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Correlation dimension
for self-similar Cantor sets with overlaps

by

Károly S i m o n (Miskolc) and Boris S o l o m y a k (Seattle, Wash.)

Abstract. We consider self-similar Cantor sets Λ ⊂ R which are either homogeneous
and Λ− Λ is an interval, or not homogeneous but having thickness greater than one. We
have a natural labeling of the points of Λ which comes from its construction. In case of
overlaps among the cylinders of Λ, there are some “bad” pairs (τ, ω) of labels such that
τ and ω label the same point of Λ. We express how much the correlation dimension of Λ
is smaller than the similarity dimension in terms of the size of the set of “bad” pairs of
labels.

1. Introduction. In the literature there are some results (see [Fa1],
[PS] or [Si] for a survey) which show that for a family of Cantor sets of
overlapping construction on R, the dimension (Hausdorff or box counting) is
almost surely equal to the similarity dimension, that is, the overlap between
the cylinders typically does not lead to dimension drop. However, we do not
understand the cause of the decrease of dimension in the exceptional cases.
In this paper we consider self-similar Cantor sets Λ on R for which either
the thickness of Λ is greater than one or Λ is homogeneous and Λ − Λ is
an interval. We prove that the only reason for the drop of the correlation
dimension is the size of the set of those pairs of symbolic sequences which
label the same point of the Cantor set. We do not know a similar statement
for the Hausdorff dimension.

2. Theorem. Consider a family of contractive similarities Si : R → R,
i = 1, . . . , d, where Si(x) = λix + ti for some λi ∈ (0, 1) and ti ∈ R. Let
Λ be the attractor of the iterated function system {Si(x)}di=1, that is, the
unique non-empty compact set such that
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Λ =
d⋃

i=1

Si(Λ).

We may assume, without loss of generality, that 0 = t1 ≤ ti for i > 1. Then
the convex hull of Λ is the interval [0, b] for some b > 0. Since we must have

[0, b] ⊃ Si([0, b]) = [ti, ti + λib] for all i,

we immediately obtain

b = max
i≤d

ti
1− λi .

Suppose that b = td/(1− λd). It will be assumed that

(1) 0 = t1 < ti, i 6= 1;
ti

1− λi < b, i 6= d.

There is a natural labeling of the elements of Λ by symbolic sequences.
Let Σ = {1, . . . , d}N. For τ ∈ Σ we let

Π(τ) = lim
n→∞

Sτ1...τn(0) = tτ1 + λτ1tτ2 + λτ1λτ2tτ3 + . . .

where Sτ1...τn := Sτ1 ◦ · · · ◦ Sτn . Clearly, Λ = Π(Σ). Notice that conditions
(1) are equivalent to having a unique symbolic sequence for both 0 and b:

Π−1(0) = {111 . . .}, Π−1(b) = {ddd . . .}.
The number s > 0 such that

∑d
i=1 λ

s
i = 1 is called the similarity di-

mension of the iterated function system. Let µ be the product (Bernoulli)
measure on Σ with weights (λs1, . . . , λ

s
d), and let ν denote the “push-down”

measure on Λ, that is, ν = µ ◦ Π−1. The measure ν is the “natural” self-
similar measure on the attractor. Let µ2 = µ × µ. We will consider the
correlation dimension of Λ defined as follows (see [CHY]):

D2(Λ) = sup{α ≥ 0 : Iα(ν) <∞}
where

Iα(ν) :=
\
Λ

\
Λ

|x− y|−α dν(x) dν(y) =
\
Σ2

|Π(τ)−Π(ω)|−α dµ2.

It immediately follows from the definition and the potential theoretic
characterization of the Hausdorff dimension (see [Fa3]) that the correlation
dimension is always a lower bound for the Hausdorff dimension. Further,
one can estimate the correlation dimension of Λ from a long typical orbit of
any point x ∈ R as follows.

Let (i1, . . . , in, . . .) be a typical element of Σ (with respect to the “nat-
ural” measure µ on Σ). Then it follows from [Pe] that the limit

C(r) := lim
n→∞

1
n2 #{(k, l) :

|Sik ◦ . . . ◦ Si1(x)− Sil ◦ . . . ◦ Si1(x)| < r and l, k < n}
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exists and is independent of x. Therefore one can estimate C(r) from a long
typical (with respect to µ) orbit. Then using Proposition 2.3 of [SY] we can
compute the correlation dimension by the formula

(2) D2(Λ) := lim inf
r→0

logC(r)
− log r

.

