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L2-characteristic classes of Maslov–Trofimov
of hamiltonian systems on the Lie algebra

of the upper-triangular matrices

by

Jerzy B. N o w a k (Szczecin)

Abstract. We generalize the construction of Maslov–Trofimov characteristic classes
to the case of some G-manifolds and use it to study certain hamiltonian systems.

1. At present, many examples are known of complete commutative sets
of functions on symplectic manifolds. Hence there appears a natural prob-
lem of their classification. With this purpose many topological invariants of
hamiltonian systems were constructed, integrable in the class of Bott inte-
grals; there exists a classification of isoenergy surfaces of those systems; also
bifurcation of Liouville tori with critical value momentum mapping has been
studied. This allowed A. T. Fomenko to give a new topological invariant of
one-dimensional graphs, in the case of four-dimensional symplectic mani-
folds (see [6]). V. V. Trofimov proposed another approach to constructing
some invariants (see [16, 17]). Every Lagrangian submanifold in a symplectic
space has a natural topological invariant, the so-called Maslov index, and
more generally, the characteristic classes of Maslov–Arnold (see [2, 10]). In
the articles [16, 17] a generalization of this construction has been given for
any symplectic manifold. For some applications concerning the generalized
index see [8, 12]. In this work we define and investigate a certain generalized
index for some class of integrable hamiltonian systems on four-dimensional
manifolds.

2. Let Nn ⊂ M2n denote a Lagrangian submanifold in the symplectic
manifold M2n. We consider on M2n a connection Γ ijk compatible with the
symplectic structure. By C(x0) we denote the set of paths in M2n beginning
and ending at x0 ∈ M2n. Parallel transport along a path γ ∈ C(x0) gen-
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erates a group of linear transformations of Tx0M
2n, the so-called holonomy

group Hx0(M2n) of the given connection. The holonomy group acts natu-
rally on the Grassmann space Λ(Tx0M

2n) of Lagrangian planes. Consider
the reduced Grassmann space of Lagrangian planes

HΛ(Tx0M
2n) = Λ(Tx0M

2n)/Hx0(M2n).

We have a natural mapping

f : Nn → HΛ(Tx0M
2n)

which is generated by parallel transport along paths joining a point x ∈ Nn

to x0 ∈M2n. This mapping induces a map in L2-cohomology

f∗ : L2H
∗(HΛ(Tx0M

2n))→ L2H
∗(Nn).

We fix k ∈ N. If [f∗ω] ∈ L2H
k(Nn) for every [ω]∈L2H

k(HΛ(Tx0M
2n)), and

the value [f∗(ω+ dη)] does not depend on η for η ∈ L2H
k−1(HΛ(Tx0M

2n))
then the map f∗ is well defined. In the noncompact case it happens rather
rarely. Therefore for noncompact manifolds there are strong restrictions on
the spaces involved even if (M, g) is flat, where g is a metric structure.

We give appropriate examples. To control the enormous L2-cohomology
group of a metric space we use harmonic forms (see Definition 2 in Section 3).

The above construction has been done for any cohomology theory by
V. V. Trofimov (see [16–19]). Next, let J be an almost complex structure on
M2n which agrees with the symplectic structure ω (such a J always exists;
see [15]). Then for the metric occurring in the definition of L2-cohomology,
we can take ω(ξ, Jη), and for any a ∈ L2H

∗(HΛ(Tx0M
2n)) we can define

the characteristic class a(Nn) ∈ L2H
∗(Nn) of the Lagrangian submanifold

Nn ⊂M2n.
In [1] A. A. Arkhangel’skĭı has constructed completely integrable hamil-

tonian systems on the orbits (in general position) for the coadjoint represen-
tation of the Lie group of upper-triangular matrices using translation of ar-
gument. In the following we shall use the notation and conventions from [1].
In particular, let O4 denote an orbit in general position for the coadjoint
representation of the Lie group Υ3 of nonsingular 3 × 3 upper-triangular
matrices. Let ẋ = sgradF (x + λa) be the completely integrable hamilto-
nian system on O4 constructed by using the translation of argument by a
covector a = (aij)i≥j to the semi-invariant F (x) = x21x32 − x22x31. (Here
x = (xij)i≥j is a matrix from O ⊂ G∗, where G is a Lie algebra.) The above
system has two first integrals: F (x) and F1(x) = a21x32 + a32x21 − a22x31

(see [1]). Assume that the covector a is in general position. Let N2 denote
a Lagrangian submanifold obtained as the intersection of level surfaces of
those two first integrals. We have the following result for the two-dimensional
characteristic classes.
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Theorem 1. (i) The two-dimensional L2-Maslov–Trofimov classes for
N2 are trivial.

