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X-minimal patterns and

a generalization of Sharkovskĭı’s theorem

by

Jozef Bobok (Praha) and Milan Kuch t a (Bratislava)

Abstract. We study the law of coexistence of different types of cycles for a continuous
map of the interval. For this we introduce the notion of eccentricity of a pattern and char-
acterize those patterns with a given eccentricity that are simplest from the point of view
of the forcing relation. We call these patterns X-minimal. We obtain a generalization of
Sharkovskĭı’s Theorem where the notion of period is replaced by the notion of eccentricity.

0. Introduction. The question of coexistence of different types of cycles
(or periodic orbits) arises in the theory of discrete dynamical systems. In
dimension one, pattern seems to be the finest relevant classification of cycles.
A law of coexistence of different patterns, now usually called the forcing
relation, has been proved (see [B], [ALM]). However, the exact structure
of this relation is not known. Better results can be obtained if one defines
types as larger collections of patterns. The period of a pattern is the first
natural thing that can determine a type. This was used by Sharkovskĭı
in his powerful theorem. To state it we need to introduce the Sharkovskĭı
ordering:

3 ≻ 5 ≻ 7 ≻ . . . ≻ 2 · 3 ≻ 2 · 5 ≻ 2 · 7 ≻ . . . ≻ 22 · 3 ≻ 22 · 5 ≻ 22 · 7 ≻ . . .

≻ 2∞ ≻ . . . ≻ 23 ≻ 22 ≻ 2 ≻ 1.

The terms “pattern” and “forces” used here will be defined later.

Sharkovskĭı’s Theorem ([S]). (i) A pattern with period m forces some

pattern with period n for any n ∈ N such that m ≻ n.
(ii) For any m ∈ N ∪ {2∞} there is a continuous map f : I → I such

that it has a cycle of period n ∈ N if and only if m = n or m ≻ n.
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The aim of this paper is to get better results about the structure of the
forcing relation. In order to achieve this we consider a different notion of
“type” of a pattern. We consider the position of a fixed point whose existence
is implied by the pattern, or more precisely the ratio of the number of points
of the cycle on each side of such a fixed point. Patterns with the same ratio
will be said to be of the same type. Our main aim is to find which patterns
of a given type are simplest in terms of the forcing relation. Let us state
this in a more rigorous way. The terminology used here is mainly the same
as in [ALM].

Let P = {p1, . . . , pn} ⊂ R and ϕ : P → P . Then (P,ϕ) is a periodic

orbit (or cycle) if ϕ is a cyclic permutation of P . We will usually omit ϕ
and simply say that P is a cycle. The period of a cycle P is per(P ) = n.

Two periodic orbits (P,ϕ), (Q,ψ) are equivalent if there exists a homeo-
morphism h : conv(P ) → conv(Q) such that h(P ) = Q and ψ◦h|P = h◦ϕ|P .
An equivalence class of this relation will be called a pattern. If A is a pattern
and (P,ϕ) ∈ A we say that the cycle P has pattern A (or P is a represen-
tative of A) and we will use the symbol [P ] to denote the pattern A. The
period of the pattern A is per(A) = per(P ).

We consider the space C(I, I) of all continuous maps f : I → I, where
I is a closed interval. A function f ∈ C(I, I) has a cycle (P,ϕ) if f |P = ϕ.
We then say that f exhibits the pattern [P ]. Now we can define the forcing
relation between patterns.

Definition. A pattern A forces a pattern B if all maps in C(I, I)
exhibiting A also exhibit B.

We have the following information about the forcing relation:

Theorem ([B], [ALM]). The forcing relation is a partial order.

Now we will define our notion of “type” of a pattern. Let (P = {p1, . . . ,
pn}, ϕ) be a cycle with spatial labeling (so p1 < . . . < pn). If

(∗) (pi − ϕ(pi)) · (pi+1 − ϕ(pi+1)) < 0

then any continuous function with cycle P has a fixed point in the open
interval (pi, pi+1). On the other hand, if (∗) is not true, then there is a
function with cycle P that has no fixed point in (pi, pi+1). Hence we can
give the following

Definition. A cycle (P,ϕ) has eccentricity r ∈ Q if for any map f ∈
C(I, I) with P there is a fixed point c ∈ Fix(f) such that

#{x ∈ P : x ≤ c}

#{x ∈ P : x ≥ c}
= r.

Note that a cycle (h(P ), h ◦ ϕ ◦ h−1) where h(x) = −x has eccentricity 1
r
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and so we define the eccentricity of a pattern [P ] as an eccentricity of a
representative whose eccentricity is not smaller than one.

Remark. Note that a pattern (or cycle) can have more than one eccen-
tricity (see Fig. 1).

Fig. 1. An example of a cycle P with eccentricities 12 ,
2
1 and

8
1 . The pattern [P ] has

eccentricities 21 and
8
1 .

Fig. 2. The graph of the function fP

In order to quickly demonstrate the connection between Sharkovskĭı’s
Theorem and the forcing relation based on the eccentricity of a pattern,
take the Sharkovskĭı ordering on odd numbers

3 ≻ 5 ≻ 7 ≻ 9 ≻ 11 ≻ . . . ≻ 1

and rewrite it in the corresponding form

2

1
≻

3

2
≻

4

3
≻

5

4
≻

6

5
≻ . . . ≻ 1.

The first sequence gives the order of periods and second the order of eccen-
tricities of Štefan patterns with odd period. The basic idea of the proof of
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Sharkovskĭı’s Theorem is to show that every pattern of period 2k+ 1 forces
a Štefan pattern with the same period which has eccentricity k+1

k
and that

these patterns form a chain corresponding to the order above.

So we see that the Sharkovskĭı ordering is defined only on a small part of
rational numbers. We of course have the natural order on all rational num-
bers and in this paper we prove a generalization of Sharkovskĭı’s Theorem
for this order.

The crucial role in the proof of Sharkovskĭı’s Theorem was played by so-
called Štefan patterns. In this paper a similar role is played by X-minimal
patterns defined below.

We fix an r ∈ Q and consider the set of all patterns with eccentricity
r. We can look at the forcing relation restricted to this set. Some of the
patterns may not force any other pattern from this set. These will be called
X-minimal patterns (1) with eccentricity r (X-minimal r-patterns) and for
their representatives we shall use the term X-minimal cycles (X-minimal

r-cycles).

Remark. Note that in fact X-minimal patterns do not have to exist.
Since there are infinitely many patterns with any given rational eccentricity
it could be possible that they can be arranged into an infinite chain of
patterns each of which forces the next one. We will prove that this is not the
case and that there are indeed X-minimal patterns for any given eccentricity.
Also note that a pattern with eccentricities r, q ∈ Q can theoretically be an
X-minimal r-pattern but not an X-minimal q-pattern. Our results show
that this is not possible either.

The structure of the paper is as follows.

In Section 1 we give some basic notation, definitions and lemmas used
throughout the paper.

In Section 2 we study the forcing relation between patterns with different
eccentricity. The main result of this section is Theorem 2.10.

Section 3 is devoted to the characterization of X-minimal patterns. The
main result of this section is Theorem 3.7. The reader can also have a look
at the easy geometrical condition given in Lemma 3.9, and an important
property concerning the period of X-minimal patterns is proved in Lemma
3.4.

In Section 4 we prove the existence of X-minimal patterns and we give a
simple algorithm for constructing all X-minimal patterns. The main result
proving the existence of X-minimal patterns is Theorem 4.5.

Finally, in Section 5 we define a new notion of “type” of a pattern and us-
ing it we prove our generalization of Sharkovskĭı’s Theorem in Theorem 5.1.

(1) “X” is just a pun on “eccentric”.
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Remark. Results very similar to those obtained in this paper can also
be found in [Bl] and [BM]. They have been obtained independently and by
different methods, based on the theory of rotation numbers for maps on the
circle, while in this paper we use only elementary combinatorial arguments.

1. Background. By R, Q, Z, N we denote the sets of real, rational,
integer and positive integer numbers respectively. By conv(X) we denote
the convex hull of a set X. We will put sets in {} brackets; by a set we
mean a collection of elements without multiple occurrence. An ordered
collection of elements with possible repetitions will be called a sequence and
put in 〈〉 brackets. We denote by f i the ith iterate of a function f . A
point p is a periodic point of f if fn(p) = p for some n ∈ N. The least
such n is called the period of p. The cycle given by a periodic point p
and a function f is (P,ϕ) where P = {f i(p) : i ∈ N} and ϕ = f |P . A
point p is a fixed point of f if f(p) = p. The set of all periodic points of
f will be denoted by Per(f) and the set of all fixed points by Fix(f). For
a cycle ({p1, . . . , pn}, ϕ) we will normally use one of the following labelings:
the spatial labeling when p1 < . . . < pn and the dynamical labeling when
ϕ(pi) = pi+1 for i = 1, . . . , n − 1 and ϕ(pn) = p1.

We shall use some standard notions and techniques from combinatorial
dynamics. The most important is the notion of P -linear map.

Definition. Let (P,ϕ) be a periodic orbit and I = conv(P ). Then
fP ∈ C(I, I) is such that fP |P = ϕ and fP |J is linear for any interval
J ⊂ I such that J ∩P = ∅. The function fP is the piecewise linear function
given by the cycle P and sometimes it is called the connect-the-dot map (see
Fig. 2).

Very often we will use the following basic fact.

