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Dominating analytic families

by

Anastasis K a m b u r e l i s (Wrocław)

Abstract. Let A be an analytic family of sequences of sets of integers. We show that
either A is dominated or it contains a continuum of almost disjoint sequences. From this
we obtain a theorem by Shelah that a Suslin c.c.c. forcing adds a Cohen real if it adds an
unbounded real.

1. Introduction. Let Bor be the σ-field of Borel subsets of the real line.
Define the Random algebra R as the factor algebra of Bor modulo the ideal
of Lebesgue measure zero sets. Define also the Cohen algebra C as the factor
algebra of Bor modulo the ideal of meagre (first category) sets. Both R and
C satisfy the countable chain condition (c.c.c.).

The Cohen algebra has a simple combinatorial description: it is the
unique atomless complete Boolean algebra with a countable dense subset.

A natural problem is to characterize similarly the Random algebra. This
problem is not yet solved in a satisfactory way (cf. [F]). In addition to
satisfying c.c.c., the Random algebra is weakly distributive. This means, in
forcing terms, that every sequence of integers from the generic extension is
bounded (eventually dominated) by a sequence from the ground model. On
the other hand, the Cohen algebra is not weakly distributive; so it adds an
unbounded sequence in the generic extension.

As considered by Shelah ([Sh]), instead of a characterization one may
ask whether a given complete Boolean algebra B contains R or C as a reg-
ular subalgebra. Here regularity means that all maximal antichains in the
subalgebra remain maximal in B.

It would be nice to have the following dichotomy for atomless c.c.c.
complete Boolean algebras B adding reals:
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74 A. Kamburelis

(A) if B is weakly distributive then R < B;
(B) if B is not weakly distributive then C < B.

Unfortunately, there are models where (A) and (B) are false. For exam-
ple, using � Jensen (see [J], p. 570) constructed an algebra which turns out
to be a counterexample to (A). On the other hand, the Mathias forcing with
the Ramsey ultrafilter is a counterexample to (B).

However, it is still unknown whether such counterexamples can be found
in ZFC alone; or else: is the above dichotomy consistent with ZFC?

Shelah ([Sh]) asked what happens if B has a “simple” description. He
proved that (B) is true when the Boolean algebra B is additionally analytic
(Suslin).

The purpose of this paper is to present a proposition about analytic
subsets of the space P(ω)ω (sequences of subsets of integers). Such a subset
either is dominated (in a certain sense) or contains a range of a continuum
of almost disjoint sequences. From this proposition we obtain an alternative
proof of Shelah’s theorem.

I thank Janusz Pawlikowski for many helpful comments. Also, I would
like to thank very much the referee for many valuable suggestions and for
several corrections.

2. Notation and some definitions. We will use the standard termi-
nology and notation (see e.g. [J]). Let us recall some of the less common
abbreviations.

Sets. ω is the set of natural numbers and ω1 is the first uncountable
cardinal. [ω]<ω and [ω]ω are the sets of all finite and resp. infinite subsets
of ω.

Topology . A subset of a topological space is nowhere dense if its closure
has empty interior. It is meagre (or first category) if it can be written as a
countable union of nowhere dense sets. Finally, X has the Baire property if
the symmetric difference X 4G is meagre for some open set G.
{0, 1}ω is the Cantor space and ωω is the Baire space. If s is a finite

sequence of integers then |s| is the length of s. If n < ω then s_n is the
sequence of length |s| + 1 extending s, with last term n. A typical basic
open set in the Cantor (Baire) space is defined by [s] = {x : s ⊂ x}. We also
consider the space P(ω)ω of all sequences of subsets of ω with the product
topology, where P(ω) is identified with {0, 1}ω. Recall that a set (a subset
of some Polish space) is analytic (Σ1

1) if it is a continuous image of ωω. For
more on the projective hierarchy, see e.g. [K].

Forcing. A forcing is a partially ordered set (P,≤). Elements p, q ∈ P
are compatible if there is r ∈ P such that r ≤ p and r ≤ q; otherwise p, q
are incompatible and we write p ⊥ q in this case. RO(P ) is the canonical
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complete Boolean algebra associated with P . The Boolean value of a formula
ϕ is denoted by [[ϕ]]. We write p ‖− ϕ (p forces ϕ) iff p ≤ [[ϕ]] ; and ‖− ϕ
means that [[ϕ]] = 1.

