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Endomorphism algebras over large domains

by

Rüdiger G ö b e l (Essen) and Simone P a b s t (Dublin)

Abstract. The paper deals with realizations of R-algebras A as endomorphism al-
gebras EndG ∼= A of suitable R-modules G over a commutative ring R. We are mainly
interested in the case of R having “many prime ideals”, such as R = R[x], the ring of real
polynomials, or R a non-discrete valuation domain.

0. Introduction. This work is based on a previous paper [3] on realiza-
tion theorems. In [3] an R-module G over a commutative ring R with 1 6= 0 is
constructed such that the endomorphism algebra of G coincides with a given
R-algebra A (in general modulo an ideal). There is a given countable multi-
plicatively closed subset S of R such that A and therefore G is S-torsion-free
and S-reduced; recall that an R-module G is S-torsion-free if gs = 0 implies
g = 0 for any s ∈ S, g ∈ G, and it is S-reduced if

⋂
s∈S Gs = 0. Such con-

structions are by now standard, they are discussed in [3] and in some of the
references given there. The desired module G can be constructed between a
free A-module B and its S-adic completion B̂.

However, it is clear that in many cases S must be uncountable in order
to have

⋂
s∈S As = 0; for example, if R is a valuation domain with a lattice

of ideals not coinitial to ω and A = R, then
⋂
s∈S As 6= 0 for all countable

S ⊆ R \ {0} (see [6]). In this case a different technique is needed to realize a
given algebraA as endomorphism algebra of some moduleG. The topological
methods may not work any longer for |S| > ℵ0 since the natural S-topology
(generated by Gs (s ∈ S)) may not be metrizable; see Example 3.8 in [7].
However, if S is uncountable, which may be necessary as we have seen, a
construction of the desired module G is given in [8]. This construction [8] is
difficult and awaits simplification. A first simplification is given in [9]; but
here R is restricted to be a Prüfer ring.
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Our present purpose is to link the construction for |S| > ℵ0 with the
much easier topological methods in the countable case as given for example
in [3]; by doing so, we do not achieve realization theorems for the same
general class of R-algebras A as in [8]. It is our intention to present an
easier proof. Note that the “local approach” used in this paper might be of
interest for considering other problems; it seems likely that results related
to a countable multiplicatively closed subset could be generalized to the
uncountable case by using this technique.

The following easy observation (Lemma 2.1 of [1]) is the key to replacing
the uncountability of S by a family of pleasant topologies, one for each s ∈ S;
in this case s-reduced and s-torsion-free refer to the new set {sn | n < ω}.

Observation 0.1. Let S ⊆ R, s ∈ S and let G be S-torsion-free. More-
over , let sωG =

⋂
n<ω Gs

n and Gs = G/sωG. Then Gs is s-torsion-free and
s-reduced , and every endomorphism σ of G induces a canonical endomor-
phism σs of Gs continuous in the s-topology on Gs.

In [3] and [8] unwanted endomorphisms are killed by considering their
action on a fixed free module B =

⊕
A (and adding new elements to B);

in this paper we investigate their induced action on Bs. We are able to
control the endomorphisms on B, getting rid of their induced counterparts
for all possible (uncountably many) s ∈ S. This way we obtain realization
theorems for R-algebras A as discussed at the end of this section.

First we want to describe the required tools which may be interesting in
their own right. In order to find the desired elements needed to enlarge the
base module B and to kill unwanted homomorphisms, we must be able to
embed such a B into a suitable (larger) algebraically compact module B̃.
This, of course, is closely related to the work of R. Warfield [11]. However,
we are interested in an explicit construction in order to say more about B̃
(see 1.3). An approach using reduced powers is given in §1. The link to the
aforementioned s-topologies is given by:

Theorem 1.6. Let B̃ be an algebraically compact R-module, G an S-RD-
submodule of B̃, s ∈ S and let Ĝs denote the s-adic completion of Gs. Then
there exists a monomorphism φ : Ĝs → B̃

s
where φ¹Gs is the canonical

embedding of Gs into B̃
s
.