Lemma 1.1 (Theorem 2.6.13 of [ALM]). Let (P,ϕ) be a cycle. If fP
exhibits a pattern B then [P ] forces B.

We say that an interval J P -covers an interval L if L ⊂ fP (J). We

will denote this by J
P
→ L. A sequence A = 〈Ik〉

m
k=1 of closed intervals is

called P -cyclic if I1
P
→ I2

P
→ . . .

P
→ Im

P
→ I1. Note that a P -cyclic sequence

is in fact a cycle of intervals and therefore we will consider two P -cyclic
sequences equal if they form the same cycle and have the same length. This
will allow us to start a cyclic sequence wherever we want by simply rotating
it. The P -cyclic sequences and cycles of the function fP are in close relation.
Namely we have

Lemma 1.2 ([B2], [BGMY], Lemma 1.2.7 of [ALM]). Let P be a periodic

orbit and A = 〈Ik〉
m−1
k=0 be P -cyclic. Then there is a periodic point x ∈
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Per(fP ) such that fkP (x) ∈ Ik for k = 0, . . . ,m − 1 and fmP (x) = x. The

period of the cycle given by x and fP divides m.

We will say that a cycle obtained from a P -cyclic sequence A using
Lemma 1.2 is contained in A.

We will use the following simple notation: If A = 〈a1, . . . , an〉 and B =
〈b1, . . . , bm〉 then A + B = 〈a1, . . . , an, b1, . . . , bm〉.

Finally, if A,B ⊂ R then we say that A < B if A 6= B and a ≤ b for any
a ∈ A and b ∈ B. If x ∈ R then we say that x < A (x > A) if {x} < A
({x} > A).

2. Unipatterns and forcing between patterns with different

eccentricity. A cycle P with unique eccentricity will be called a unicycle (2).
We denote the eccentricity of a unicycle P by E(P ). A unicycle P with
E(P ) = r will be called an r-unicycle. Similarly we shall use the terms
unipattern, E([P ]) and r-unipattern. Note that if a cycle P is not a unicycle
then the pattern [P ] has at least two different eccentricities. Therefore a
representative of a unipattern is a unicycle.

We will show that an X-minimal pattern must be a unipattern.

Lemma 2.1. Suppose the cycle P is not a unicycle. Then fP has an

r-unicycle for any positive r ∈ Q.

P r o o f. We will show how to construct an m
n -unicycle for fP for any

m,n ∈ N where m ≥ n (the case m ≤ n is similar).
Let z1 < z2 be two rightmost fixed points of fP . Hence fP (x) > x for

x ∈ (z1, z2) and fP (x) < x for x > z2. Let a ∈ (z1, z2) be such that fP (a) ≥
fP (x) for any x ∈ (z1, z2). Clearly fP (a) > z2 (otherwise the interval [z1, z2]
would be fP -invariant, which is impossible because it contains a point from

P ). Now let J1 = [z1, a] and J2 = [z2, fP (a)]. We have J1
P
→ J1 and

J1
P
→ J2. Moreover, J2

P
→ J1 (otherwise the interval [z1, fP (a)] would be

fP -invariant) (see Fig. 3). Hence for any m ≥ n,

m−n times J1

︷ ︸︸ ︷

〈J1, . . . , J1〉+

n times J1,J2

︷ ︸︸ ︷

〈J1, J2, . . . , J1, J2〉

is a P -cyclic sequence. Using Lemma 1.2 we obtain a cycle Q for fP with
period m+n. But Q ⊂ [z1, fP (a)] and (z1, fP (a))∩Fix(fP ) = {z2} so Q is a
unicycle. Finally, since J1 < z2 < J2 we conclude that Q is an m

n -unicycle.

Hence we have the straightforward

(2) Unfortunately, there is no bicycle. However, according to A. Manning there may
be a little comfort for cyclists. Actually, the object we study (a periodic orbit and a fixed
point “‘in” it) consists of two cycles so it is a bicycle.
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Fig. 3

Corollary 2.2. An X-minimal pattern is a unipattern.

P r o o f. If an r-pattern A is not a unipattern then its representative P
is not a unicycle. By Lemma 2.1 the function fP exhibits an r-unipattern B
and by Lemma 1.1 the pattern A forces B. But A 6= B (one is a unipattern
and the other is not) and so A is not an X-minimal r-pattern.

Now we would like to find all patterns forced by a unipattern [P ].
First note that fP has a unique fixed point and therefore every cycle it

has is a unicycle. So a unipattern can only force unipatterns. Later we will
often use this fact without mentioning it.

A possible way to find patterns forced by a unipattern [P ] is to find all
P -cyclic sequences and use Lemmas 1.1 and 1.2 to get some of the patterns
forced by [P ]. But in general if we have a P -cyclic sequence then we have
no information about the eccentricity of patterns forced by this sequence.
Fortunately, for some special P -cyclic sequences we can get this information.

Definition. Let P be a unicycle and Fix(fP )={c}. A P -cyclic sequence
A=〈Ii〉

a
i=1 will be called separated if c 6∈ int(I) for any I∈ A. The eccentric-

ity of a separated P -cyclic sequence A is E(A)=#{i : Ii ≤ c}/#{i : Ii≥ c}.

Lemma 2.3. Let P be a unicycle, c ∈ Fix(fP ) and A be a separated

P -cyclic sequence. Then fP has an E(A)-unicycle contained in the loop A.

P r o o f. Assume that E(A) ≥ 1 (the case E(A) ≤ 1 is similar).
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If there is I ∈ A such that c 6∈ I then the cycle Q that we get from the
sequence A by using Lemma 1.2 clearly has eccentricity E(A).

Assume that c ∈ I for all I ∈ A. If E(A) = 1 then the fixed point c gives
such a cycle. So we can assume that E(A) > 1. Then A = 〈. . . , I, J,K . . .〉
where I, J < c and K > c (I 6= {c} because E(A, c) 6= 1). Now there are
two possibilities:

1. fP (x) ≥ c for any x ∈ J or

2. there is an a ∈ J such that fP (a) = c and a 6= c.

In case 1 we have J ⊂ I. So there is a point a ∈ I such that fP (a) = inf J
and a point b ∈ I such that b 6= c and fP (b) = c. Hence we can replace I
by I∗ = conv({a, b}) and we have again a separated P -cyclic sequence B.

In case 2 let b ∈ J be such that fP (b) = sup{fP (x) : x ∈ J}. Now we
can replace J by J∗ = conv({a, b}) to get a separated P -cyclic sequence B.

In both cases we obtain a new separated P -cyclic sequence B with ec-
centricity E(A). But now there is an interval in B (I∗ or J∗) that does not
contain c. Hence the above argument shows that there is an E(A)-unicycle
Q in fP .

Now the question is how we can tell whether we have picked up all
possible P -cyclic sequences that can give us some information about patterns
forced by [P ]. We will show that it is enough to examine those P -cyclic
sequences that have their elements only from the set of intervals given by
the cycle P .

Definition. For a unicycle (P,ϕ) let P be the partition of the interval
I = conv(P ) into intervals with endpoints in P ∪ Fix(fP ).

In particular, if P = {p1, . . . , pk(m+n)} is a unicycle with spatial labeling
where k,m, n ∈ N, m,n are coprime, E(P ) = m

n
and Fix(fP ) = {c}, the

partition P is {Ji}
k(m+n)
i=1 where

Ji = [pi, pi+1] for i < km,

Jkm = [pkm, c],

Jkm+1 = [c, pkm+1],

Ji = [pi−1, pi] for i > km+ 1.

A P -cyclic sequence A = 〈Ii〉ai=1 such that each Ii ∈ P will be called a
P -loop. (Note that any P -loop is separated.)

Now we can prove some kind of converse of Lemma 1.2.

Lemma 2.4. Let P be a unicycle and Q = {q1, . . . , qm} be a cycle of fP
with per(Q) = m > 1. Then there is a unique P -loop A = 〈Ii〉

m
i=1 such that

f i−1
P (q1) ∈ Ii for 1 ≤ i ≤ m.
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P r o o f. If Q 6= P then for any qi there is a unique interval Ii ∈ P such
that qi ∈ Ii. Moreover, because fP is linear on any interval I ∈ P and

qi ∈ int(Ii) we have Ii
P
→ Ii+1 and so the sequence A = 〈Ii〉

m
i=1 is a P -loop.

So assume that Q = P = {p1, . . . , pn} with spatial labeling. Then there
is a unique interval I1 ∈ P such that p1 ∈ I1. Assume that Ij ∈ P is

such that f j−1
P (p1) ∈ Ij . There are at most two intervals I ∈ P such that

f jP (p1) ∈ I but only one of them satisfies Ij
P
→ I (because fP is linear on Ij

and f j−1
P (p1) is an endpoint of Ij). Hence there is a unique Ij+1 ∈ P such

that f jP (p1) ∈ Ij+1 and Ij
P
→ Ij+1. Therefore there is also a unique P -loop

of length per(P ) containing the cycle P .

Remark. Clearly, a cycle Q can be contained in more than one P -loop.
But any P -loop containing Q is only a repetition of the unique P -loop A
that has length per(Q).

Definition. We denote the P -loop containing the cycle P by AP . We
say that a P -loop A is simple if there are no two nonempty P -loops B, C
such that A = B + C.

Lemma 2.5. A P -loop containing some interval more than once is not

simple.

P r o o f. After rotating we can write our P -loop as

B
︷ ︸︸ ︷

〈I, . . . ,K〉+

C
︷ ︸︸ ︷

〈I, . . . , L〉
and both B and C are nonempty P -loops.