3. Ellentuck topology. For s,A ⊆ ω write s < A if ∀m ∈ s ∀n ∈ A
m < n. Put

(s,A) = {u ∈ [ω]ω : s ⊆ u ⊆ s ∪A}.
The Ellentuck topology (ET for short) on [ω]ω is the topology with neigh-
bourhood system consisting of sets of the form (s,A), where s ∈ [ω]<ω,
A ∈ [ω]ω and s < A.

It is easy to check that (s,A) ⊆ (t, B) iff s ⊇ t, A ⊆ B and s− t ⊆ B. In
forcing, this is the definition of the Mathias ordering (cf. [B]). It is known
that ET is richer than the usual topology on [ω]ω (inherited from the Cantor
space). A set X ⊆ [ω]ω is called completely Ramsey if for every (s,A) there
is B ∈ [A]ω such that either (s,B) ⊆ X or (s,B)∩X = ∅ (we then say that
(s,B) decides X). The main result about ET ([GP], [E]) is that completely
Ramsey sets are precisely sets with the Baire property in ET. Another in-
teresting property is that in ET every meagre set is nowhere dense. The
following consequence of this will be used in the proof of Lemma 4.2: if {Dn}
is a sequence of sets with the Baire property in ET and (s,A) ⊆ ⋃nDn then
there is (t, B) ⊆ (s,A) such that (t, B) ⊆ Dn for some n.

Notice also the following: if {(tn, Bn)} is a decreasing sequence of neigh-
bourhoods and |tn| → ∞ then

⋂
n(tn, Bn) = {u} where u =

⋃
n tn. Finally,

we shall use Silver’s Theorem ([S]):

Every analytic (Σ1
1) subset of [ω]ω is completely Ramsey.

4. Main lemma. Let us agree that max ∅ = 0.

Lemma 4.1. Let {Dn} be a sequence of subsets of [ω]ω with the Baire
property in ET. For every (s,A) there is B ⊆ A such that for every finite
t ⊆ B, if m = max(s ∪ t) then (s ∪ t, B − (m+ 1)) decides Dm.

P r o o f. This is a standard argument (comp. [B]). Inductively construct
a sequence b0 < b1 < b2 < . . . of elements of A and a sequence B0 ⊇ B1 ⊇
B2 ⊇ . . . of subsets of A such that bn < Bn+1. Let B0 = A. Given Bn let
t1, . . . , tk enumerate all subsets of {bi : i < n}. Now construct Bn0 ⊇ Bn1 ⊇
. . . ⊇ Bnk as follows. Let Bn0 = Bn. Given Bni−1 find Bni ⊆ Bni−1 such that
(s ∪ ti, Bni ) decides Dm where m = max(s ∪ ti). Finally, let bn = minBnk
and Bn+1 = Bnk − {bn}. Let B = {bn : n < ω}. If now t ⊆ B is finite and
m = max(s ∪ t), let n be minimal such that t ⊆ {bi : i < n}. Then t = ti
for some i at induction step n. It follows that (s ∪ t, Bnk ) decides Dm. But
(s ∪ t, B − (m+ 1)) ⊆ (s ∪ t, Bnk ).
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Lemma 4.2. Let {Dn} be a sequence of subsets of [ω]ω with the Baire
property in ET such that n ∈ ⋂Dn and [ω]ω =

⋂
m

⋃
n>mDn. For every

(s,A) there is (t, B) ⊆ (s,A) such that (t, B) ⊆ Dmax t.

P r o o f. Let (s,A) be arbitrary. First, using Lemma 4.1 find C ⊆ A such
that (s∪t, C−(m+1)) decides Dm if t ⊆ C is finite and m = max(s∪t). We
have (s, C) ⊆ ⋃n>max(s)Dn so let (r,D) ⊆ (s, C)∩Dn for some n > max(s).
Then r∪D ∈ Dn, hence n ∈ r∪D. By enlarging r if necessary, we can assume
that actually n ∈ r. Now r = s ∪ a ∪ {n} ∪ b where s < a < {n} < b. Put
t = s ∪ a ∪ {n} and B = C − (n + 1). Then (t, B) ⊆ (s,A) and (t, B)
decides Dn. But also (t, B)∩Dn 6= ∅ because r ∪D ∈ (t, B). It follows that
(t, B) ⊆ Dn as required.

Definition 4.1. Let F be a family consisting of basic open sets in ET.
Let us say that

• F is dense if for every (s,A) there is (t, B) ⊆(s,A) such that (t, B) ∈F ;
• F is semi-open if for all (t, B) ∈ F and C ⊆ B we have (t, C) ∈ F .