In order to apply Shelah’s combinatorial machinery, the Black Box Lem-
ma 3.2, the source of elements waiting for the construction of the final
module has to be selected carefully. Such potential elements are provided
in §2. In §3 we adopt Shelah’s combinatorial idea and present it in a form
suitable for application in §4 and §5; as a result we obtain a module G
depending on a given R-algebra A and G will be S-reduced and S-torsion-
free. In the classical case [3] we also find constructions for G to be (S-)
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torsion or (S-) mixed. It is not clear at present how to construct an S-torsion
module G for |S| > ℵ0. However, it is easy to show that it is impossible to
construct an S-mixed module G in the usual way for S not coinitial to ω,
as stated in the following observation (see [9], p. 69).

Observation 0.2. Let S , A, R be as above with S not coinitial to ω, G an
A-module and T a subset of G consisting of S-torsion elements. Moreover ,
assume that a support function [ ] is defined for G with |[g]| ≤ ℵ0 for all
g ∈ G, [g] = ∅ iff g = 0, and τa = 0 implies τ 6∈ [ga] for all τ ∈ T,
g ∈ G, a ∈ A. Then G is an S-torsion module.

However, the module G constructed here is an S-torsion-free A-module;
therefore we can identify A ⊆ EndRG with scalar multiplication. Tradition-
ally we want to find a two-sided ideal InesG / EndG such that EndRG =
A⊕ InesG (the general realization theorem). If the algebra is more special
we are able to determine InesG directly.

Let us summarize some of our main results. Since it is convenient to
present first a realization in a simple case, we consider in §5 the cotorsion-
free case separately, before we have a look at the general case (§6) and at an
application (§7). Note that the notion of cotorsion-freeness used here differs
slightly from the classical definitions in [3] and [8]. As mentioned before, we
will get our realization theorems using local arguments, i.e. we get “local
realizations” given by the following theorems.

Theorem 5.7. If A is a cotorsion-free R-algebra, then there exists an
R-module G with EndGs = As for each s ∈ S.

Theorem 6.4. If A is an S-reduced and S-torsion-free R-algebra, then
there exists an R-module G with EndGs = As ⊕ InesGs for each s ∈ S.

Note that InesGs consists of all endomorphisms of Gs mapping Ĝs

into Gs. To lift these local realizations to a global realization EndG =
A(⊕ InesG) we need additional assumptions. In the cotorsion-free case (§5)
we shall assume that A is F -complete with respect to the filtration F =
{sωA | s ∈ S} (see [6]). Moreover, InesG must be “well related” (see Defini-
tion 6.5) in the general case. Note that an endomorphism φ of G is inessential
if all induced endomorphisms φs of Gs (s ∈ S) are inessential.

Also, we shall introduce the notion of an ℵ0-cotorsion-free module; in a
sense the definition given in this paper (§7) generalizes the one used in [3]. If
A is ℵ0-cotorsion-free then InesG contains exactly the locally “sub-finitely
generated” endomorphisms φ, i.e. Imφs is contained in a finitely generated
submodule of Gs for each s ∈ S (see Definition 7.1). It is easy to show that
under this assumption InesG is well related. The main results are now given
as follows:
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Theorem 5.9. If A is F-complete and cotorsion-free, then there exists
an R-module G with EndG = A.

Theorem 7.9. If A is F-complete and ℵ0-cotorsion-free, then there exists
an R-module G with EndG = A⊕ FinlG.

Here FinlG denotes the ideal of all locally sub-finitely generated endo-
morphisms.

We finish the introduction with an example of an algebra A satisfying
the hypothesis of 7.9. A non-trivial example of an F -complete, cotorsion-free
algebra A is given in §5 (see Example 5.8).

Let R be a maximal valuation ring, S = R \ {0} and A = R. It is
easy to see that R is ℵ0-cotorsion-free; moreover, R is linearly compact in
the discrete topology (see [6], p. 20) and hence F -complete. Note that for a
non-discrete R this really is an example with an uncountable S not coinitial
to ω.