Now we will look at a unicycle P and its loop AP . There are basically
two possibilities. Either AP is simple or not. The next lemma shows the
importance of simple AP .

Lemma 2.6. Let P be a unicycle with per(P ) > 2 and simple loop AP .

Then for each P -loop A there is a unique cycle contained in A.

P r o o f. Assume the contrary. Let A = 〈Ii〉
m
i=1 be a P -loop and let

x < y ∈ Per(fP ) be such that f i−1
P (x), f i−1

P (y) ∈ Ii for 1 ≤ i ≤ m and
fmP (x) = x and fmP (y) = y. Hence fmP |[x,y] is linear and therefore the
identity. We will take the smallest possible a ∈ N such that faP |[x,y] is the
identity; that means that x, y have period either a or a/2.

Take x∗, y∗ ∈ I1 such that x∗ ≤ x < y ≤ y∗, fnP (x∗), fnP (y∗) ∈ P∪Fix(fP )
for some n ∈ N, faP |[x∗,y∗] is linear and (x∗, y∗) ∩ (P ∪ Fix(fP )) = ∅.

So faP |[x∗,y∗] is the identity and therefore x∗, y∗ ∈ P ∪ Fix(fP ). Hence
f iP ([x∗, y∗]) ∈ P for any i ≥ 0 and if {x∗, y∗}∩Fix(fP ) 6= ∅ then per(P ) ≤ 2.
Therefore x∗, y∗ ∈ P . Moreover, a is the smallest possible number such that
faP |[x∗,y∗] is the identity and therefore per(P ) = a.

Take the sequence A∗ = 〈f iP ([x∗, y∗])〉ai=1. Clearly A∗ is a P -loop which
contains the cycle P . Therefore A∗ = AP by Lemma 2.4. But it is easy
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to see that A∗ is not simple (it contains the interval [x∗, y∗] twice: once
covering x∗ and then y∗)—a contradiction.

Now we will investigate the forcing relation between patterns with dif-
ferent eccentricities.

Lemma 2.7. Let P be a unicycle with E(P ) ≥ 1 and AP be not simple.

Then fP has a unicycle Q such that per(Q) < per(P ) and E(Q) ≥ E(P ).

P r o o f. Because AP is not simple there are P -loops B, C such that AP =
B + C. But either E(B) ≥ E(AP ) or E(C) ≥ E(AP ) and they are both
shorter than AP . Hence we are done by Lemmas 2.3 and 1.2.

Lemma 2.8. A unipattern A forces some unipattern B such that E(A) ≤
E(B), per(A) ≥ per(B) and a representative Q of B has a simple loop AQ.

P r o o f. If a representative P of A has a simple loop then B = A.
If not then by Lemma 2.7 the pattern A forces a unipattern A∗ such that
E(A) ≤ E(A∗) and per(A) > per(A∗). Since per(A) is finite, after repeating
this finitely many times we must get our unipattern B.

Lemma 2.9. Let A be an r-unipattern and let its representative P have

a simple loop AP . Then the pattern A forces some q-unipattern for each

q ∈ Q such that r ≥ q ≥ 1.

P r o o f. We may assume that E(P ) = r > 1 (the case r = 1 is trivial)
and per(P ) = k(m+ n) where m/n = r (m,n are coprime).

Because AP is simple it contains every interval of the partition P. So
we may assume that the loop AP starts with the interval Jkm. Moreover,

Jkm
P
→ Jkm+1 and Jkm+1

P
→ Jkm. Hence

B = 〈

a times Jkm,Jkm+1

︷ ︸︸ ︷

Jkm, Jkm+1, . . . , Jkm, Jkm+1〉 +

b timesAP
︷ ︸︸ ︷

AP + . . .+ AP

is a P -loop with eccentricity a+bm
a+bn

. If q = r/s then we can choose a =
ms− rn and b = r − s. So (a + bm)/(a + bn) = q. Hence from Lemma 2.3
we see that fP has a q-unicycle and by Lemma 1.1 the pattern A forces a
q-unipattern.

Now we can easily get the final statement of this section.

Theorem 2.10. Let r, q ∈ Q satisfy r ≥ q ≥ 1. Then any r-pattern
forces a q-unipattern.

P r o o f. Let A be an r-pattern. If A is not a unipattern then, by Lemmas
2.1 and 1.1, A forces a q-unipattern. If A is a unipattern then, by Lemma
2.8, it forces a unipattern B such that E(B) ≥ r and a representative P of
B has a simple loop AP . By Lemma 2.9 the pattern B forces a q-unipattern,
and so does A because the forcing relation is transitive.
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3. X-minimal patterns. First we recall

Definition. An r-pattern is X-minimal if it does not force any other
r-pattern.

Now we would like to find all X-minimal r-patterns. We already have
some information about such patterns. More precisely, we have

Lemma 3.1. An X-minimal pattern is a unipattern and its representative

P has a simple loop AP .

P r o o f. If [P ] is an X-minimal pattern then by Corollary 2.2 it is a
unipattern. If it does not have simple loop AP then by Lemma 2.8 it forces
a unipattern [Q] with simple loop AQ and E(Q) > E(P ). So [P ] 6= [Q]
and by Lemma 2.9 the pattern [Q] forces a pattern with eccentricity E(P ).
Finally, because the forcing relation is antisymmetric we see that [P ] is not
X-minimal—a contradiction.

Definition. Let P be a unicycle and c ∈ Fix(fP ). A sequence Q =
〈qi〉

a
i=0 will be called a P -semicycle if

qi ∈ P, fP (qi−1) = qi for 1 ≤ i ≤ a,

q0 6= qa, q0 ∈ conv{qa, c}.

The eccentricity of the P -semicycle Q is

E(Q) =
#{i > 0 : qi < c}

#{i > 0 : qi > c}
.

(See Fig. 4.)

Fig. 4. A cycle P with a semicycle Q (thick lines); E(Q) = 32

Lemma 3.2. Let P be a unicycle with a P -semicycle Q. Then fP has

an E(Q)-cycle R such that per(R) 6= per(P ).

P r o o f. Let Q = 〈qi〉
a
i=0 and Ii = conv{qi, c}. Clearly I0

P
→ I1

P
→ . . .

P
→

Ia and I0 ⊂ Ia. Therefore 〈Ii〉
a
i=1 is a separated P -cyclic sequence with

eccentricity E(Q). By Lemma 2.3 the function fP has an E(Q)-cycle R.
Moreover, a is not divisible by per(P ) and therefore per(R) 6= per(P ).
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Definition. Let P be an m
n -unicycle where m ≥ n ∈ N are coprime

and c ∈ Fix(fP ). Define the coding KP : P → Z by

KP (p1) = 0,

KP (fP (pi)) =

{
KP (pi) + n for pi < c,
KP (pi) −m for pi > c.

We say that P has monotone code if either per(P ) = 1, or E(P ) > 1
and for any p, q ∈ P such that p 6= q and q ∈ conv({p, c}) we have KP (q) >
KP (p) (see Fig. 5).

If P has monotone code we also say that the pattern [P ] has monotone
code.

Fig. 5. An example of a cycle without (top) and with (bottom) monotone code

Lemma 3.3. An X-minimal pattern has monotone code.

P r o o f. Let A be an X-minimal m
n

-pattern (m,n are coprime) and let
an m

n
-cycle P be a representative of A. From Lemma 2.1 we know that P

is a unicycle.
Assume that P does not have monotone code. Then there are two differ-

ent p, q ∈ P such that q ∈ conv({p, c}) andKP (q) ≤ KP (p). SetQ = 〈qj〉
a
j=0

where q0 = q, qj+1 = fP (qj) and qa = p. Clearly, Q is a semicycle and we
can estimate E(Q). From the definition of KP we have

KP (qa) = KP (q0) + n#{j : 0 ≤ j < a, qj < c}

−m#{j : 0 ≤ j < a, qj > c}.

Hence

E(Q) =
#{j : 0 ≤ j < a, qj < c}

#{j : 0 ≤ j < a, qj > c}
≥
m

n
.



X-minimal patterns and Sharkovskĭı’s theorem 45

Using Lemmas 3.2 and 1.1 we find that A forces a pattern B 6= A such that
E(B) ≥ m/n and from Theorem 2.10 we see that B forces an m

n
-pattern C.

But A 6= C because the forcing relation is antisymmetric and so A is not an
X-minimal m

n
-pattern—a contradiction.

So we have proved that an X-minimal pattern is a unipattern with mono-
tone code. Now we are going to get more information about a unicycle with
monotone code.

Let (P = {p1, . . . , pk(m+n)}, ϕ) be an m
n

-unicycle with spatial labeling,
monotone code (m ≥ n are coprime) and c ∈ Fix(fP ). From the monotonic-
ity we immediately see that ϕ(pi) < c for i > km.

Hence we can define a new cycle (P ∗, ψ) where P ∗ = {pi}
km
i=1 and

ψ(pi) =

{
ϕ(pi) if ϕ(pi) ∈ P ∗,
ϕ2(pi) if ϕ(pi) 6∈ P ∗.

So we can make

Definition. Let CP = 〈ci〉
km
i=1, where ci ∈ {0, 1}, be a code correspond-

ing to the cycle P in the following way:

ci =

{

0 if ψi(p1) = ϕ(ψi−1(p1)),
1 if ψi(p1) = ϕ2(ψi−1(p1)).