Notice that F = {(t, B) : (t, B) ⊆ Dmax t} is dense and semi-open, for
{Dn} as in Lemma 4.2. The next lemma is the main result of this section.
Shelah’s original argument uses ramified Mathias forcing over elementary
submodel.

Lemma 4.3. Let {Fm} be a sequence of dense and semi-open families.
There exists a sequence {(ts, Bs) : s ∈ ⋃n<ω{0, 1}n} such that

1. |ts_ε| > |ts| for every s and ε = 0, 1;
2. r ⊆ s implies (ts, Bs) ⊆ (tr, Br);
3. (ts, Bs) ∈ F|s|;
4. let Sx =

⋃
s⊂x[max ts,minBs) for x ∈ {0, 1}ω; then for x 6= y we have

Sx ∪ Sy =∗ ω, i.e., the family {ω − Sx : x ∈ {0, 1}ω} is almost disjoint.

P r o o f. We define ts, Bs together with Cs ∈ [ω]ω by induction on |s|.
Let (t∅, C∅) ∈ F0 be arbitrary. Assume that (ts, Cs) ∈ Fm have been defined
for all s ∈ {0, 1}m. Following the lexicographic ordering of {0, 1}m, for each
s ∈ {0, 1}m do the following. First choose n ∈ Cs greater than max tr for all
tr defined so far , and let Bs = Cs − n. Then (ts, Bs) ∈ Fm because Fm is
semi-open. Next, using density, pick from Fm+1 any two sets (ts_ε, Cs_ε) ⊆
(ts, Bs) such that |ts_ε| > |ts| for ε = 0, 1. This completes the inductive
definition.

Conditions 1–3 are obviously satisfied. If now x, y ∈ {0, 1}ω and x 6= y
let N be such that x|N = y|N and (say) x(N) < y(N). Then for all n > N
the sets Bx|n were defined before By|n. So minBy|n > max tx|n_ε and hence
minBy|n > max tx|n+1. Also, max ty|n < minBx|n because ty|n was defined
at a previous stage. Finally, minBx|n < max tx|n+1 because ∅ 6= tx|n+1 −
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tx|n ⊆ Bx|n. From those inequalities we see that [minBx|n,max tx|n+1) ⊆
[max ty|n,minBy|n) for all n > N . Thus, for n > N the intervals in Sx and
Sy overlap and so Sx ∪ Sy =∗ ω.

5. Dominating infinite sets

Definition 5.1. For an infinite set B ⊆ ω, let eB ∈ ωω be the canonical
enumeration of B. Thus eB(0) = minB and n ≤ eB(n). For A ⊆ ω and
B ∈ [ω]ω we shall write A � B (B dominates A) if

∃m ∀n > m A ∩ [eB(n), eB(n+ 1)) 6= ∅.
Of course A � B implies that A is infinite. Note that A � B and

C ∈ [B]ω implies A � C. Also, given arbitrary A,C ∈ [ω]ω there is B ∈ [C]ω

dominating A. Notice that � may not be transitive, but if A � B � C and
D = {eC(2n) : n < ω} then A � D. We also say that B dominates a family
A ⊆ [ω]ω if B dominates every A ∈ A.

For two functions f, g ∈ ωω write f � g (g dominates f ) if

∃m ∀n > m f(n) ≤ g(n).

We say that g dominates a family F ⊆ ωω if g dominates every f ∈ F .
The bounding number b is the cardinal

b = min{|F| : F ⊆ ωω and no g dominates F}.
It turns out that the similar number for [ω]ω equals b.

Lemma 5.1. min{|A| : A ⊆ [ω]ω and no B dominates A} = b.

P r o o f. Let A ⊆ [ω]ω and |A| < b. We shall find B ∈ [ω]ω dominating A.
Let g ∈ ωω be strictly increasing and such that eA � g for every A ∈ A. Let
b0 = 0 and bn+1 = g(bn)+1. For A ∈ A we have ∀∞ n bn ≤ eA(bn) ≤ g(bn) <
bn+1. It follows that B = {bn : n < ω} dominates A. Conversely, let F ⊆ ωω
be a family consisting of strictly increasing functions and suppose that there
exists B ∈ [ω]ω with ran(f) � B for every f ∈ F . We shall find g dominating
F . Fix f ∈ F and choose N such that ran(f) ∩ [eB(n), eB(n + 1)) 6= ∅ for
every n ≥ N . Let M be such that f(M) ∈ [eB(N), eB(N + 1)). Then
f(n) < f(M+n) < eB(N+n+1) for every n. This shows that some shift of
enumeration of B dominates f . Let gN (n) = eB(N + n+ 1) and let g ∈ ωω
dominate every gN . Then g dominates F .