1. Algebraically compact modules. Let R be a non-zero commuta-
tive ring with 1 6= 0. Modules will be considered as right R-modules.

First recall that an R-module M is algebraically compact if every finitely
solvable system of linear equations over M has a global solution in M . It
is well known that every R-module is pure embeddable in an algebraically
compact module. Note that we call a submodule G of M a pure submodule
if for every finite system of linear equations over G having a solution in M ,
there also exists a solution in G (notation: G ⊆∗ M). A related concept
is that of relative divisibility; recall that a submodule G of the R-module
M is relatively divisible or an RD-submodule of M if G ∩Mr = Gr for all
r ∈ R (notation: G ⊆rd M). It is well known that purity implies relative
divisibility and that the concepts coincide for modules over Prüfer rings
(see [11]).

Algebraically compact modules can be characterized in different ways,
e.g. a module is algebraically compact if and only if it is pure injective (see
[11], [12]). Moreover, it is sufficient to consider systems of |R| · ℵ0 equations,
i.e. it is enough to show that an R-module M is (|R| · ℵ0)+-algebraically
compact, to prove algebraic compactness (see [5], Ch. V). We will use the
last mentioned fact to construct an algebraically compact module.

Note that there are many different ways to embed a given module in an
algebraically compact module (e.g. see [11], [10], [5]). For the convenience of
the reader unfamiliar with the concept we construct an algebraically com-
pact extension B̃ of a given module B using an approach via reduced powers
which will make the needed properties easy to prove; recall that the reduced
power BI/F of a module B with respect to a filter F is given by identifying
two elements (mi)i∈I , (ni)i∈I of BI whenever the set {i ∈ I | mi = ni} is
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an element of F . Using the definitions of a filter and the reduced power it is
easy to verify that S-torsion-freeness and decompositions of B are inherited
by reduced powers.

Proposition 1.1. Let B be an R-module.

(a) If B is S-torsion-free for some subset S of R, then BI/F is S-torsion-
free.

(b) If B = C ⊕D, then BI/F = CI/F ⊕DI/F .

The first lemma (see Ex. 8 in [5], Ch. V) gives a useful relation between
an R-module B and the reduced power BI/F with respect to a certain filter.
It will be our main tool for constructing an algebraically compact extension.

Lemma 1.2. Let B be an R-module, κ an infinite cardinal , I the set of
all finite subsets of κ and F the filter generated by the collection Xα =
{m ∈ I | α ∈ m} (α < κ). Then the diagonal map δ : B → BI/F (m 7→
(m)i∈I/F ) is a pure embedding and every finitely solvable system of κ equa-
tions over Bδ with coefficients in R has a solution in BI/F .

P r o o f. It easy to check that δ is a pure embedding; the proof is left to
the reader. Thus we may identify B and Bδ.

We consider a finitely solvable system of κ equations
∑
x∈X xrx,α = mα

(mα ∈ B, rx,α ∈ R, α < κ). For every i ∈ I there exists a solution mx,i

(x ∈ X) in B of the corresponding subsystem
∑
x∈X xrx,α = mα (α ∈ i).

We define mx = (mx,i)i∈I/F for each x ∈ X. Since Xα = {i ∈ I | α ∈ i} ∈ F
is a subset of Yα = {i ∈ I | ∑x∈X mx,irx,α = mα} we get Yα ∈ F for each
α < κ. Therefore (mx)x∈X is a global solution in BI/F of the considered
system.

We thank the referee for pointing out that we can achieve the same result
using any κ-regular ultrafilter F (see [2], Cor. 4.3.14).

We are now ready to construct an algebraically compact extension.

Lemma 1.3. Let R be of cardinality κ ≥ ℵ0 and let B be a non-zero
R-module. Then there exists an R-module B̃ of cardinality less than or equal
to |B|κ such that B̃ is an algebraically compact R-module containing B as a
pure submodule.

