple construction is a convenient source of examples of
atomless (strongly) a-inductive boolean rings (resp. algebras):

7.4. EXAMPLE. (i) Let T' be a non-empty linearly ordered set. We denote
by R the set of equivalence relations r defined on 7" and having just two
blocks, say V, and W,., such that V, < W,. We choose pairwise disjoint
two-element sets {v;,w;}, i = 0,1, {v,,w,}, r € R, and we denote by P
their union (we also assume that 7N P = (). Further, we extend the linear
order of T to a linear order of p(T") = T'U P by means of the following rules:
Ve < v < w. < W, for every r € R; w, < v, for all 7, s € R such that
Vi ©Vs; vo Swo < o(T) \ {vo}; o(T) \ {w1} < v < wy.

(ii) Let a be an infinite regular cardinal. For every ordinal a < a, define
a linearly ordered set S, in the following way: Sy is a one-element set;
Sa+1 = 0(Sa) (see (1)); if @ > 0 is limit, then Sy = Uz, Sp. Now, put
S =84=UycqSa- Fora,bec Slet (a,b) ={rcS:a<z<b},(—00,a) =
{z € S :2 <a}(a,+0) = {z € S : a < z} and (—o0,+00) = S.
Finally, let A be the subalgebra of the boolean algebra P(S) generated
by all (z,y), x,y € SU {£oo} (cf. the so-called interval algebra, see e.g.
[20, 1.1.11, §6.15]). Then the algebra A contains no atoms and is strongly
a-inductive.

7.5. REMARK. (i) The factor algebra P(Xg)/Fin is atomless and
(strongly) Ni-inductive, and hence the equivalent boolean ring is slender.

(ii) If R is a slender boolean ring, then the boolean algebra equivalent
to R is not (N;-) complete.

(iii) If @ > N; and if A is an a-inductive boolean algebra without atoms,

then A is not complete (this is easy to see directly but also follows from (ii)
and 7.1).
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8. Slim modules and measurable sets. This section summarizes
results on slim modules obtained in the preceding parts.

8.1. THEOREM. Let a be a cardinal number.

(i) If v is an a-measurable cardinal, then card(M) > a for every non-
zero w-slim module M.

(ii) If a is measurable, then card(M) > a for every non-zero a*t-slim
module M.

(iii) If a is infinite, then there exists an a™-slim module M (over a
suitable ring) such that card(M) = a.

(iv) If w is a non-a-measurable cardinal, then every a-slim module is
o -slim.

(v) If m is the smallest a-measurable cardinal (provided it exists), then
every a-slim module is m-slim.

Proof. See 2.4 and 6.3. m
8.2. THEOREM. The following conditions are equivalent:

(i) There exists at least one non-zero slim module (over at least one
ring).

(ii) There exists a cardinal number 3 such that m < 3 whenever m is a
measurable cardinal.

Proof. (i) implies (ii) by 8.1(ii) and (ii) implies (i) by 8.1(iii), (iv). m

8.3. THEOREM. Suppose that the equivalent conditions of 8.2 are satisfied
and denote by 3 the smallest infinite cardinal such that m < 3 for every
measurable cardinal m. Then:

(i) A module is slim if and only if it is 3 -slim.
(ii) If 3 # N and 3 is not measurable, then a module is slim if and only
if it is 3-slim.
(iii) card(M) > 3 for every non-zero slim module M.
(iv) There exists a slim module M such that card(M) = 3.

Proof. See 8.1 and 2.3. m

8.4. REMARK. The conditions of 8.2 are also equivalent to the following
assertion: Every concretizable category is algebraic. (We refer to [25] for
details and further related material and references.)

9. Modules commuting with pull-backs. The following result is just
a routine observation:

9.1. PROPOSITION. A module M commutes with pull-backs if and only if
M s injective.
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9.2. COROLLARY. The following conditions are equivalent for a mod-
ule M:

(i) M commutes with limits of all diagrams.

(ii) M commutes with pull-backs and (countable) direct products.
(iii) M = 0.

10. Various downwards-directed spectra. Let S be a (non-empty)
ordered set and A : S — SET an S-spectrum, f, s : A(r) — A(s), r,s €
S,r < s.Now, for every r € S, let I, = F(A)(r) be a free module over A(r).
The maps f,. s can be uniquely extended to homomorphisms ¢, s : F,. — Fj
and we get an S-spectrum F(A) : S — R-MOD; this spectrum is formed
by free modules.