From the monotonicity of the code KP it can be seen that the code CP
can also be obtained from the cycle (P ∗, ψ) if we start at the point p1 and
following the cycle we write 0 if we move right and 1 if left (see Fig. 6).

Fig. 6. An example of a cycle (P,ϕ) (top) and (P ∗, ψ) (bottom) with CP = 〈0, 0, 1, 1, 1〉

Note that CP contains kn ones and k(m− n) zeros. Moreover,

KP (ψi(p1)) =

{

KP (ψi−1(p1)) + n if ci = 0,
KP (ψi−1(p1)) −m+ n if ci = 1.
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Hence we have the following connection between KP and CP :

KP (ψi(p1)) = in−m

i∑

j=1

cj .

Lemma 3.4. Let m > n be coprime and P be an m
n

-unicycle with mono-

tone code. Then per(P ) = m+ n.

P r o o f. Assume that P = {p1, . . . , pk(m+n)} with spatial labeling and
k > 1. We will study the code CP .

Let ij be such that cij = 1 and
∑ij
i=1 ci = j (ij is the place of the jth

unit in the sequence CP ).
Because k > 1 we have ψin(p1) 6= p1 and from the monotonicity of the

code we have KP (ψin(p1))> 0. But KP (ψin(p1))= nin−mn and so in> m.
Moreover, monotonicity yields that no two points from P ∗ can have

the same value of KP . If there is a part C∗ = 〈ci〉
j+m
i=j+1 of CP such that

∑j+m
i=j+1 ci = n then KP (ψj+m(p1)) = KP (ψj(p1))+ (m−n)n+n(n−m) =

KP (ψj(p1)). But ψj+m(p1) 6= ψj(p1) (k > 1) contrary to the monotonicity.
So no part of CP of length m contains m− n times 0 and n times 1. Hence
in− i1 ≥ m (otherwise 〈ci〉

in
i=in−m+1 contains m−n times 0 and n times 1).

Therefore i1 < in+1 −m + 1 and using the sequence 〈ci〉
in+1

i=in+1−m+1 as

above we obtain in+1 − i2 ≥ m. Inductively, for all j ≤ (k − 1)n,

in+j − i1+j ≥ m.

We have c1 = 0 because KP (ψ(p1)) ≥ 0 (monotonicity) and so 1 < i1 <
. . . < ikn−1 < ikn ≤ kn. Using the inequalities above we obtain

km ≥ 1 +
k∑

j=1

(ijn − i(j−1)n+1) ≥ 1 +
k∑

j=1

m = 1 + km,

which is a contradiction.

Lemma 3.5. Let P be a unicycle which is not X-minimal. Then fP has

a unicycle R such that per(R) < per(P ) and E(R) ≥ E(P ).

P r o o f. If AP is not simple then by Lemma 2.7 the function fP has a
unicycle Q with per(Q) < per(P ) and E(Q) ≥ E(P ). By Lemma 2.8, fP
has a unicycle R such that per(R) ≤ per(Q) and E(R) ≥ E(Q) and so we
are done.

Assume that AP is simple. If per(P ) = 2 then the cycle given by a fixed
point is our cycle R. So we can assume that per(P ) > 2 (if per(P ) = 1 then
P is X-minimal).

Because P is not X-minimal, fP contains a cycle Q 6= P with E(Q) =
E(P ). Let A be the unique P -loop containing Q (Lemma 2.6). Because AP

is simple and P 6= Q, Lemma 2.6 shows that A 6= AP + . . . + AP . Hence
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A can be written as the sum of two P -loops B + C (C may be empty) such
that B is a simple P -loop, E(B) ≥ E(AP ) and B 6= AP .

If the length of B is smaller than per(P ) then the cycle R given by the
P -loop B (Lemma 1.2) is the one we are looking for (see Lemma 2.3).

So the length of B is at least per(P ) and by Lemma 2.5 it must be per(P ).
Hence both AP and B contain all intervals from P. Since they are different
there are intervals I, J,K ∈ P such that J 6= K and

AP = 〈. . . , I, J, . . .〉, B = 〈. . . , I,K, . . .〉.

Hence after a suitable rotation we can write

AP =

D
︷ ︸︸ ︷

〈J, . . . , L〉+

E
︷ ︸︸ ︷

〈K, . . . , I〉, B = 〈K, . . . , I〉.

Note that D is nonempty and the loop E is P -cyclic.
If E(E) ≥ E(AP ) then E gives us a cycle R with period smaller than

per(P ) and we are done (Lemmas 1.2 and 2.3).
Otherwise D + B is a P -cyclic loop with E(D + B) > E(AP ). So it can

be written as a sum of two P -loops one of which is a simple P -loop F such
that E(F) > E(AP ). This loop has length smaller than per(P ) (all simple
P -loops with length per(P ) have eccentricity E(AP )) and so it will give us
a cycle R with period smaller than per(P ) (Lemmas 1.2 and 2.3).

Let P be an m
n -unicycle with simple loop AP = 〈Ii〉

k(m+n)
i=1 . We have

f i−1
P (p1) ∈ Ii. So we may define a map π : P → P such that π(f i−1

P (p1)) =
Ii. Since AP is simple, π is a bijection. Moreover, if π(pj) = Ii then pj ∈ Ii.

Recall that P = {Ji}
k(m+n)
i=1 with spatial labeling (see the definition of P)

and AP is a simple loop of length k(m+n). Hence there is clearly only one
possibility for π:

π(pi) = Ji for 1 ≤ i ≤ k(m+ n)

(see Fig. 7).

Fig. 7. The arrows show the intervals to which π maps points of the cycle

We know that π(x)
P
→ π(fP (x)) and using the bijection π we can natu-

rally define a coding K : P → Z similar to KP : P → Z:

K(Ji) = K(π(pi)) = KP (pi).
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Now we estimate how the code of the intervals in P depends on the P -
covering property for these intervals.

Lemma 3.6. Let P be an m
n -unicycle with monotone code, P = {Ji}

m+n
i=1

with spatial labeling and Ji, I ∈ P, such that Ji
P
→ I. If i ≤ m then

K(I) ≥ K(Ji) + n and if i > m then K(I) ≥ K(Ji) −m.

P r o o f. If i = m then Ji = [pm, c] and so I ⊂ [c, fP (pm)]. From the
monotonicity of the code we have K(I) ≥ K(π(fP (pm))) = K(Ji) + n.

If i < m then Ji = [pi, pi+1]. But fP is linear on Ji and so if Ji
P
→

Jj then pj ∈ conv{fP (pi), fP (pi+1)}. The monotonicity gives KP (pj) ≥
min{KP (fP (pi)),KP (fP (pi+1))}. But KP (fP (pi)) < KP (fP (pi+1)) and so
KP (pj) ≥ KP (fP (pi)) = KP (pi) + n. Hence K(I) ≥ K(Ji) + n.

Now let i > m. By monotonicity, fP (pj+1) < fP (pj) < c for all j > m.
Hence fP ([c, pi]) = [fP (pi), c] and so K(I) ≥ KP (fP (pi)) = K(Ji) −m.

Finally, we are ready to prove

Theorem 3.7. Let P be a periodic orbit. Then P is X-minimal if and

only if it is a unicycle with monotone code.

P r o o f. The necessity is proved in Lemmas 2.1 and 3.3. Now we show
the sufficiency.

Let P be an m
n

-unicycle with monotone code. If P is not X-minimal
then by Lemma 3.5 there is a cycle Q of fP such that per(Q) < per(P )
and E(Q) ≥ E(P ). By Lemma 2.4 there is a P -loop A = 〈Ii〉

a+b
i=1 such that

E(A) = E(Q) = a/b where a = #{i : Ii < c} and b = #{i : Ii > c}. Finally,
by Lemma 3.6 we have

K(I1) = K(I1) +

a∑

i=1

ni −
b∑

i=1

mi

where ni ≥ n and mi ≤ m. Therefore a/b ≤ m/n. But Lemma 3.4 shows
that a+b < m+n and hence a/b < m/n, which contradicts E(Q) ≥ E(P ).

From this theorem we immediately have

Corollary 3.8. A pattern is X-minimal if and only if it is a unipattern

with monotone code.

Although it is very easy to check if a pattern is a unipattern with mono-
tone code it is still not a “look and see” (geometrical) characterization. We
have at least some easy necessary geometrical condition.

Lemma 3.9. Let P be a representative of an X-minimal pattern with

E(P ) > 1. Then P is unicycle and for any p, q ∈ P and Fix(fP ) = {c} we
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have

if p < q < c and fP (p), fP (q) < c then fP (p) < fP (q),

if p < q < c and fP (p), fP (q) > c then fP (p) > fP (q),

if p > q > c then fP (p), fP (q) < c and fP (p) < fP (q).

P r o o f. This follows easily from Theorem 3.7 and monotonicity.

Unfortunately, these conditions are not sufficient (see Fig. 8) and we do
not know if there exists a good geometrical characterization at all.

Fig. 8. A cycle P satisfying the conditions of Lemma 3.9 which is not X-minimal. This
can be easily checked from the code KP or by finding a semicycle with eccentricity

3
1

(thick lines).

4. Existence of X-minimal orbits. In the previous section we gave
a characterization of X-minimal orbits. However, if we have a function
f ∈ C(I, I) with a periodic orbit with eccentricity r it is still not clear
whether this map has an X-minimal r-cycle. This is because the set of all
patterns with given eccentricity is infinite and so theoretically there may
exist a sequence of r-patterns each of which forces the next one and none of
which forces an X-minimal r-pattern. In this section we will show that this
is impossible. This question has been partially solved in [BK] for patterns
with eccentricities of the form k+1

k .