P r o o f. B̃ is constructed in such a way that it is κ+-algebraically com-
pact, which coincides with being algebraically compact. To get solutions for
all finitely solvable systems of κ equations we apply Lemma 1.2 κ+ times.
Therefore let I, F be as in Lemma 1.2. We get B̃ as the union of a smooth
ascending chain {Bα | α < κ+} satisfying the following conditions:

(1) Bα is an R-module of cardinality at most |B|κ,
(2) Bα is a pure R-submodule of Bα+1, and
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(3) every finitely solvable system of κ equations over Bα with coefficients
in R has a solution in Bα+1.

For α = 0 let B0 = B and if α is a limit then take Bα =
⋃
β<αBβ .

Now let α + 1 be a successor. Assume that Bα has been constructed
satisfying the conditions above. Defining Bα+1 = BIα/F we immediately see
that Bα+1 satisfies (2) and (3) by Lemma 1.2 and (1) is given by |Bα+1| ≤
|BIα| = |Bα||I| ≤ (|B|κ)κ = |B|κ.

Define B̃ =
⋃
α<κ+ Bα; obviously, B̃ is an R-module of cardinality at

most κ+ · |B|κ = |B|κ containing B as a pure R-submodule. Moreover, every
finitely solvable system of κ equations over B̃ turns out to be a system over
Bα for some α < κ+ since κ+ is a regular cardinal. Hence, there is a solution
in Bα+1 ⊆ B̃. So, B̃ is κ+-algebraically compact and thus it is algebraically
compact.

We would like to point out an interesting fact: the above construction
is also suitable for extending the ring structure of R to an algebraically
compact module R̃ such that B̃ becomes an R̃-module (see e.g. [9]). Note
that B̃ need not be algebraically compact as an R̃-module.

We reserve the notation “˜” for an algebraically compact module con-
structed as in Lemma 1.3.

The next corollary is an immediate consequence of Proposition 1.1 and
the previous lemma; since S-torsion-freeness and decompositions are inher-
ited by reduced powers, the above construction guarantees that they are
also inherited by algebraically compact extensions.

Corollary 1.4. (a) If B is S-torsion-free for some subset S ⊆ R, then
B̃ is also S-torsion-free.

(b) If B = C ⊕ D is any decompostion of an R-module B , then B̃ =
C̃ ⊕ D̃.

In the main part of this section we investigate the relation between an
algebraically compact module and canonical topological completions of its
S-RD-submodules, where S ⊆ R is a given multiplicatively closed subset.
Note that we call a submodule G of M an S-RD-submodule if Ms∩G = Gs
for all s ∈ S.

For an R-module M and s ∈ S we define sωM =
⋂
n<ωMsn and Ms =

M/sωM . Obviously, Ms is always s-reduced, i.e. reduced with respect to
{sn | n < ω}, and if M is S-torsion-free then Ms is s-torsion-free for each
s ∈ S (see Observation 0.1). Moreover, for each s ∈ S, the following holds:

Proposition 1.5. If M is algebraically compact , then so is Ms.

P r o o f. Suppose M is an algebraically compact R-module and let∑
x∈X xrx,α = mα, mα = mα+sωM (α < κ) be a finitely solvable system of
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equations over Ms. We define a corresponding system of equations over M
by
∑
x∈X xrx,α + yα = mα, yα = yα,ns

n (α < κ, n < ω) where yα, yα,n are
also unknowns. It is easy to check that this system is also finitely solvable.
Since M is algebraically compact by assumption, there is a global solution
hx ∈ M (x ∈ X), hα ∈ sωM (α < κ). Hence (hx + sωM)x∈X is a solu-
tion of the considered system of equations. Therefore Ms is algebraically
compact.

The final theorem gives the basic idea for the “local” approach used to
realize certain R-algebras.