10.1. ExAMPLE. Consider the following transformation 7 of 8y : 7(0) = 0,
1) =0,72) =1, 7(K2+k+4)/2) =1, 7((K2 +k+6)/2) = (K2 +k
+4)/2,...,7((k* + 3k + 4)/2) = (k* + 3k + 2)/2 for k = 1,2,... Now,
let F' be a free module over X = {z1,22,...} and let ¢ be the uniquely
determined endomorphism of F' such that ¢(z1) = 0 and ¢(z;) = z,(;) for

j > 2. Consider the following ﬁo—spectrum:

F()(SD—OFl(LP—IFQ(—...,

where F; = F and ¢; = ¢ for every i < Rg. Let ¢; : A — F; be a limit
of this spectrum. Then A = 0, and so 21 # Im(¢g). On the other hand,
T1 € Nyen, IM(Pnen—1- .. 10).

10.2. EXAMPLE. Let X be the set of ordered pairs (i, j) of integers such
that either ¢ > 2 or 0 < i <1 and j > 0. Define two transformations f and
g of X as follows:

(i,7) ifi €{0,1} and j =0,
(i,j —1) otherwise;

(4,7) if i =0,

gli,j) = { (1,0)  ifi=2andj <0,

(i —1,7) otherwise.
Then fg = gf and f(X) = X = g(X). Now, let F' be a free module over
X and let ¢ and ¥ be the endomorphisms of F' extending f and g, resp.
Then ¢ = ¥ and both ¢ and 1) are epimorphisms. Finally, consider the
Ng-spectrum

FO <§D—O Fl <SO—1 F2 — ..

where F; = F and ¢; = ¢. Let ¢; : A — Fj; be a limit of this spectrum. There
exists a uniquely determined endomorphism & of A such that ; = ;£ for
every i < Ng. The point of this example is that £(A) # A in spite of the fact
that ¢ and all v; are epimorphisms.

*
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10.3. ExaMPLE. For n < Rg, let X,, = {@n,Tni1,Tnyo, ...} and let

fn : Xnt1 — X, be the natural injection. In this way, we get an Ng-spectrum
f’n
Xn e Xnt1

formed by monomorphisms and with empty limit (in SET). Now, consider
the corresponding Ngp-spectrum F(A):

F, & F, ...

This spectrum is formed by free modules and monomorphisms and
lim(F(A)) = 0.
Let M be a non-zero module and

¢y Hompg(F,, M) — Hompg(F,4+1, M),

v = Hompg(p,,idy), the corresponding Hom-Rg-spectrum of abelian
groups. Finally, let ¢} : Hompg(F,, M) — G be a colimit and ¢ : G —
Hompg (lim(F(A)), M) = 0 the connecting homomorphism. Then G # 0 and
@ = 0 and consequently @ is not a monomorphism.

The foregoing examples show that limits (in R-MOD) do not always
behave dually to colimits. In this respect, we mention another example,
even more drastic:

10.4. EXAMPLE. According to [18], there exists an R;-spectrum A : Ny —
SET such that A is formed by non-empty sets and projective mappings and
the empty set is a limit of A. Then F(A) is an N;-spectrum (in R-MOD)
formed by non-zero free modules and epimorphisms and lim(F(A)) = 0.

11. Modules commuting with limits of downwards-directed
spectra

_11.1. PROPOSITION. A module M commutes with limits of all epimorphic
Ng-spectra if and only if M is slender (i.e., Ry-slim).

Proof. Only the converse implication is (perhaps) not immediate. Sup-
pose that M is slender and let A (C [], .y, An), together with the natu-
ral projections p, : A — A,, be the limit of an epimorphic go—spectrum
fn i Ans1 — An, n < Ng. Let ¢ : A — M be a homomorphism such that
© & Im(P), @ : colim(Homp(A,,, M)) — Hompg(A, M) being the connecting
homomorphism.

Let m < Xg be such that for every a € A, a(m) = 0 implies a € Ker(yp).
Then we can define a homomorphism ¢ : A,,, — M by (z) = ¢(b,), z € M,
by(m) = x, and we get ¢ = ¥p,,. Thus ¢ € Im(P), a contradiction.