(ii) The oriented two-dimensional L2-Maslov–Trofimov classes for N2

are trivial.

In both cases, oriented and unoriented, one-dimensional classes are not
well definable. The reason is that the form f∗(dφ) (where dφ is the standard
1-form on Λ(R2) ' S1) cannot represent an L2-cohomology class on N2.
For more details see Section 4 (or Section 5).

Remark 1. (a) Note that H = Hx0(Tx0O
4) = 0, so (using the orientabil-

ity of N2) the image of the natural map

f : N2 → Λ(Tx0O
4)

in fact belongs to Λ+
2 = Λ+(Tx0O

4) (the Grassmannian of oriented La-
grangian planes).

(b) It turns out that in many cases the classes defined as above do not re-
flect all the topological and geometrical properties of Lagrangian manifolds.
So we have to modify the definition of the L2-Maslov–Trofimov classes.
In the next section we propose another possible definition generalizing the
above one.

3. Let (M2n, ω) denote a symplectic manifold and let µ denote the asso-
ciated metric defined in terms of the form ω and an almost complex structure
J on M2n (see [15]). Let G = {φs} denote a group of diffeomorphisms of
M2n, preserving both the symplectic and metric structures. If we have a
fixed Liouville foliation on M2n we require that every φs ∈ G preserves it.
Notice that, choosing f as in Section 2, we have the following result:

Lemma. Let (M2n, ω) be a symplectic manifold with symplectic connec-
tion Γ kij ; suppose that Γ kij is the Levi-Civita connection associated with some
metric gij. Consider the Lagrangian submanifold Nn ⊂M2n which is a leaf
of a Liouville foliation. For any family {φs} of diffeomorphisms preserv-
ing the form ω, the metric gij and the given foliation we can define new
characteristic classes of the submanifold Nn/{φs} ⊂ M2n/{φs}. In other
words, for each cohomology class a ∈ H∗(HΛ(Tx0M

2n)) there is a natural
characteristic class a(Nn/{φs}) = f∗(a) ∈ H∗(Nn).

P r o o f. It is plain that the value of the tangent representation Nn 3
x → f(x) ∈ Λ(Tx0M

2n)/H(x0) does not depend on a point y ∈ φ−1
s (x)

for each φs. Parallel transport, defined by the Levi-Civita connection on Nn

induced from the connection Γ ijk onM2n, maps the tangent space TyNn onto
the whole tangent space TxNn. However, the same effect is obtained when
we transport vectors of the tangent plane Ty using the metric connection of
the ambient space. The assertion now follows.
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Definition 1. We assume that G = {φs} is a maximal family of dif-
feomorphisms, preserving µ and ω. The modified L2-Maslov–Trofimov G-
characteristic classes are defined to be the ones (in the sense of papers [18,
19]) of the subspace Nn/G in the riemannian space M2n/G (we have elim-
inated possible singularities which can appear in the factorization process).

Consider again the map

f∗ : L2H
∗(HΛ(Tx0M

2n))→ L2H
∗(Nn).

Denote by Hi the subspace of L2-harmonic i-forms in Hi(HΛ(Tx0M
2n))

for some metric in the reduced Grassmann space. Suppose that f∗(a) ∈
L2H

∗(Nn) for every a in Hi. We can give the following

Definition 2. The modified L2-harmonic Maslov–Trofimov G-chara-
cteristic classes of the Lagrangian space Nn are those among the above
defined which are images of harmonic forms.

Now let (as above) O4 be an orbit in general position for the coadjoint
representation of the group Υ3 and let N2 be a two-dimensional Lagrangian
submanifold. Let {φs : O4 → O4} denote a maximal family of diffeomor-
phisms. Then we have the following

Theorem 2. The one-dimensional modified L2-harmonic Maslov–Trofi-
mov G-characteristic classes of N2 are nontrivial.

Remark 2. (a) In what follows we shall consider only some “natural”
symplectic structures on our orbits; their construction will be described
below. Note that there exists a deep relation between such a symplec-
tic form and some “sectional operators” in the sense of A. T. Fomenko
(see [7]). Such operators have many applications to Hamiltonian mechanics
and symmetric spaces (see [7, 9]).

(b) We can also consider a mapping of the Lagrangian submanifold
Nn into the Grassmann manifold Λk(Tx0M

2n) of isotropic planes for k =
1, . . . , n. In the case k = n we obtain the Grassmann space Λ(Tx0M

2n)
of isotropic planes considered above. Vorob’ev and Karasev (see [12]) have
proved:

Theorem. H1(Λk(Tx0M
2n)) = 0 for k = 1, . . . , n− 1.