Theorem 1.6. Let M be an algebraically compact R-module, G an S-
RD-submodule of M , s ∈ S and let Ĝs denote the s-adic completion of
Gs. Then there exists a monomorphism φ : Ĝs ↪→ Ms where φ¹Gs is the
canonical embedding π : Gs ↪→Ms (g + sωG 7→ g + sωM).

P r o o f. Proposition 1.5 allows us to define φ : Ĝs →Ms in the following
manner: let g ∈ Ĝs. We may express g as g =

∑
n<ω ans

n where an ∈ Gs
and ans

n 6∈ Gssn+1 whenever ansn is non-zero. Since xn − xn+1s = an
(n < ω) is a system of equations over Gs ⊆ Ms which is finitely solvable,
there is a solution xn = hn (n < ω) in Ms. Now let φ be defined by gφ = h0.

To verify that φ is well defined we consider an element g ∈ Ĝs with
g =

∑
n<ω ans

n and g =
∑
n<ω bns

n and let (hn)n<ω, (kn)n<ω be the
solutions of the corresponding systems of equations. Therefore, for each
n < ω, we have hn − hn+1s = an and kn − kn+1s = bn. Hence h0 − k0 =∑n−1
i=0 (ai − bi)si + (hn − kn)sn for each n < ω. By our assumption we have∑n−1
i=0 (ai − bi)si ∈ Ĝssn ∩ Gs = Gssn ⊆ Mssn and therefore h0 − k0 is an

element of Mssn for every n < ω. Since Ms is s-reduced, h0 and k0 coincide
and thus φ is well defined.

As an immediate consequence we find that φ¹Gs is the canonical embed-
ding π.

It is easy to check that φ is an R-homomorphism, considering the corre-
sponding systems of equations in the definition and using the fact that Ms

is s-reduced.
Finally, we show that φ is injective. Let g =

∑
n<ω ans

n ∈ Ĝs with
ans

n 6∈ Gssn+1 for ansn 6= 0. Suppose gφ = 0. Let (hn)n<ω be a solution
of the corresponding system of equations. Therefore we get 0 = gφ = h0 =
a0 + h1s. Hence a0 ∈ Gss, which implies a0 = 0. So it follows that 0 =
h1s = a1s+ h2s

2 and by the same argument as before a1s = 0. Continuing
this procedure implies ansn = 0 for each n < ω, i.e. g = 0. Therefore φ is
injective and this completes the proof.

Note that the previous result is also true with respect to an arbitrary
countable multiplicatively closed subset C of S. In particular, it follows that
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for an algebraically module M the quotient MC is complete in its C-adic
topology, as is well known.

We now proceed to define a suitable “hull” within which we construct
the desired module G.

2. Potential elements. In this section we specify the elements which
will be suitable for the construction of the desired module G.

Let S ⊆ R be a fixed multiplicatively closed subset without zero divisors
and let A be an S-torsion-free and S-reducedR-algebra. Moreover, we choose
cardinals κ, λ such that λ = λκ and κ ≥ |A| · |S|.

As in [3] and [8] we first define a free module B generated by a basis T
which is equipped with a certain partial order. Let T be the tree given by
T = ω>λ = {τ : n → λ | n < ω}. For each element τ of T the length of τ
is the finite set l(τ) = dom τ = n = {0, . . . , n − 1}. The elements of T are
ordered by τ ≤ σ if l(τ) ≤ l(σ) and σ¹l(τ) = τ . An (infinite) branch of T
is a map v : ω → λ; we can identify v with a linearly ordered subset of T
by v = {vn = v¹n | n < ω} ⊆ T . Let BrT denote the set of all branches
of T . Now we define B to be the free A-module generated by the tree T :
B =

⊕
τ∈T τA.