Lemma 4.1. An r-unipattern A forces an X-minimal q-pattern B such

that q ≥ r and per(A) ≥ per(B).

P r o o f. If A is an X-minimal r-pattern take B = A and we are done.
If A is not an X-minimal pattern then by Lemmas 3.5 and 1.1 we see that

A forces a unipattern A∗ such that E(A∗) ≥ E(A) and per(A∗) < per(A).
Applying this finitely many times we must get an X-minimal pattern B.

Now we investigate X-minimal patterns more closely. Let P be an X-
minimal cycle with eccentricity m

n . We would like to know what cycles
it forces. If we think a little about Lemma 3.1 and the way we proved
Lemma 3.5 we can see that among all the cycles forced by P only those
with period lower than per(P ) are important. Any other cycle forced by
P can be obtained by “gluing” some of these cycles together. Since P is
X-minimal, the eccentricities of these cycles depending on the period are
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bounded above by [im/n]/i for i = 1, . . . , n. We now consider those that
give us the maximal possible eccentricity with minimal possible period.

Definition. Let m,n ∈ N, m > n coprime. The fraction [im/n]
i is

called an m
n -extremal fraction if 1 ≤ i ≤ n and [im/n]/i > [jm/n]/j for all

j ∈ {1, . . . , i− 1}.

Remark. Note that [im/n] and i are coprime for an m
n -extremal fraction

[im/n]
i .

Lemma 4.2. Let
pj−1

qj−1
≤
p

q
≤
pj
qj

where
pj−1

qj−1
<

pj

qj
are consecutive m

n
-extremal fractions. There are nonnega-

tive integer numbers b, c such that p = bpj−1 + cpj and q = bqj−1 + cqj.

P r o o f. We will use Farey series (see e.g. [HW]). We show that pj−1/qj−1,
pj/qj are consecutive terms of the Farey series of order qj . If not then there
is a term p∗/q∗ such that pj−1/qj−1 < p∗/q∗ < pj/qj and p∗/q∗, pj/qj are
consecutive terms of the Farey series of order qj . So we have q∗ ≤ qj .

If q∗ < qj then [q∗m/n]
q∗

is an m
n

-extremal fraction—a contradiction with

the assumption that
pj−1

qj−1
,
pj

qj
are consecutive m

n -extremal fractions.

If q∗ = qj then from Theorem 28 of [HW] we have pjq
∗ − p∗qj = 1.

But this is possible only if qj = 1, contrary to the definition of m
n

-extremal
fractions.

Hence pj−1/qj−1, pj/qj are consecutive terms of the Farey series of order
qj and our lemma follows from [HW], 3.3.

Lemma 4.3. Let P be an X-minimal mn -unicycle (m > n coprime) and p
q

be an m
n -extremal fraction. Then fP has a p

q -unicycle Q with per(Q) = p+q.

P r o o f. If p/q = m/n then we can set Q = P . So we can assume that
p/q < m/n and let c ∈ Fix(fP ).

We will show that there is a P -semicycle with eccentricity p
q . We will

define a code C = 〈ci〉
(m+n)q
i=1 where

ci =

{

0 if f i−1
P (p1) < c,

1 if f i−1
P (p1) > c.

Note that c1 = 0 and if ci = 1 then ci−1 = 0 and ci+1 = 0 (if i + 1 ≤
(m+ n)q). There is a close connection between C and KP :

KP (f iP (p1)) = in− (m+ n)

i∑

j=1

cj .
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We will show that there is a piece of code C∗ = 〈ci〉
j+p+q
i=j+1 such that cj+1 = 0,

cj+p+q = 1 and
∑j+p+q
i=j+1 ci = q.

Assume to the contrary that there is no such sequence C∗.
We will use a technique very similar to the proof of Lemma 3.4. Let ij

be such that cij = 1 and
∑ij
i=1 ci= j (ij is the position of the jth unit in C).

Note that KP (p) ≥ 0 for all p ∈ P because P has monotone code. If

iq ≤ p + q then KP (f
iq
P (p1)) < 0 (because p/q < m/n)—a contradiction.

Hence iq > p+ q.

If iq − i1 < p + q then 〈ci〉
iq
i=iq−(p+q) would be our sequence C∗. Hence

iq − i1 ≥ p + q and because ciq+1 = 0 we have iq+1 > iq + 1 and so
iq+1 − (i1 + 1) > p + q. Again because there is no sequence C∗ we have
iq+1 − i1+1 ≥ p+ q. Repeating this argument we obtain

ij+q − ij+1 ≥ p+ q

for 1 ≤ j ≤ (n− 1)q. Now using these inequalities and the fact that

1 < i1 < iq < iq + 1 < iq+1 < . . . < ijq

< ijq + 1 < ijq+1 < . . . < inq ≤ (m+ n)q

we get the inequality

(m+ n)q ≥
n∑

j=1

(1 + ijq − i(j−1)q+1) ≥ n+ n(p+ q).

Hence m/n ≥ (p + 1)/q, which contradicts the assumption that p
q

is an
m
n -extremal fraction. Hence we have proved the existence of a sequence C∗.

Now we will show that the sequence A = 〈f iP (p1)〉
j+p+q+1
i=j+1 connected

with C∗ is a P -semicycle.
Since cj+1 = 0 and cj+p+q = 1 we have f j+1

P (p1), f
j+p+q+1
P (p1) < c.

Moreover,

KP (f j+p+q+1
P (p1)) = KP (f j+1

P (p1)) + pn− qm < KP (f j+1
P (p1))

and by monotonicity f j+p+q+1
P (p1) < f j+1

P (p1) < c. Therefore A is a P -
semicycle. Clearly its eccentricity is p

q and so by Lemma 3.2 the function fP
has a p

q -unicycle Q. Finally, as p, q are coprime we have per(Q) = p+ q.

Lemma 4.4. Suppose m,n are coprime, p, q are coprime and m/n ≥
p/q ≥ 1. Then an X-minimal m

n
-unipattern forces some p

q
-unipattern with

period p+ q.

P r o o f. Let A be an X-minimal mn -unipattern.
If p/q ≤ pi/qi < m/n where pi

qi
is an m

n
-extremal fraction then from

Lemmas 4.1 and 4.3 the pattern A forces an X-minimal m
∗

n∗
-pattern A∗ such

that pi/qi ≤ m∗/n∗ and per(A∗) < per(A). But the forcing relation is
transitive and so it is enough to prove that A∗ forces some p

q -unipattern
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with period p + q. We can repeat this reduction and since we decrease the
period we must stop after finitely many steps.

Hence we can assume that pa−1/qa−1 < p/q ≤ pa/qa where pa−1

qa−1
, pa

qa
are

two largest m
n -extremal fractions.

From Lemma 4.2 we have p = bpa−1 + cpa and q = bqa−1 + cqa for some
nonnegative integers b, c. It is clear that pa/qa = m/n and c > 0 because
pa−1/qa−1 < p/q.

Let P be a representative of A. By Lemma 4.3 the function fP has a
pa−1

qa−1
-unicycle Pa−1 with period pa−1 + qa−1 and by Lemma 2.4 there is a

P -loop Aa−1 of length pa−1 + qa−1 and eccentricity pa−1

qa−1
connected with

this cycle.

The loop AP has length pa + qa and eccentricity pa

qa
. Moreover, since P

is X-minimal by Lemma 3.1 the loop AP is simple and therefore it contains
all the intervals from P.

Hence we can connect c times the loop AP and b times the loop Aa−1

into a single P -loop with length p+ q and eccentricity p
q
. This P -loop gives

us a cycle Q (Lemma 2.3) such that per(Q) = p + q (p, q are coprime).
Finally, let B = [Q] and apply Lemma 1.1.

Theorem 4.5. Any r-pattern forces an X-minimal r-pattern.

P r o o f. By Theorem 2.10 an r-pattern forces an r-unipattern and by
Lemma 4.1 an r-unipattern forces an X-minimal q-pattern for some q ≥ r.
By Lemma 4.4 the latter forces an r-unipattern with minimal possible pe-
riod. Because there are only finitely many r-patterns with this period, after
repeating this procedure finitely many times we must get an X-minimal
r-pattern.

We end this part with an easy algorithm for constructing all X-minimal
patterns. Let us consider a cycle P with an eccentricity m

n . We have defined
a code KP : P → Z. Clearly different orbits have different codes. Moreover,
from the code KP : P → Z of an X-minimal m

n -cycle we can easily recon-
struct the function ϕ of the cycle (P,ϕ) using the following simple algorithm
(assume that P = {1, . . . ,m+ n}).

Algorithm 1. If KP (i) − KP (j) = m or KP (j) − KP (i) = n then

ϕ(i) = j.

We have also defined a code CP connected with a given X-minimal cycle
P . Again, from the code CP = 〈c1, . . . , cm〉 connected with an X-minimal
m
n -cycle P we can easily reconstruct the code KP : P → Z and hence the
cycle (P,ϕ).
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CP = 〈0, 0, 1, 0, 1, 0, 1〉

CP = 〈0, 0, 1, 0, 0, 1, 1〉

CP = 〈0, 0, 0, 1, 1, 0, 1〉

CP = 〈0, 0, 0, 1, 0, 1, 1〉

CP = 〈0, 0, 0, 0, 1, 1, 1〉

Fig. 9. The list of all X-minimal 73 -patterns

Algorithm 2. The function KP : P → Z is

• increasing on {1, . . . ,m}

with values {
∑k
j=1(n − cjm) : k = 1, . . . ,m},
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• decreasing on {m+ 1, . . . ,m+ n}

with values {m+
∑k
j=1(n− cjm) : ck = 1}.