This theorem, among other things, is a reason why the author has intro-
dused the modified Maslov–Trofimov classes.

In order to give the proof of Theorems 1 and 2 we first prove the following

Proposition. For O4 as above, there exist global symplectic coordinates
in which

ω = dp1 ∧ dq1 + dp2 ∧ dq2.
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P r o o f. The tangent space TfO(f) of the orbit O(f) containing f at the
point f ∈ <∗ has the following description:

TfO(f) = {ad∗g f : g ∈ <},
where < denotes the Lie algebra Lie(G) of the Lie group G (see [3]). It is
plain that, in the standard basis

e1 =




1 0 0
0 0 0
0 0 0


 , e2 =




0 1 0
0 0 0
0 0 0


 , e3 =




0 0 1
0 0 0
0 0 0
,




e4 =




0 0 0
0 1 0
0 0 0


 , e5 =




0 0 0
0 0 1
0 0 0


 , e6 =




0 0 0
0 0 0
0 0 1




of the Lie algebra T3 = Lie(Υ3), the operator ad∗g acts in the following way:

ad∗g f

=




−g12f21 − g13f31 0 0
(g11 − g22)f21 − g23f31 g12f21 − g23f32 0

(g11 − g33)f31 g12f31 + (g22 − g33)f32 g13f31 + g23f32


 .

If we choose coordinates of the vector g in an appropriate way, we obtain
the following basis of the tangent space TfO(f):

e∗1 = (1, 0, 0, 0, 0, 0), e∗2 = (0, 1, 0, f23/f31, 0,−f23/f31),

e∗3 = (0, f21/f31, 1, 0, 0, 0), e∗4 = (−f21/f31, 0, 0, f21, 1, 0).

It is known (see [3]) that the Kirillov form is

ωX(ξ1, ξ2) = 〈X, [g1, g2]〉,
where ξ1 = ad∗g1

X, ξ2 = ad∗g2
X.

Let ξ1 =
∑4
i=1 λie

∗
i and ξ2 =

∑4
i=1 µie

∗
i . Then

ωX(ξ1, ξ2) = ωX

(∑

i

λie
∗
i ,
∑

j

µje
∗
j

)
,

∑

i,j

ωX(e∗i , e
∗
j ) =

∑

i,j

〈X, [gi, gj ]〉,

where e∗i = ad∗gi X.
We have

g1 =




0 0 −1/x31

0 0 0
0 0 0


 , g2 =




0 0 0
0 0 −1/x31

0 0 0


 ,
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g3 =




1/x31 0 0
0 0 0
0 0 0


 , g4 =




0 1/x31 0
0 0 0
0 0 0


 .

As a result we obtain
ωX(ξ1, ξ2) = (λ1µ3 − λ3µ1)x31 + (λ3µ4 − λ4µ3)x21

+ (1/x31)(λ2µ4 − λ4µ2).

Then ωX(e∗1, e
∗
3) = x31, ωX(e∗3, e

∗
4) = x21, ωX(e∗2, e

∗
4) = 1/x31 and ωX(e∗i , e

∗
j )

= 0 for other pairs (i, j). In the canonical basis of the dual space of the
algebra T3 we have

e∗1 =
∂

∂f11
,

e∗2 =
∂

∂f21
+
f32

f31

∂

∂f22
,

e∗3 =
f21

f31

∂

∂f21
+

∂

∂f31
,

e∗4 = −f21

f31

∂

∂f11
+
f21

f31

∂

∂f22
+

∂

∂f32
.

Now we project the fields e∗1, . . . , e
∗
4 (and denote the projections by the same

symbols) to the plane generated by the fields ∂/∂u1, . . . , ∂/∂u4 parallel to
the vectors ∂/∂f22, ∂/∂f33, where u1 = f11, u2 = f21, u3 = f31, u4 = f32.
Then

e∗1 =
∂

∂u1 , e∗2 =
∂

∂u2 ,

e∗3 =
u2

u3

∂

∂u2 +
∂

∂u3 , e∗4 = −u
2

u3

∂

∂u1 +
∂

∂u4 .

Put ωij = ω(∂/∂ui, ∂/∂uj). Then

ω =
∑

i<j

dui ∧ duj = u3du1 ∧ du3 − u2

(u3)2 du
3 ∧ du4 +

1
u3 du

2 ∧ du4.