We have proved that, for every m < Ng, there is an element a,, € A
such that a,,(m) = 0 and ¢(a,,) # 0. Now, we define a homomorphism
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o: R* — Aby (d(c))(n) = Y omen, C(m)am(n) for every n < Ro. Then

o : R — M is not slender, again a contradiction. m

11.2. REMARK. (i) Let M be a slender module. One sees easily from 11.1
(and its proof) that M is injective with respect to the natural injection A —
Hn<&0 A,,, where A is the limit of an epimorphic go—spectrum Apy1 — A,

(ii) Denote by o the class of short exact sequences 0 - B — C' — D — 0
such that all slender modules are injective with respect to the monomor-
phisms B — C. Then o is a purity and induces a closed subfunctor Pextpg ,
of Extr (details on purities and related topics may be found e.g. in [2]).
The purity o is injectively generated and it is injectively rich, since slen-
der modules are closed under submodules. Furthermore, ¢ is closed under
arbitrary direct sums and countable direct products (under arbitrary di-
rect products provided there are no measurable cardinals). A module P is
o-coprojective iff Ext (P, M) = 0 for every slender M; if R is left hereditary,
then every o-coprojective module is projective. A module @) is o-coinjective
iff Homp(Q, M) = 0 for every slender M (among such modules () we find
all subinjective modules and also the module R®o/R®M0)),

11.3. PROPOSITION. The following conditions are equivalent for a mod-
ule M:

(i) The connecting homomorphism
& : colim(Hompg(A, M)) — Hompg(lim(A), M)

18 an epimorphism for every monomorphic &0 -spectrum.

(ii) M is ingective.

Proof. We only prove (i)=-(ii), the other implication being trivial.

Let K be a submodule of a module N. We put A; = K, B; = N and
Ch=41D.. DA, B, ®B,11®...foreveryn < Ng. Let f,,11: Cphi1 — C,
denote the natural injection. In this way, we get an Qo—spectrum and it is
clear that D = K(®0) (together with the natural injections j, : D — C,,) is
a limit of the spectrum.

Let ¢ : K — M be a homomorphism and let ) : D — M be defined by
Y(a) =3y, pla(i)), a € D. Then ¢ € Im(®), and hence there are m < Rg
and a homomorphism ¢ : C,, — M such that ¥ = £j,,. Consequently, if
tm : N — C,, denotes the mth natural injection, then £, : N — M is a
homomorphism extending . m

11.4. PROPOSITION. The following conditions are equivalent for a mod-
ule M:

(i) M commutes with limits of all diagrams.

(i) M commutes with limits of No-spectra.
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(iii) M commutes with limits of monomorphic go-spectm.
(iv) M =0.

Proof. (iii)=(iv). See 10.3. m
11.5. THEOREM. The following conditions are equivalent for a module M:

(i) M commutes with limits of all diagrams.
(ii) M commutes with limits of all epimorphic downwards-directed (lin-
ear) spectra.
(iii) M commutes with limits of epimorphic N; -spectra (formed by free
modules).
(iv) M =0.

Proof. (ili)=(iv). Let ¢op : Fo — F, 8 < a < Ny, be an epi-
morphic ﬁl—spectrum formed by non-zero free modules and having a zero
limit (see 10.4), and let G be a colimit of the (monomorphic) R;-spectrum
Hompg(pa g,idar) : Homp(Fg, M) — Hompg(F,, M). Now, the connecting
homomorphism @ equals 0 and, since it is an isomorphism, we have G = 0.
Consequently, Hompg(F,, M) = 0 for at least one v < Xy and M = 0, since
F,#0. n

12. Summary

12.1. THEOREM. (i) A module M commutes with all direct products
[Lici A, card(I) < a, if and only if M is a-slim.

(ii) A module M commutes with direct products if and only if M is slim.

(iii) The following conditions are equivalent for a module M:

(iiil) M commutes with countable direct products.

(iii2) M commutes with limits of epimorphic downwards-directed

spectra with countable cofinality. B
(iii3) M commutes with limits of epimorphic Rg-spectra.
(iiid) M is Wy-slim (alias slender).

(iv) A module M commutes with pull-backs if and only if M is injective.
(v) The following conditions are equivalent for a module M:
(vl) M commutes with limits of all diagrams.
(v2) M commutes with limits of all downwards-directed spectra.
(v3) M commutes with limits of monomorphic go—spectm.
(vd) M commutes with limits of epimorphic R, -spectra.
(vb) M commutes with pull-backs and limits of epimorphic &0—
spectra.

(v6) M commutes with pull-backs and countable direct products.
(v7) M =0.
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Proof. See 2.1, 9.1, 11.1, 11.4 and 11.5. m

12.2. REMARK. In case there exist no (resp., too many) measurable car-

dinals, the conditions of 12.1(iii) (resp., 12.1(v)) are also equivalent to the
additional one saying that M commutes with all direct products.

=

=

=
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