Now we take some code C∗ which is only a rotation of CP . The function
K∗ obtained from C∗ using Algorithm 2 is nothing but KP shifted by some
negative multiple of n. Therefore if we apply Algorithm 1 to K∗ we again
obtain the cycle (P,ϕ).

Hence we can get any X-minimal m
n

-cycle by choosing a sequence C ∈
C(m,n) where C(m,n) = {{ci}

m
i=1 ∈ {0, 1}m :

∑m
i=1 ci = n}, then using

Algorithm 2 to get a code K∗ and finally Algorithm 1 to get an X-minimal
cycle. (See Fig. 9.)

Note that we get different patterns if and only if we start from C1, C2 ∈
C(m,n) such that C1 is not a rotation of C2. So we have the following
simple

Corollary 4.6 (Proposition 4.4 of [BM]). There are m!/(mn!(m−n)!)
different X-minimal m

n
-patterns (m,n coprime).

Remark. According to this corollary there is a unique X-minimal n+1
n -

pattern. This is of course the pattern of the Štefan cycle because this is the
only pattern that does not force any other pattern with period 2n + 1 (see
eg. [ALM]) and clearly any pattern with period 2n + 1 has eccentricity at
least n+1

n
.

5. A generalization of Sharkovskĭı’s theorem. If we look back at
Lemma 3.4 and Theorems 3.7, 4.5 and 2.10 then we can see that they in
fact give a generalization of a part of Sharkovskĭı’s Theorem for odd periods.
Indeed, a pattern with period 2k+1 has eccentricity at least k+1

k , by Lemma

3.4 it forces a pattern with eccentricity k+2
k+1 , which by Theorems 3.7, 4.5 and

2.10 forces a pattern with period 2k + 3.

The part of Sharkovskĭı’s Theorem concerning even periods is somehow
hidden in eccentricity 1. So in order to get a full generalization we need to
define a better type of patterns that will make a finer division of the set of
all patterns with eccentricity 1.

Let us look a bit closer at a periodic orbit (P,ϕ) with per(P ) > 1 and
E(P ) = 1. It is clear that per(P ) is even. So P = P1 ∪P2 such that (Pi, ϕ

2)
is a periodic orbit with period per(P )/2 for i = 1, 2.

We shall say that [(P,ϕ)] is a (2, r)-pattern if E([(P,ϕ)]) = 1, per(P ) > 1
and E([(Pi, ϕ

2)]) = r for some i ∈ {1, 2}. Inductively we say that [(P,ϕ)] is a
(2k, r)-pattern for k > 1 if E([(P,ϕ)]) = 1 and [(Pi, ϕ

2)] is a (2k−1, r)-pattern
for some i ∈ {1, 2}. Finally, we say that an r-pattern is a (1, r)-pattern. (See
Fig. 10.)
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A cycle (P,ϕ) with eccentricities 111 ,
1
5 ,
1
1 ,
3
1 and

5
1 :

(P,ϕ) is a 1-cycle so we look at (P1, ϕ
2) and (P2, ϕ

2).

The cycle (P1, ϕ
2) has eccentricities 12 ,

1
1 and

2
1 :

The cycle (P2, ϕ
2) has eccentricities 15 ,

1
2 and

2
1 :

(P1, ϕ
2) is a 1-cycle so we look at (P1,1, ϕ

4) and (P1,2, ϕ
4).

The cycle (P1,1, ϕ
4) has eccentricity 21 :

The cycle (P1,2, ϕ
4) has eccentricity 21 :

Fig. 10. The pattern [(P,ϕ)] has types (1, 111 ), (1,
5
1 ), (1,

3
1 ), (1,

1
1 ), (2,

5
1 ), (2,

2
1 ), (2,

1
1 )

and (4, 21 ).
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We define a space X = {(2k, a) : k ∈ N ∪ {0}, a ∈ R ∪ {∞}, a ≥ 1} ∪
{(2∞, 1)} and a total ordering relation on X such that

(2k−1, a) > (2k−1, b) > (2k, a) > (2∞, 1) > (2k, 1) > (2k−1, 1)

for any a, b ∈ R ∪ {∞} such that a > b > 1 and k ∈ N.
For any (a, b) ∈ X we define

X (a, b) = {(c, d) ∈ X : (a, b) ≥ (c, d), c ∈ N, d ∈ Q},

X0(a, b) = {(c, d) ∈ X : (a, b) > (c, d), c ∈ N, d ∈ Q}.

Now we may state

Theorem 5.1 (Generalized Sharkovskĭı’s Theorem). (i) Any (a, b)-pat-
tern forces a (c, d)-pattern for any (c, d) ∈ X (a, b).

(ii) For any (a, b) ∈ X there is a function f ∈ C(I, I) such that f exhibits

a (c, d)-pattern if and only if (c, d) ∈ X (a, b).
(iii) For any (a, b) ∈ X there is a function f ∈ C(I, I) such that f exhibits

a (c, d)-pattern if and only if (c, d) ∈ X0(a, b).
(iv) A

(
2k, m

n

)
-pattern with m

n
> 1 (m,n coprime) forces a pattern with

period 2k(m+ n). A (2k, 1)-pattern forces a pattern with period 2k.

P r o o f. Part (i) will be proved as Lemma 5.9 and part (iv) will be proved
as Lemma 5.10. Part (iii) will be proved as Lemma 5.16 and finally part (ii)
will follow directly from Lemmas 5.15, 5.16 and Claim 5.17.

In order to prove the theorem above we need the notion of block struc-
ture.

Let (P,ϕ) be a cycle of period n and B = [({1, . . . ,m}, ψ)] be a pattern
of period m. Let P = {p1, . . . , pn} have the spatial labeling. We say that
(P,ϕ) has a block structure over B if n = sm, P = P1 ∪ . . . ∪ Pm with
Pi = {p(i−1)s+1, . . . , p(i−1)s+s} for all i = 1, . . . ,m and ϕ(Pi) = Pψ(i). Each
of the sets Pi will be called a block of P . In other words, we could consider
each block as a “fat” point and P as a “fat” cycle with pattern B (see
Fig. 11).

Fig. 11. A pattern which has a block structure over a pattern with period 4

Assume that P has a block structure over B and (Q,ψ) is a cycle with
pattern B. Then we also say that P has a block structure over (Q,ψ). If
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P has a block structure over B (respectively over Q) we also say that the
pattern [P ] has a block structure over B (respectively over Q).

Note that if (P,ϕ) has a block structure over a pattern of period m, then
(Pi, ϕ

m) is a cycle of period per(P )/m for all i.
If a cycle (pattern) has a block structure over a pattern with period 2

then we say that it has a division.
We already have enough information about patterns of type (1, r) but we

have no information about the forcing relation for patterns of type (2k, r)
where k ∈ N. So take a (2k, r)-pattern and let (P,ϕ) be its representative.
Because k ≥ 1 our pattern is also a (2, q)-pattern (either q = 1 or q = r).
Hence per(P ) = 2n where n ∈ N. There are two possibilities. Either P has
a division or not. In the latter case we can use the following lemma.

Lemma 5.2 (Proposition 3.4 of [LMPY]). Let A be a pattern with per(A)
= 2n that does not have a division (so n > 1). Then if n is odd , the pattern

A forces a pattern with period n. If n is even it forces a pattern with period

n+ 1.

Hence we have the following simple

Corollary 5.3. A pattern with period greater than 1 which does not

have a division forces a (1, q)-pattern for some q > 1.

P r o o f. This is straightforward from Lemma 5.2.

Now we will look closely at the patterns that have a division. Let (P,ϕ)
be a representative of such a pattern. Obviously P is a unicycle, E(P ) = 1
and per(P ) > 1. We can look at the two cycles (P1, ϕ

2) and (P2, ϕ
2). If

we have information about the types of patterns forced by [P1] and [P2] we
can deduce information about the patterns forced by [P ]. More precisely,
we have

Lemma 5.4. Let (P,ϕ) be a representative of a pattern with division and

P1 ⊂ P such that (P1, ϕ
2) is a cycle. If [P1] forces an (a, b)-pattern A then

[P ] forces a (2a, b)-pattern with division and period 2 per(A).

P r o o f. Suppose [P1] forces an (a, b)-pattern A. Consider the func-
tion f2

P and the interval I = conv(P1). Because P has a division we
have fP (P1) = P2, fP (P2) = P1 and conv(P1) ∩ conv(P2) = ∅. Hence
f2
P |I ∈ C(I, I). But f2

P |I exhibits the pattern [P1] (it has the cycle P1) and
therefore it has a cycle Q1 which is a representative of the pattern A. Let
fP (Q1) = Q2 and Q = Q1 ∪ Q2. Clearly (Q, fP |Q) is a cycle. We have
Q2 ⊂ conv(P2) and therefore Q has a division, E(Q) = 1 and per(Q) > 1.
Hence [Q] is a (2a, b)-pattern with division. Clearly per(Q) = 2per(A).