We are going to express the correlation dimension D2(Λ) in terms of the
set of “bad” pairs

Z = {(τ, ω) ∈ Σ2 : Π(τ) = Π(ω)} .
Define a metric % on the symbolic space Σ as follows: for τ and ω in Σ

denote by τ ∧ ω their common initial segment and let

%(τ, ω) = λτ∧ω where λτ1...τn := λτ1 · . . . · λτn .
If τ1 6= ω1 then %(τ, ω) := 1. The metric on Σ2 will be

%2((τ, ω), (τ ′, ω′)) = max{%(τ, τ ′), %(ω, ω′)}.
Recall that the upper (respectively lower) box dimension of a compact

set K in a metric space is the lim sup (respectively lim inf) of the quantity
logN(K, ε)/ log(1/ε) as ε→ 0, whereN(K, ε) is the smallest number of balls
of diameter ε needed to cover K. If the lower and upper dimensions coincide,
their common value is called the box dimension. We write dimBK, dimBK,
and dimHK for the upper box dimension, box dimension, and Hausdorff
dimension of K respectively.

To state our theorem, we will need the notion of thickness (also called
Newhouse thickness; see [PT]).

Let K ⊂ R be a compact set and let K̂ be its convex hull. Then K̂ \K =⋃l
i=1Ei, l ≤ ∞, where Ei are complementary intervals (gaps). Enumerate

the gaps so that |E1| ≥ |E2| ≥ . . . For k ≥ 1 let Fk be the component of
K̂ \⋃k−1

i=1 Ei containing Ek. Then Fk = F lk ∪Ek ∪ F rk where F lk and F rk are
the closed intervals adjacent to Ek. Define θk = max{|F lk|/|Ek|, |F rk |/|Ek|}.
The thickness of K is defined as θ(K) = inf{θk : k ≥ 1}.

Theorem 1. Let Λ be the attractor of the iterated function system
{Si}di=1 such that Si(x) = λix + ti for 0 < λi < 1, and (1) is satisfied.
If either

(a) the set Λ has thickness greater than one, or
(b) λ1 = . . . = λd and Λ− Λ is an interval ,

then

(3) D2(Λ) = dimBΣ
2 − dimBZ.

Remarks. 1. It follows that dimH Λ ≥ dimBΣ
2 − dimBZ. Notice that

dimH Λ = dimB Λ since Λ is a self-similar set [Fa2].
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2. One can show that, in general, D2(Λ) cannot be replaced by dimB Λ
in (3). The idea is to take a self-similar set such that some cylinder-intervals
coincide. Then the measure ν is no longer the natural choice to estimate the
dimension dimH Λ = dimB Λ.

3. If the thickness of Λ is greater than one then Λ−Λ is an interval but
the converse is not true.

4. It is easy to check whether Λ − Λ is an interval in the homogeneous
case λ = λ1 = . . . = λm. Indeed, then Λ− Λ is the attractor of the iterated
function system {Tij} where Tij(x) = λx+ (ti− tj). It follows that Λ−Λ is
an interval if and only if [−b, b] =

⋃
ij Tij([−b, b]).

3. Notation and preliminaries. Throughout this paper τ, ω always
mean elements of Σ. Further, we write τ̃ := τ1 . . . τn and let [τ̃ ] be the
cylinder set of sequences τ ∈ Σ starting with τ̃ . We say that [τ̃ ] is an
ε-cylinder if

λτ1...τn ≤ ε and λτ1...τn−1 > ε.

The set of ε-cylinders will be denoted by Cε. Clearly, Σ is the only 1-cylinder.
By the definition of the metric %, an ε-cylinder [τ̃ ] has diameter λτ̃ , hence

λmin ε ≤ diam[τ̃ ] ≤ ε
where λmin = min{λi : i ≤ d}. Define [τ̃ , ω̃] = [τ̃ ] × [ω̃] ∈ Σ2. This is a
cylinder set in Σ2 which will be called an ε-cylinder if both [τ̃ ] and [ω̃] are
ε-cylinders in Σ. For any ε > 0, the collection of ε-cylinders C2

ε = Cε × Cε
provides a disjoint cover of Σ2 by sets of diameter approximately equal to ε.

For A ⊆ Σ2 let Nε(A) be the number of ε-cylinders intersecting A. Then
a standard argument shows that

(4) dimBA = lim sup
ε→0

Nε(A)
log(1/ε)

.

Recall that µ is the product measure on Σ with weights (λs1, . . . , λ
s
d)

where
∑d
i=1 λ

s
i = 1. Thus, the measure of an ε-cylinder [τ̃ ] satisfies

(5) λsminε
s < µ[τ̃ ] ≤ εs.

For an ε-cylinder [τ̃ , ω̃] we have λ2s
minε

2s < µ2[τ̃ , ω̃] ≤ ε2s. It is easy to deduce
from this that dimBΣ

2 = 2s and

(6) (A ⊂ Σ2, dimBA < 2s)⇒ µ2(A) = 0.