Let B̃ denote the algebraically compact R-module as obtained by Lem-
ma 1.3, i.e. B ⊆∗ B̃ and |B̃| ≤ |B||R|. Also, by Corollary 1.4, B̃ is S-
torsion-free and the decompositions of B are inherited by B̃. In particular,
for each τ ∈ T , we have B̃ = τÃ ⊕ (

⊕
σ 6=τ σA)∼; thus there is a unique

τ -component b¹τ ∈ τÃ for any element b of B̃. Therefore we may define
a support function in the usual way (see also [3], [8]): for g ∈ B̃, X ⊆ B̃
let [g] = {τ ∈ T | g¹τ 6= 0} and [X] =

⋃
g∈X [g] be the support of g

and of X, respectively. Since we shall argue mostly “modulo s” we also
define the s-support of g and of X by [g]s = {τ ∈ T | g¹τ 6∈ τsωÃ} and
[X]s =

⋃
g∈X [g]s, for each s ∈ S. Obviously, for any s ∈ S and for all

g, h ∈ B̃ with g ≡ h mod sωB̃, the s-supports [g]s, [h]s coincide. Hence we
may define the support of an element g = g+sωB̃ ∈ B̃s(s ∈ S) by [g] = [g]s.
Moreover, g¹τ = g¹τ + τsωÃ defines a (unique) τ -component of g for any
τ ∈ T ; we get as an immediate consequence [g] = {τ ∈ T | g¹τ 6= 0} for any
g ∈ B̃s (s ∈ S).

Next we define a norm ‖ ‖ for the elements and subsets of T which canon-
ically extends to the elements and subsets of B̃ and B̃

s
= B̃/sωB̃ (s ∈ S)

using the supports (see also [3], [8]). We fix a continuous strictly increasing
function % : cf(λ) + 1 → λ+ 1 such that 0% = 0 and cf(λ)% = λ. The norm
‖τ‖ of an element τ ∈ T is defined by ‖τ‖ = min{ν < cf(λ) | τ ∈ ω>(ν%)}
and the norm of a subset T ′ of T is given by ‖T ′‖ = supτ∈T ′ ‖τ‖. Note that
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‖τ‖ = α means that α% is the smallest ordinal in Im % satisfying τ(i) < α%
for all i < l(τ). Hence ‖τ‖ is always a successor ordinal. Also note that
λ ⊆ T as elements of length 1, hence ‖ ‖ is also defined for each subset of λ.
Using the norm, for a subset T ′ of T and for any ordinal ν < λ, we define
the part of T ′ to the right of ν by νT

′ = {τ ∈ T ′ | ‖τ‖ > ν}.
In [3] elements for constructing the desired module are found within the

S-adic completion of a free module B. As mentioned in §0 this is no longer
possible for uncountable S. The required elements will be chosen from the
algebraically compact module B̃ but not all are suitable. Following an idea
in [8] we define potential elements needed in the construction; they are taken
from B̃ℵ0 , the set of all elements of B̃ with countable support. For certain
submodules U of B̃ we shall need “preimages” of elements of the s-adic
completion of (U + sωB̃)/sωB̃ (“s” refers to the set {sn | n < ω}). To be
more precise we define a series (gk)k<ω of elements of B̃ to be an (s, U)-chain
(s ∈ S, U ⊆ B̃) if gk − gk+1s ∈ U and, for some ν < ‖g0‖, ν [gk] ⊆ [g0] for
each k < ω. We are now ready for

Definition 2.1. We define the set POT = POT(B) of potential elements
in B̃ℵ0 inductively as follows:

(i) B ⊆ POT;
(ii) if (gk)k<ω is an (s, U)-chain of elements of B̃ℵ0 and s ∈ S, U ⊆ POT,

then gk is potential for all k < ω;
(iii) if bs ∈ POT and s ∈ S then b is potential;
(iv) elements of an A-module generated by potential elements are

potential.

An A-module U ⊆ POT is called a potential module.

If a module U is an S-RD-submodule of B̃ we may consider Ûs, the s-adic
completion of Us = U/sωU (s ∈ S), as a submodule of B̃

s
(see Theorem 1.6).

Note that in this case we may identify U/sωU with (U + sωB̃)/sωB̃. Since
this is not possible in general, let us agree on using Us for (U + sωB̃)/sωB̃
whenever U is not an S-RD-submodule of B̃.