It is plain that

ω = du1 ∧ d
(

(u3)2

2

)
+ u2d

(
1
u3

)
∧ du4 +

1
u3 du

2 ∧ du4

= du1 ∧ d
(

(u3)2

2

)
+ d

(
u2

u3

)
∧ du4

= du1 ∧ d
(

(u3)2

2

)
+ d

(
u2

u3

)
∧ du4.

The change of variables

p1 = u1, q1 = (u3)2/2, p2 = u2/u3, q2 = u4
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yields the desired canonical expression for ω. It is plain that the above
change of variables gives the canonical coordinates in the domains u3 > 0
and u3 < 0.

Remark 3. The symplectic form considered in the Proposition is not
invariant; therefore it is not a Kirillov form.

4. Proof of the theorems from Sections 2 and 3. First we study
the preimage of the momentum mapping. Integrating the formula for ad∗g f
from the previous section we obtain the orbit O = O(X) of the coadjoint
action of Υ3. It turns out that this orbit can be described by two equations
in <∗:

x11 + x22 + x33 = c1,
x21x32 − x22x31

x31
= c2.

Now because the momentum mapping is

F = x21x32 − x22x31, F1 = a21x32 + a32x21 − a22x31 − a31x22,

its preimage N2 = {F = k1, F1 = k2} is described as follows:

(2q1)1/2 = k1/c2,

a21q
2 + a32p2(2q1)1/2 − c2a31

k1
p2q

2 = −a31c2 + k2 +
a22k1

c2
.

Put

a = a21, b =
a32k1

c2
, c = −c2a31

k1
,

C =
k1

2

2c22 , D = −a31c2 + k2 +
a22k1

c2
.

Then the surface N2 can be given by the equations

q1 = C, aq2 + bp2 + cp2q
2 = D.

We make an additional change of variables p2 → p2 +a/c, q2 → q2 + b/c.
In these coordinates the equations defining N2 take the very simple form
q1 = C, p2q

2 = A. Notice that p1 is arbitrary.
Since the holonomy group is trivial we have the tangent mapping

f : N2 → Λ(Tx0O
4), sending a point x ∈ Nn to the tangent plane at

x0 ∈ O. It is easy to see that the mapping f can be factorized in the follow-
ing sense. Let us represent N2 as the product R1 ×M1 = {(p1; (p2, q

2)) :
p1 ∈ R, p2q

2 = A}. Each plane tangent to N2 is the product of the fixed
line l0 : dq1 = 0 and the line l : y = − A

p2
2
x tangent to the hyperbola M1.
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Therefore we have the following commutative diagram:

f : N2 Λ(Tx0O)

Λ(Tx0R2)

//

f̃

GGGGGGG##
iuuuuuuu::

where f̃ sends a point to the line l and i(l) = l0×l. Now we have Λ(Tx0R2) '
RP 1 ' S1. Therefore the two-dimensional Maslov–Trofimov classes of N2

are trivial. This concludes the proof of Theorem 1.
Now let us recall the basic notation and definitions concerning L2-coho-

mology. For any p-forms ω1, ω2 on an arbitrary (not necessarily symplectic)
riemannian manifold (Mn, gij) we put

{ω1, ω2} =
∑ 1

p!
gi1j1 . . . gipjpTi1...ipSj1...jp

where
ω1 =

∑

i1<...<ip

Ti1...ipdx
i1 ∧ . . . ∧ dxip ,

ω2 =
∑

j1<...<jp

Sj1...jpdx
j1 ∧ . . . ∧ dxjp .

It is plain that ω1 ∧ ∗ω2 = |g|1/2{ω1, ω2}dx1 ∧ . . . ∧ dxn, where ∗ denotes
the Hodge ∗ operator. We define the L2-norm of a p-form ω as follows:
‖ω‖2 =

T
M
ω ∧ ∗ω. We define the L2-cohomology of M as follows:

L2H
p(M) =

{C∞ ∩ L2 p-forms ω : dω = 0}
{C∞ ∩ L2 (p− 1)-forms η : dη ∈ L2} .

Now consider the (above described) tangent mapping f of the Lagrangian
submanifold N2 to the space RP 1 ' S1. Let dϕ be the standard form on S1;
it is well known that dϕ = d(arctan(y/x)). We have f̃∗(dϕ) = ω̃. On the
other hand,

ω̃ = f̃∗(dϕ) = f̃∗
{
d

(
arctan

y

x

)}
= d

{
arctan

(−A
p2

2

)}
=

2Ap2dp2

A2 + p4
2
.