6. Main result. The following is the main result of this paper. Recall
that P(ω)ω is the product space, where P(ω) is identified with the Cantor
space.
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Proposition 6.1. Let A ⊆ P(ω)ω be analytic (Σ1
1). Then either

(∗) ∃u ∈ [ω]ω ∀A ∈ A ∃N > 0
⋃
i<N A(i) � u; or

(∗∗) there is f : {0, 1}ω → A such that for all x, y ∈ {0, 1}ω and N > 0,
if x 6= y then the set ⋃

i<N

f(x)(i) ∩
⋃

i<N

f(y)(i)

is finite.

Before we begin the proof let us make two comments. (1) In (∗) the last
condition implies that

⋃
i<N A(i) is infinite. But if for some A ∈ A every⋃

i<N A(i) is finite then (∗∗) holds trivially. (2) In (∗∗) we cannot replace
N by ω. To see this consider the Borel family {AB : B ∈ [ω]ω}, where
AB(i) = B ∪ i.

P r o o f (of 6.1). Assume that (∗) is false. We shall find a function f
satisfying (∗∗). Consider the set

E =
{
〈u,A〉 ∈ [ω]ω × P(ω)ω : ∀N > 0 ¬

( ⋃

i<N

A(i) � u
)}
.

Easy computation shows that E is a Borel set. Hence, the set E∩ ([ω]ω×A)
is Σ1

1. By our assumption, for every u ∈ [ω]ω the set {A ∈ A : 〈u,A〉 ∈ E}
is nonempty. From the Jankov–von Neumann Uniformization Theorem (see
[K]) there exists a σ(Σ1

1)-measurable function ϕ : [ω]ω → A such that

∀u∀N > 0 ¬
( ⋃

i<N

ϕ(u)(i) � u
)
.

For N,n > 0 let

DN
n =

{
u : n ∈ u and

⋃

i<N

ϕ(u)(i) ∩ [n, n+) = ∅
}
.

Here n+ depends on u and denotes the least element of u greater than n.
Again, an easy computation shows that DN

n is in σ(Σ1
1), and therefore, by

Silver’s Theorem, DN
n has the Baire property in ET. Note that

X 6� u iff ∀m ∃n > m (n ∈ u and X ∩ [n, n+) = ∅).
So we have

⋂
m

⋃
n>mD

N
n = [ω]ω for all N . Let

FN = {(t, B) : (t, B) ⊆ DN
max t}.

Then each FN is dense and semi-open (comp. Definition 4.1 and Lemma 4.2).
Let {(ts, Bs) : s ∈ ⋃n<ω{0, 1}n} be a sequence from Lemma 4.3. In

particular, we have (ts, Bs) ⊆ D|s|max ts . This implies that

(ts, Bs) ⊆
{
u :

⋃

i<|s|
ϕ(u)(i) ∩ [max ts,minBs) = ∅

}
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because (max ts)+ ≥ minBs for u ∈ (ts, Bs). For x ∈ {0, 1}ω let ux =⋃
n tx|n. Then ux ∈

⋂
n(tx|n, Bx|n). Put f(x) = ϕ(ux). We claim that f is

the required function for (∗∗). Let x 6= y and N > 0. Then for n > N we
have ⋃

i<N

f(x)(i) ∩ [max tx|n,minBx|n) = ∅,

and similarly for y. Recalling the definition of Sx from Lemma 4.3, we have
⋃

i<N

f(x)(i) ∩ Sx =∗ ∅ and
⋃

i<N

f(y)(i) ∩ Sy =∗ ∅.

Hence the set ⋃

i<N

f(x)(i) ∩
⋃

i<N

f(y)(i)

is finite. This completes the proof.

Corollary 6.2. The conclusion of Proposition 6.1 holds if A is Σ1
2 and

b > ω1.

P r o o f. Every Σ1
2 set is a union of ω1 Borel sets (cf. [J]). So write A =⋃

α<ω1
Aα with Aα Borel. If the application of 6.1 yields (∗∗) for some Aα

we are done. Otherwise, for every α < ω1 there exists uα satisfying (∗) for
Aα. By b > ω1 and Lemma 5.1 we can find U dominating every uα. Put
u = {eU (2n) : n < ω}. It is easy to see that u works in (∗) for A.