Lemma 5.5. A (1, r)-pattern with r > 1 forces a (2, q)-pattern with divi-

sion for each q ≥ 1.
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P r o o f. Let A be a (1, r)-pattern with r > 1. There is a k ∈ N such
that r > (k + 1)/k. By Theorems 2.10 and 4.5, A forces an X-minimal
(1, k+1

k
)-pattern (which must be a Štefan pattern). So we may assume that

A is a Štefan pattern and (P = {p1, . . . , p2k+1}, ϕ) is its representative. We
have

ϕ(p1) = pk+1,

ϕ(pi) =

{
p2k+3−i for i = 2, . . . , k + 1,
p2k+2−i for i = k + 2, . . . , 2k + 1,

and pk+1 < c < pk+2 for c ∈ Fix(fP ). So P = {Ji}
2k+1
i=1 and

J1
P
→ Jj for j = k + 1, . . . , 2k + 1,

Jj
P
→ J2k+3−j for j = 2, . . . , k + 1,

Jj
P
→ J2k+2−j for j = k + 2, . . . , 2k + 1,

Jk+2
P
→ Jk+1.

Note that only J1 and Jk+2 P -cover more than one interval. Hence

A =

s+1 times Jk+2,Jk+1

︷ ︸︸ ︷

〈Jk+2, Jk+1, . . . , Jk+2, Jk+1〉+〈Jk+2, Jk, Jk+3, Jk−1, . . . , J2k+1, J1〉

is a P -loop of length 2(k+s+1). Because the interval J1 is only once in the
loop A and A 6= AP the cycle Q given by the P -loop A has period 2(k +
s + 1). We can write Q = {q1, . . . , q2(k+s+1)} with spatial labeling. By the
alternating structure of A, whenever fP (qi) = qj we have c ∈ conv({qi, qj})
and so Q has a division. Moreover, because fP is monotone on [p2, p2k+1]
we have

fP (q1) = qk+s+2,

fP (qi) =

{
q2(k+s+2)−i for i = 2, . . . , k + s+ 1,
q2(k+s+1)+1−i for i = k + s+ 2, . . . , 2(k + s+ 1).

Take Q1 = {q1, . . . , qk+s+1}. Then (Q1, f
2
P |Q1

) is a cycle and

f2
P (q1) = qk+s+1,

f2
P (qi) = qi−1 for i = 2, . . . , k + s+ 1.

Hence the cycle Q1 is a k+s
1 -unicycle. Since we can choose s arbitrarily large

we are done by Theorem 2.10 and Lemma 5.4.

In order to be able to use Lemma 5.5 effectively we must use patterns
with a special structure.

Definition. Let A be a (2k, r)-pattern and (P 0
1 , ϕ) be a representative

of A. From the definition of (2k, r)-pattern we see that for 1 ≤ j ≤ k
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there are sets P j1 , P
j
2 such that P j−1

1 = P j1 ∪ P j2 , ϕ2j−1

(P j1 ) = P j2 and

(P j1 , ϕ
2j

) is a (2k−j , r)-cycle. The sequence 〈P j1 〉
k
j=0 of sets will be called

(2k, r)-determining. Moreover, if the cycle (P j1 , ϕ
2j

) has a division for all

j <k then the sequence 〈P j1 〉
k
j=0 will be called splitting. In this case we say

that the pattern A has a splitting (2k, r)-determining sequence (see Fig. 12).

(P 01 , ϕ)

(P 11 , ϕ
2)

(P 21 , ϕ
4)

Fig. 12. A (22, 21 )-pattern with a splitting (2
2, 21 )-determining sequence 〈P

j
1 〉
2
j=0

Lemma 5.6. An (a, b)-pattern with an (a, b)-determining sequence which

is not splitting forces a (c, d)-pattern A for some c < a and d > 1 such that

any (c, e)-determining sequence of A is splitting.

P r o o f. Let (P 0
1 , ϕ) be a representative of our (a, b)-pattern and 〈P j1 〉

k
j=0

be an (a, b)-determining sequence which is not splitting. Take the smallest

j < k such that the cycle (P j1 , ϕ
2j

) does not have a division. Using Corollary
5.3 and repeatedly Lemma 5.4 we find that our pattern forces a (c, d)-pattern
such that c = 2j < a and d > 1. We can repeat the same procedure for
the new (c, d)-pattern and after finitely many steps we must get a pattern
A with splitting determining sequences.

Lemma 5.7. A (2k, r)-pattern with r > 1 and a splitting (2k, r)-deter-
mining sequence forces a (2k, q)-pattern for any q ∈ Q such that r ≥ q ≥ 1.

P r o o f. This follows easily from Theorem 2.10 and Lemma 5.4.
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Lemma 5.8. A (2k, r)-pattern with r > 1 and a splitting (2k, r)-deter-
mining sequence forces a (2k+1, q)-pattern for any 1 ≤ q ∈ Q.

P r o o f. This follows easily from Lemmas 5.5 and 5.4.

Now we are quite ready to prove two parts of Theorem 5.1.

Lemma 5.9. An (a, b)-pattern forces a (c, d)-pattern for any (c, d) ∈
X (a, b).

P r o o f. Lemma 5.6 shows that an (a, b)-pattern A forces an (a∗, b∗)-
pattern B with splitting (a∗, b∗)-determining sequence for some (a∗, b∗) ≥
(a, b). If b∗ > 1 then using Lemmas 5.7 and 5.8 inductively we see that B
forces a (c, d)-pattern for any (c, d) ≤ (a∗, b∗) such that c ≥ a∗.

Now if (c, d) ≤ (a∗, b∗) and c < a∗ then d = 1. But from the definition
it is clear that an (a∗, b∗)-pattern is a (c, 1)-pattern for any (c, 1) ≤ (a∗, b∗)
such that c < a∗.

So B forces a (c, d)-pattern for each (c, d) ∈ X (a∗, b∗). But A forces
B and (a∗, b∗) ≥ (a, b). Hence we are done because the forcing relation is
transitive.

Lemma 5.10. A
(
2k, mn

)
-pattern with m/n > 1 (m,n coprime) forces a

(
2k, m

n

)
-pattern with period 2k(m + n). A (2k, 1)-pattern forces a (2k, 1)-

pattern with period 2k.

P r o o f. Using Lemmas 5.6 and 5.5 as in the proof of Lemma 5.9 we see
that a

(
2k, mn

)
-pattern forces a

(
2k, mn

)
-pattern A with a splitting

(
2k, mn

)
-

determining sequence. Let (P 0
1 , ϕ) be a representative of A and 〈P j1 〉

k
j=0 be

the splitting
(
2k, mn

)
-determining sequence. So [P k1 ] is an m

n -pattern. Using
Theorems 4.5 and 3.7 together with Lemma 3.4 we deduce that [P k1 ] forces
an m

n -pattern with period m+n or period 1 if m/n = 1. Finally, repeatedly
applying Lemma 5.4 we are done.

So we have only two parts of Theorem 5.1 left to prove. As you may
already have guessed, knowledge of X-minimal (a, b)-patterns will be very
useful for proving them. So first

Definition. An (a, b)-pattern which does not force any other (a, b)-
pattern will be called an X-minimal (a, b)-pattern.

We will try to prove that some patterns are X-minimal (a, b)-patterns.
For this we need to define a special type of block structure.

Let (P,ϕ) be a cycle and A,B be patterns. We say that (P,ϕ) is an
A-extension of B if P has a block structure over B, ϕ is monotone on each
block of P except at most one and, with the notation from the definition
of block structure, (Pi, ϕ

m) has pattern A for some i ∈ {1, . . . ,m} (in fact,
this does not depend on i). As above, if P is an A-extension of B and (Q,ψ)
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is a cycle with pattern B, then we say that P is an A-extension of (Q,ψ).
We also say that [P ] is an A-extension of B (respectively of Q) if P is an
A-extension of B (respectively of Q).

We define two special types of A-extension. An A-extension where
per(A)
= 2 will be called a 2-extension. An A-extension where A is an X-minimal
r-pattern will be called an r-extension.

A cycle will be called simple if it can be obtained from a cycle of period
1 by making 2-extensions k times and then one r-extension for some k ∈ N

and r ∈ Q. A pattern of a simple cycle will be called a simple pattern.
Note that a simple pattern obtained from a cycle of period 1 by mak-

ing 2-extensions k times and then one r-extension will be a (2k, r)-pattern.
Moreover, if A is a simple (2k, r)-pattern and B is a simple pattern of period
2s then an A-extension of B will be a simple (2k+s, r)-pattern (see Fig. 13).

Fig. 13. An example of a simple (4, 31 )-cycle P and the function fP

Lemma 5.11 (Proposition 2.10.6 of [ALM]). Let A,B,C,D be patterns

such that C is an A-extension of B and C forces D. Then either B forces
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D or D is an A∗-extension of B for some pattern A∗ forced by A. If C 6= D
then in the last case A∗ 6= A.

Lemma 5.12 (Lemma 2.11.4 of [ALM]). Let C,B,D be patterns such

that C is a 2-extension of B and C forces D. Then either C = D or B
forces D.

The next lemma is only a slight modification of Lemma 2.11.5 of [ALM].

Lemma 5.13. Let C be a simple pattern of period 2k, k ≥ 0. If C forces

a pattern D where D 6= C then D is a simple pattern of period 2i, i < k.

P r o o f. We use induction. For k = 0 this is obvious. Assume that we
know it for simple patterns of period 2k−1. If C is a simple pattern of period
2k, then C is a 2-extension of a simple pattern of period 2k−1. If C forces
D then we are done by Lemma 5.12 and the induction hypothesis.