Now observe that the group of diffeomorphisms preserving the symplectic
structure ω, the metric

µ = d(p1)2 + d(p2)2 + d(p3)2 + d(p4)2,

and the Liouville foliation described above consists of the family of trans-
formations ϕs = (p1 + s, p2, q

1, q2) together with the single transformation
κ(p1, p2, q

1, q2) = (p1,−p2, q
1,−q2). The 1-form ω̃ defined as above can be

considered on N2 and on its quotient P = N2/G as well.
Notice that P can be regarded as a component of the hyperbola M1.
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We now calculate the norms involved in Theorems 1 and 2, and conclude
the proof of Theorem 2. It is plain that the metrics induced on P and N2

are of the form

dS2
P =

(
1 +

A2

p4
2

)
dp2

2 and dS2
N =

(
1 +

A2

p4
2

)
dp2

2 + dp2
1

respectively.
For the L2-norm of the 1-form ω̃ we have

(∗)
‖ω̃‖2P =

\
P

4A2p4
2 dp2

(p4
2 +A2)5/2

=
∞\
0

4A2p4
2 dp2

(p4
2 +A2)5/2

,

‖ω̃‖2N =
\
N2

(
1 +

A2

p4
2

)−1/2( 2Ap2

A2 + p4
2

)2

dp1 ∧ dp2.

Since the last integrand does not depend on p1, the last norm is∞. Compare
the remarks after the formulation of Theorem 1.

Now we transform the first of the expressions (∗). Put p2 = x. The
integral

∞\
0

4A2x4 dx

(x4 +A2)5/2
=
∞\
0

4A2x4 dx

(A2(x4 + 1))5/2

after the change of variables x/|A|1/2 = y takes the form
∞\
0

4A2y4A2|A|1/2 dy
|A|5(y4 + 1)5/2

=
∞\
0

4y4dy

|A|1/2(y4 + 1)5/2

=
4

|A|1/2
∞\
0

x4 dx

(x4 + 1)5/2
.

Now, using integration by parts, we obtain

4
|A|1/2

∞\
0

x4dx

(x4 + 1)5/2
= −1

6
4

|A|1/2
∞\
0

d(x(x4 + 1)−3/2)

=
2

3|A|1/2
∞\
0

(x4 + 1)−3/2 dx.

In the last integral we change the variables: x→ 1/t, to obtain

2
3|A|1/2

∞\
0

(x4 + 1)−3/2 dx =
2

3|A|1/2
∞\
0

t4(1 + t4)−3/2 dt.

By integration by parts, the last integral takes the form

− 1
3|A|1/2

∞\
0

t d(t4 + 1)−1/2 =
2

3|A|1/2
∞\
0

t4(1 + t4)−1/2 dt.
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The last integral is of elliptic type. We now rewrite it in the standard form\ R(u) du
((1 + u2)(1 + k2u2))1/2

.

In order to do it, we note that t4 + 1 = (t2 +
√

2 t + 1)(t2 − √2 t + 1) and
make the change of variables t = (µz + nu)/(z + 1). We omit the standard
calculations. Our integral takes the form

1
3|A|−1/2

∞\
0

t4(1 + t4)−1/2 dt

=
2

3|A|−1/2

1\
−1

(z + 1) dz
((z2c+ d)(z2 + c))1/2

=
2

3|A|−1/2

1\
−1

(z + 1)−1 dz√
cd((z2c/d+ 1)(z2d/c+ 1))1/2

.

Put z(c/d)1/2 = u. Then z2c/d = u2, and k = (2 −√2)/(2 +
√

2), and our
integral takes the form

√
2− 1

3|A|1/2
\ u−1 du

((u2 + 1)(u2k2 + 1))1/2
.

We must show that ω̃ is not exact. This follows from the equality

Ad

(
arctan

x2

A2

)
=

2Axdx
A2 + x2

and
T∞
0 arctan t dt =∞.

Our assertions now follow.
Notice that in our example the class [f∗(η)] ∈ H1(P ) depends on the

choice of η ∈ [a(φ)] ∈ H1(S1). Generally f∗ is not well defined.

5. It turns out that using “the methods of chains of subalgebras”
(see [20]) one can construct another completely integrable hamiltonian sys-
tem on the Lie algebra Lie(Υ3). In order to do this we can consider the
following chain of subalgebras (see [20]):






a11 0 0
0 0 0
0 0 0





 ⊂







a11 a12 0
0 a22 0
0 0 0





 ⊂







a11 a12 a13

0 a22 a23

0 0 a33





 .

For the system ẋ = sgradH one can prove theorems analogous to The-
orems 1, 2 where H depends functionally on g(x) = a11x11 and h(x) =
x11 + x22.
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I am indebted to A. T. Fomenko for posing many problems which moti-
vated my interest in this topic. I would also like to express my gratitude to
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