The function f(τ, ω) := Π(τ) − Π(ω) measures the distance between
the projections of two elements of Σ. Observe that Z = {(τ, ω) ∈ Σ2 :
f(τ, ω) = 0}. Let

Hε := {[τ̃ , ω̃] ∈ C2
ε : [τ̃ , ω̃] ∩ Z 6= ∅}.

The cardinality of Hε will be denoted by Nε := Nε(Z).
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4. Upper estimate. Here we prove the upper estimate in (3). This is
straightforward and does not use the assumptions (a) or (b) of Theorem 1.

Let [τ̃ , ω̃] ∈ Hε. Then [τ̃ , ω̃] ∩ Z 6= ∅, hence Sτ̃ (Λ) ∩ Sω̃(Λ) 6= ∅, and

|f(τ, ω)| = |Π(τ)−Π(ω)| ≤ diam(Sτ̃ (Λ)) + diam(Sω̃(Λ))

= (λτ̃ + λω̃) diam(Λ) ≤ 2bε

for τ ∈ [τ̃ ] and ω ∈ [ω̃]. Therefore, by (5),\
[τ̃ ,ω̃]

|f(τ, ω)|−α dµ2 ≥ (2b)−αε−αµ2[τ̃ , ω̃] ≥ λ2s
min(2b)−αε2s−α.

We have

Iα(ν) =
\
Σ2

|f(τ, ω)|−α dµ2 ≥
∑

Hε

\
[τ̃ ,ω̃]

|f(τ, ω)|−α dµ2 ≥ const ·Nε ε2s−α.

Thus, if lim supε→0 logNε/log(1/ε) > 2s−α, then Iα(ν) =∞. This, together
with (4), implies

D2(Λ) ≤ 2s− dimBZ.

5. Lower estimate

Lemma 5.1. Suppose that at least one of the conditions (a), (b) of The-
orem 1 is satisfied. Let [τ̃ , ω̃] ∈ C2

ε \ Hε. Then one of the sets Sτ̃ (Λ) and
Sω̃(Λ) lies in a connected component of the complement of the other one.

P r o o f. The assumption [τ̃ , ω̃] ∈ C2
ε \ Hε means that [τ̃ ] and [ω̃] are

ε-cylinders in Σ such that Sτ̃ (Λ) ∩ Sω̃(Λ) = ∅.
Suppose first that condition (a) is satisfied, that is, Λ has thickness

greater than one. Then both Sτ̃ (Λ) and Sω̃(Λ) have thickness greater than
one, since they are similar to Λ. By the Gap Lemma of Newhouse (see [PT,
pp. 63–82]), Sτ̃ (Λ) ∩ Sω̃(Λ) = ∅ implies that one of these sets lies in a
component of the complement of the other one.

Now suppose that condition (b) is satisfied, that is, Λ − Λ is an in-
terval and λ = λi for all i. Then all ε-cylinders have the same length
n = blog(1/ε)/log(1/λ)c. It follows that the sets Sτ̃ (Λ) and Sω̃(Λ) are both
translated copies of λnΛ. Observe that

{a ∈ R : λnΛ ∩ (λnΛ+ a) 6= ∅} = λnΛ− λnΛ
is an interval. Therefore, Sτ̃ (Λ) ∩ Sω̃(Λ) = ∅ can only happen if the convex
hulls of these sets are disjoint. This means that each of these sets lies in the
unbounded component of the complement of the other one.

The next lemma is the key part of the proof.
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Lemma 5.2. Suppose that at least one of the conditions (a), (b) in The-
orem 1 is satisfied. Let [τ̃ , ω̃] ∈ C2

ε \Hε. Then for every α < s there exists
C > 0 such that \

[τ̃ ,ω̃]

|f(τ, ω)|−α dµ2 ≤ Cε2s−α.

P r o o f. Using Lemma 5.1, we can assume without loss of generality that
Sτ̃ (Λ) lies in a connected component of R \ Sω̃(Λ). Write 1 = 111 . . . and
d = ddd . . . We have

|f(τ, ω)| = |Π(τ)−Π(ω)|(7)

≥ min{|f(τ, τ̃1)|, |f(τ, τ̃d)|} for τ ∈ τ̃ and ω ∈ ω̃
since Π(τ̃1) = minSτ̃ (Λ) and Π(τ̃ d) = maxSτ̃ (Λ). Now we have to use
condition (1) which implies that |f(τ, τ̃1)| ≈ λτ∧τ̃1 and |f(τ, τ̃d)| ≈ λτ∧τ̃d,
up to a multiplicative constant. Let

Am := [τ̃1m] \ [τ̃1m+1], Bm := [τ̃ dm] \ [τ̃ dm+1] for m ≥ 1,

and

A0 := [τ̃ ] \ ([τ̃1] ∩ [τ̃ d]), B0 := ∅.
Then

[τ̃ ] =
∞⋃
m=0

(Am ∪Bm).