7. Suslin orders

Definition 7.1. Shelah calls a partial order (P,≤) a Σ1
n order if

1. P is a Σ1
n subset of R;

2. the set {〈p, q〉 : p ≤ q} is a Σ1
n subset of R× R;

3. the set {〈p, q〉 : p ⊥ q} is a Σ1
n subset of R× R.

A Suslin forcing is a Σ1
1 order. The following simple lemmata are included

for completeness’ sake. Recall that the class Σ1
n is closed under countable

unions and intersections.

Lemma 7.1. Let P be a Σ1
n c.c.c. order and B ∈ RO(P ). Both sets

{p ∈ P : pB > 0} and {p ∈ P : pB = 0} are Σ1
n.

P r o o f. First note the abuse of notation here. There exists a canonical
dense homomorphism h : P → RO(P ) which (in case of nonseparative P )
may not be one-to-one (comp. [J], p. 154). So we should write {p ∈ P :
h(p)B > 0}. Nevertheless, h preserves the incompatibility: p ⊥ q iff h(p) ⊥
h(q) and this is all we need. For the proof write B =

∑
n pn where {pn} ⊆ P .
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This is possible from c.c.c. Now

p ∈ P ∧ pB > 0↔ p ∈ P ∧ ∃n ∃r (r ≤ p ∧ r ≤ pn)

p ∈ P ∧ pB = 0↔ p ∈ P ∧ ∀n p ⊥ pn
are both Σ1

n.

Lemma 7.2. Let P be a Σ1
n c.c.c. order and let {Bn,k : n, k < ω} ⊆

RO(P ). For p ∈ P let Ap(n) = {k : pBn,k > 0}. Then the family A = {Ap :
p ∈ P} is a Σ1

n subset of P(ω)ω.

P r o o f. For n, k consider the set

Wn,k = {〈A, p〉 : A ∈ P(ω)ω ∧ p ∈ P ∧ (k ∈ A(n)↔ pBn,k > 0)}.
Rewriting the equivalence a↔ b as (¬a∨ b)∧ (a∨¬b) and using Lemma 7.1
we obtain a Σ1

n definition of Wn,k. Now A is the projection of the set⋂
n

⋂
kWn,k into P(ω)ω.

8. Adding Cohen reals. Shelah’s Theorem

Definition. Let us say that a forcing P adds a Cohen real if there exists
a P -name c such that ‖− c ∈ {0, 1}ω, and for every open dense subset G
of {0, 1}ω we have ‖− c ∈ G∗. Here G∗ denotes the encoding of G in the
Boolean universe (cf. [J]). We say that c is a (name for a) Cohen real .

By a standard argument, if P adds a Cohen real and B = RO(P ) then
for some a > 0 from B, the reduced Boolean algebra B|a contains C as a
regular subalgebra. Shelah found the following condition

⊗
on P , which

implies that P adds a Cohen real.

Definition. Let f be a P -name such that ‖− f ∈ ωω. For p ∈ P and
s ∈ ⋃n ωn let

C(p, s) = {k < ω : p[[s_k ⊆ f ]] > 0}.
Consider the Shelah condition

⊗
:

∃u ∈ [ω]ω ∀p ∈ P ∃ finite F ⊆
⋃
n<ω

ωn

∀m ∃n ∀i < m
⋃

s∈F
C(p, s) ∩ [eu(n+ i), eu(n+ i+ 1)) 6= ∅.

Remark. The last line says that
⋃
s∈F C(p, s) intersects an arbitrarily

large number of consecutive intervals defined by u. Note that this last fact
is obviously true if u dominates

⋃
s∈F C(p, s).

Lemma 8.1 (Shelah). If P satisfies
⊗

then P adds a Cohen real.
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P r o o f. Let f and u be given from
⊗

. Without loss of generality 0 ∈ u.
For k < ω let %(k) be the binary expansion (1) of the unique n such that
k ∈ [eu(n), eu(n+ 1)). In the Boolean universe define a P -name c as follows:

c = %(f(0))_%(f(1))_ . . .