Theorem 5.14. A simple pattern is X-minimal.

P r o o f. Let C be a simple (2k, r)-pattern. Then there is an X-minimal
r-pattern A and a simple pattern B of a period 2k such that C is an A-
extension of B. If r = 1 then we are done by Lemma 5.13. Assume now
that r > 1 and D is a (2k, r)-pattern such that C forces D. Then by Lemmas
5.11 and 5.13, D is an A∗-extension of B where A forces A∗. But E(A∗) = r
because D is a (2k, r)-pattern. Finally, A = A∗ since A is an X-minimal
r-pattern, and D = C from Lemma 5.11.

Now we are ready to prove the remaining two parts of Theorem 5.1.

Lemma 5.15. Let (a, b) ∈ X (1,∞) and P be a representative of a simple

(a, b)-pattern. The function fP exhibits some (c, d)-pattern if and only if

(c, d) ∈ X (a, b).

P r o o f. Lemmas 1.1 and 5.9 show that fP exhibits a (c, d)-pattern for
any (c, d) ∈ X (a, b). Moreover, exactly as in the proof of Theorem 5.14 we
can prove that fP does not exhibit a (c, d)-pattern if (c, d) 6∈ X (a, b) (see
also Lemma 5.18).

Lemma 5.16. For any (a, b) ∈ X there is a function f ∈ C(I, I) such

that f exhibits some (c, d)-pattern if and only if (c, d) ∈ X0(a, b).

P r o o f. Clearly there is a sequence 〈Ai〉
∞
i=1 of patterns such that Ai

is a simple (ai, bi)-pattern, (a, b) > (ai+1, bi+1) > (ai, bi) and (a, b) =
sup{(ai, bi) : i ≥ 1}.

Let Pi be a representative of Ai such that conv(Pi) = [xi, yi] ⊂ (0, 1)
and yi < xi+1 for all i ∈ N.

Define a function f ∈ C(I, I) where I = [0, 1] as follows. Let f(0) = 0,
f(1) = 1, f |[xi,yi] = fPi

for i ≥ 1 and f |J be linear for any interval J ⊂ I
such that J ∩ [xi, yi] = ∅ for each i ≥ 1 (see Fig. 14).



X-minimal patterns and Sharkovskĭı’s theorem 63

Fig. 14. The graph of a function f . Inside the filled squares are the functions fPi
.

It is easy to see that outside the intervals [xi, yi] the function f has
only fixed points. Hence if f has a (c, d)-cycle P then there is i ≥ 1 such
that P ⊂ [xi, yi]. So fPi

exhibits [P ] and from Lemma 5.15 we have (c, d) ∈
X (ai, bi) ⊂ X0(a, b). Moreover, for any (c, d) ∈ X0(a, b) there is an i ≥ 1 such
that (a, b) > (ai, bi) ≥ (c, d). By Lemma 5.15, fPi

exhibits a (c, d)-pattern
and therefore so does f .

Finally, it suffices to realize

Claim 5.17. If (a, b) ∈ X \ X (1,∞) then X (a, b) = X0(a, b).

Now let us study X-minimal (a, b)-patterns more closely. The first natu-
ral question is to characterize all X-minimal (a, b)-patterns. Unfortunately,
it is not true, as one might expect, that the only X-minimal patterns are
the simple ones (this idea seems to be natural for someone who knows the
characterization of “primary” patterns—see [ALM]) (see Fig. 15).

We can still get some more information about X-minimal (a, b)-patterns.
A first question is: what types of patterns does an X-minimal (a, b)-pattern
force? Can an X-minimal (a, b)-pattern which is not simple force a (c, d)-
pattern for (c, d) 6∈ X (a, b)?

Lemma 5.18. An X-minimal (a, b)-pattern forces a (c, d)-pattern if and

only if (c, d) ∈ X (a, b).

P r o o f. The “if” part follows from Lemma 5.9. Assume that an X-
minimal (a, b)-pattern A forces a (c, d)-pattern for some (c, d) > (a, b).
Clearly A has only a finite set of types (fewer than per(A)) and X (c, d) \
X (a, b) has infinitely many elements. Using this fact, Lemma 5.9 and the
fact that the forcing relation is transitive we see that A forces an (e, f)-
pattern B such that (e, f) > (a, b) and A 6= B. Lemma 5.9 shows that B



64 J. Bobok and M. Kuchta

A cycle P

The function fP and an important part of the function f
2
P (dotted)

Fig. 15. An example of an X-minimal (2, 31 )-pattern which is not simple

forces an (a, b)-pattern C. So A forces C and because the forcing relation is
antisymmetric we have A 6= C—a contradiction.

Lemma 5.19. An X-minimal (2k, r)-pattern has a block structure over a

simple (2k, 1)-pattern.

P r o o f. It suffices to realize that if a (2k, r)-pattern does not have a block
structure over a simple (2k, 1)-pattern then either it has a type (2n, s) for
n< k and s> 1 or there is a (2k, q)-determining sequence that is not splitting
(note that q does not have to be equal to r). Because we have an X-minimal
(2k, r)-pattern, Lemma 5.18 shows that the first case is not possible. In the
second case, by Lemma 5.6, our pattern forces an (a, b)-pattern for some
(a, b)> (2k, r)—again a contradiction with Lemma 5.18.

Lemma 5.20. An X-minimal (2k, mn )-pattern (m,n coprime) has period

2k(m+ n) if m > n and period 2k if m = n.

P r o o f. This follows immediately from Lemma 5.10.

So we immediately have the following simple
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Corollary 5.21. An X-minimal (2k, 1)-pattern is a simple (2k, 1)-
pattern.

P r o o f. This is straightforward from Lemmas 5.19 and 5.20.

Now let A be an X-minimal (2k, r)-pattern and (P,ϕ) be a representative
of A. By Lemma 5.19, P consists of 2k blocks Pi. Lemmas 2.1, 5.4 and 5.18

show that (Pi, ϕ
2k

) is a unicycle and E(Pi) ≤ r. Clearly, the pattern [Pi]
need not force a pattern with eccentricity greater than r. So if E(Pi) = r
then [Pi] is an X-minimal r-pattern (see Lemma 3.5).

Now assume that A is an X-minimal
(
2k, n+1

n

)
-pattern. Lemma 5.20

shows that the cycle (Pi, ϕ
2k

) has period 2n + 1. But the minimal possible
eccentricity of a pattern with this period is n+1

n . Hence in this case for

every i the pattern [(Pi, ϕ
2k

)] must be an X-minimal n+1
n -pattern. But

there is only one X-minimal n+1
n -pattern and that is exactly the pattern of

the Štefan cycle of period 2n+ 1.
In this special case we can prove even more. We need the following

Lemma 5.22 ([B], Theorem 2.11.1 of [ALM]). Let A be a pattern with

per(A) = 2k(2n + 1) and B be the pattern of the Štefan cycle of period

2n + 1. If A is not a B-extension of a simple (2k, 1)-pattern then A forces

another pattern with period 2k(2n+ 1).

Now we can prove

Lemma 5.23. An X-minimal (2k, n+1
n

)-pattern is simple.

P r o o f. By Lemma 5.20, an X-minimal (2k, n+1
n )-pattern A has period

2k(2n+ 1). If it is not simple then by Lemma 5.22 it forces another pattern
B with the same period. It is easy to see that if (a, b) is a maximal (in
the sense of ordering on X ) type of the pattern B then (a, b) ≥ (2k, n+1

n ).
Hence by Lemma 5.9, B forces a (2k, n+1

n )-pattern. SoA is not an X-minimal
(
2k, n+1

n

)
-pattern—a contradiction.

We end this section and the whole paper by a conjecture.

Conjecture. If A is an X-minimal (2k, r)-pattern and (P,ϕ) is a rep-

resentative of A such that (Pi, ϕ
2k

) is an r-cycle for every block Pi then A
is simple.
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[ALS] L. Alsed à, J. L l ibre and R. Serra, Mimimal periodic orbits for continuous
maps of the interval , Trans. Amer. Math. Soc. 286 (1984), 595–627.

[B] S. Baldwin, Generalizations of a theorem of Sharkovskii on orbits of contin-
uous real-valued functions, Discrete Math. 67 (1987), 111–127.

[B1] L. Block, Simple periodic orbits of mappings of the interval , Trans. Amer.
Math. Soc. 254 (1979), 391–398.

[B2] —, Periodic orbits of continuous mappings of the circle, ibid. 260 (1980),
553–562.

[BGMY] L. Block, J. Guckenheimer, M. Mis iurewicz and L. S. Young, Periodic
points and topological entropy of one dimensional maps, in: Global Theory
of Dynamical Systems, Lecture Notes in Math. 819, Springer, Berlin, 1980,
18–34.

[Bl] A. Blokh, Rotation numbers, twists and a Sharkovskii–Misiurewicz-type order-
ing for patterns on the interval , Ergodic Theory Dynam. Systems 15 (1995),
1331–1337.

[BM] A. Blokh and M. Mis iurewicz, Entropy of twist interval maps, MSRI Pre-
print No. 041-94, Math. Sci. Res. Inst., Berkeley, 1994.

[BK] J. Bobok and M. Kuchta, Invariant measures for maps of the interval that
do not have points of some period , Ergodic Theory Dynam. Systems 14 (1994),
9–21.
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