It follows from (1) and the definition of ε-cylinders that

|f(τ, τ̃1)| ≥ const · λτ̃λm1 ≥ const · ελm1 for τ ∈ Am
and

|f(τ, τ̃d)| ≥ const · λτ̃ ≥ const · ε for τ ∈ Am.
By (7) this implies

|f(τ, ω)| ≥ const · ελm1 for τ ∈ Am.
Similarly, using (1) and (7) we deduce

|f(τ, ω)| ≥ const · ελmd for τ ∈ Bm.
Clearly,

µ(Am) ≤ µ[τ̃1m] ≤ εsλms1 and µ(Bm) ≤ εsλmsd for m ≥ 0.

Putting everything together, we obtain
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[τ̃ ,ω̃]

|f(τ, ω)|−α dµ2

=
\

[ω̃]

∞∑
m=0

\
Am∪Bm

|f(τ, ω)|−α dµ(τ) dµ(ω)

≤ const
\

[ω̃]

∞∑
m=0

(ε−αλ−αm1 εsλsm1 + ε−αλ−αmd εsλsmd ) dµ(ω)

= const · εs−α
\

[ω̃]

∞∑
m=0

(λ(s−α)m
1 + λ

(s−α)m
d ) dµ(ω)

≤ Cεs−αµ[ω̃] ≤ Cε2s−α,

for some C > 0. Here we used (5) and the fact that α < s.

Now we can conclude the proof of the lower estimate in (3). It is enough
to show that Iα(ν) = 0 for every α < 2s−dimBZ. Fix such an α. Notice that
Z contains the diagonal in Σ2, hence dimBZ ≥ dimBΣ = s, and therefore,
α < s.

Let Aε be the union of ε-cylinders in Σ2 intersecting Z, in other words,
the union of cylinders from Hε. Let εn := 2−n. Clearly, Z =

⋂∞
n=0Aεn .

Since A1 = Σ2 we have

Σ2 =
∞⋃
n=0

(Aεn \Aεn+1) ∪ Z.

By Lemma 5.2,

Iα(ν) =
∞∑
n=0

\
Aεn\Aεn+1

|f(τ, ω)|−α dµ2 +
\
Z

|f(τ, ω)|−α dµ2

≤ C
∞∑
n=0

Nεn+1ε
2s−α
n+1 +

\
Z

|f(τ, ω)|−α dµ2.

We can assume that dimBZ < 2s since otherwise the estimate D2(Λ) ≥
2s− dimBZ is obvious. Then µ2(Z) = 0 by (6). Thus,

Iα(ν) ≤ C
∞∑
n=0

N2−(n+1)2−(n+1)(2s−α) .

By assumption,

lim sup
n→∞

logN2−n

n log 2
= dimBZ < 2s− α,

so the above series converges. This completes the proof of Theorem 1.



300 K. Simon and B. Solomyak

References

[CHY] W. Chin, B. Hunt and J. A. Yorke, Correlation dimension for iterated function
systems, Trans. Amer. Math. Soc. 349 (1997), 1783–1796.

[Fa1] K. Falconer, The Hausdorff dimension of some fractals and attractors of over-
lapping construction, J. Statist. Phys. 47 (1987), 123–132.

[Fa2] —, Dimensions and measures of quasi self-similar sets, Proc. Amer. Math. Soc.
106 (1989), 543–554.

[Fa3] —, Fractal Geometry. Mathematical Foundations and Applications, Wiley, 1990.
[PT] J. Pal i s and F. Takens, Hyperbolicity and Sensitive Chaotic Dynamics at Ho-

moclinic Bifurcations, Cambridge Univ. Press, 1993.
[PS] M. Pol l i cott and K. S imon, The Hausdorff dimension of λ-expansions with

deleted digits, Trans. Amer. Math. Soc. 347 (1995), 967–983.
[Pe] Ya. Pes in, On rigorous definitions of correlation dimension and generalized spec-

trum for dimensions, J. Statist. Phys. 71 (1993), 529–547.
[SY] T. D. Sauer and J. A. Yorke, Are the dimensions of a set and its image equal

under typical smooth functions? , Ergodic Theory Dynam. Systems 17 (1997),
941–956.

[Si] K. S imon, Overlapping cylinders: the size of a dynamically defined Cantor-set ,
in: Ergodic Theory of Zd-Actions, London Math. Soc. Lecture Note Ser. 228,
Cambridge Univ. Press, 1996, 259–272.

Institute of Mathematics Mathematics Department
University of Miskolc University of Washington
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