We claim that c is a Cohen real. Let G be dense open and let p ∈ P . Then
there is a finite F ⊆ ⋃n ωn from

⊗
. For s ∈ F let ts be the concatenation

of all %(s(i)) for i < |s|. By density of G there is a single t such that

[ts_t] ⊆ G for every s ∈ F.
Now fix m > 2|t| and find n from

⊗
. There must be some i < m such that

the binary expansion of the number n+i extends t. By
⊗

there exists s ∈ F
and k such that p[[s_k ⊆ f ]] > 0 and %(k) ⊇ t. Let q ≤ p[[s_k ⊆ f ]]. Then
q ‖− c ⊇ ts_%(k) ⊇ ts_t. Thus q ‖− c ∈ G∗ as required.

Definition. Let us say that P adds an unbounded real if there exists
a P -name f such that ‖− f ∈ ωω, and for every g ∈ ωω (from the ground
model) we have ‖− ¬(f � g). We say that f is a name for an unbounded
real .

Lemma 8.2. Let f be a P-name for an unbounded real. For p ∈ P consider
the following tree:

Tp =
{
s ∈

⋃
n<ω

ωn : p[[s ⊆ f ]] > 0
}
.

Then Tp is a Miller tree, i.e., for every t ∈ Tp there is s ⊇ t such that
{k : s_k ∈ Tp} is infinite.

P r o o f. Easy. Otherwise some q ≤ p forces that f is dominated.

Now we can formulate and prove Shelah’s Theorem.

Theorem 8.3 (Shelah). If P is a Suslin c.c.c. forcing and P adds an
unbounded real then P adds a Cohen real.

P r o o f. Let f be a P -name for an unbounded real. It suffices to prove⊗
(with the same f). In fact, we prove the stronger form of

⊗
where

u dominates the unions considered (see the remark after the definition of⊗
). We use Proposition 6.1 where we replace the exponent ω in P(ω)ω by

W =
⋃
n ω

n. For p ∈ P and s ∈W let

Ap(s) = {k < ω : p[[s_k ⊆ f ]] > 0}.
By Lemma 7.2 the family A = {Ap : p ∈ P} is Σ1

1. Now we apply Proposi-
tion 6.1 to A. If (∗) holds we are done. Let us show that assuming (∗∗) we

(1) With the least significant digits first .
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get a contradiction. From (∗∗) we obtain π : {0, 1}ω → P such that for any
distinct x, y ∈ {0, 1}ω and for every s ∈W the set

Aπ(x)(s) ∩Aπ(y)(s)

is finite. To obtain a contradiction we show that {π(x) : x ∈ {0, 1}ω} is an
antichain in P . Fix distinct x, y ∈ {0, 1}ω and assume that p ≤ π(x), π(y).
Then Tp ⊆ Tπ(x) ∩ Tπ(y). Let s be such that {k : s_k ∈ Tp} = H is
infinite. But H ⊆ Aπ(x)(s)∩Aπ(y)(s). Hence the last intersection is infinite.
A contradiction.

Corollary 8.4. If P is a Σ1
2 c.c.c. order , b > ω1 and P adds an

unbounded real then P adds a Cohen real.

P r o o f. The same as the proof of 8.3. The family A is now Σ1
2 but we

can use Corollary 6.2.

There are also some cardinality versions of the above facts. Namely,
consider the following definition suggested by Shelah’s condition

⊗
.

Definition. For infinite A,B ⊆ ω write A �∗ B if

∀m ∃n ∀i < m A ∩ [eB(n+ i), eB(n+ i+ 1)) 6= ∅.
If A ⊆ [ω]ω then write A �∗ B if A �∗ B for every A ∈ A. Finally, let

b∗ = min{|A| : A ⊆ [ω]ω and for no B (A �∗ B)}.
Lemma 8.5. If |P | < b∗ and P adds an unbounded real then P adds a

Cohen real.

P r o o f. Let f be a name for an unbounded real. For every p ∈ P fix
sp such that C(p, sp) is infinite. This is possible by Lemma 8.2. Now let
u ∈ [ω]ω be such that C(p, sp) �∗ u for every p ∈ P . This clearly proves the
condition

⊗
and consequently P adds a Cohen real.

The remark after the definition of
⊗

says now that b ≤ b∗. Let us show
that b∗ may be large independently of b. Let cov(M) be the least cardinal
κ such that the real line can be covered by κ meagre sets.

Lemma 8.6. cov(M) ≤ b∗.

P r o o f. Just note that for a Cohen real C (treated as a subset of ω) we
have A �∗ C for every set A from the ground model.

From this we get the following corollary which simplifies the proof from
[RS].

Corollary 8.7. If |P | < max{b, cov(M)} and P adds an unbounded
real then P adds a Cohen real.
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