The notion of a canonical module has been proven useful (see e.g. [3],
[8]); an S-RD-submodule of B̃ generated by at most κ potential elements
containing its support [P ] is called a canonical module. Let C denote the
set of all canonical modules; as an immediate consequence of the definition
we get

Lemma 2.2. For P ∈ C, X ⊆ POT with |X| ≤ κ there exists P ′ ∈ C
with P ∪ X ⊆ P ′. Moreover , C is non-empty and closed under unions of
countable ascending chains.
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In [3] and [8] the branches of T have been used to define elements play-
ing a crucial role in the construction of the desired module. Instead of go-
ing into the rather unusual notion of branches with leaves (see [8]) we use
the idea from [3] replacing the S-adic limits by a family of corresponding
(s,B)-chains.

Definition 2.3. For any branch v of T and s ∈ S, we define potential
elements vk,s (k < ω) as a solution in (

⊕
τ∈v τA)∼ of the following, finitely

solvable system of equations over B: xk − xk+1s = vk (= v¹k) (k < ω).

The above-defined elements have some nice properties:

Lemma 2.4. Let v ∈ BrT , s, q ∈ S, a ∈ A, a = a + qω A ∈ Aq, and
vk,s = vk,s + qωB̃. Then:

(i) vk,s¹vn = vns
n−k for any k ≤ n < ω,

(ii) [vk,s] = {vn | n ≥ k} for each k < ω,
(iii) the sequence (vk,s)k<ω is an (s,B)-chain,
(iv) [vk,sa] ⊆ [vk,sa] ⊆ [vk,s] ⊆ v,
(v) a = 0⇔ vk,sa = 0⇔ [vk,sa] is finite ⇔ v \ [vk,sa] is infinite,
(vi) (asn = 0 for some n < ω) ⇔ vk,sa ∈ Bq ⇔ [vk,sa] is finite ⇔

v \ [vk,sa] is infinite.

P r o o f. By 2.3 we immediately get [vk,s] ⊆ {vn | n ≥ k} and v0,s =∑n
i=0 vis

i+vk+1,ssk+1 for each n, k < ω. Therefore v0,s¹vn = (
∑n
i=0 vis

i)¹vn
+ vk+1,ssn+1¹vn = vns

n, which implies [v0,s] = {vn | n < ω}. Moreover,
vk,s¹vn = (v0,s −∑k−1

i=0 vis
i)s−k¹vn = vns

n−k for all k ≤ n < ω. Now parts
(i) and (ii) are obvious and (iii) follows by the definition of an (s,B)-chain,
2.3 and part (ii). Moreover, (iv) is immediate from (ii) and the definition of
the support.

Next we show (v). Clearly, a = 0 ⇒ vk,sa = 0 ⇒ [vk,sa] is finite ⇒
v \ [vk,sa] is infinite.

Conversely, assume v \ [vk,sa] is infinite. Therefore there are infinitely
many n ≥ k such that vk,sa¹vn = 0. On the other hand, we have vk,sa¹vn =
vnas

n−k for each n ≥ k by (i). Hence asn−k = 0 for infinitely many n ≥ k.
Since A is S-torsion-free that implies a = 0.

Finally, we consider (vi). Assuming that there is an n < ω with asn = 0
(in Aq) we get either vk,sa = 0 ∈ Bq for n = 0 or, for n > 0,

vk,sa ≡
n+k−1∑

i=k

vias
i−k + vk+n,sasn

≡
n+k−1∑

i=k

vias
i−k + vk+n,sasn ≡

n+k−1∑

i=0

vias
i−k mod qωB̃,



Endomorphism algebras over large domains 221

which induces vk,sa ∈ Bq. Hence [vk,sa] is finite and v \ [vk,sa] is infinite.
Now, if v \ [vk,sa] is infinite, we get 0 = vk,sa¹vi = vk,sa¹vi + qωviÃ for

infinitely many i < ω. Therefore vk,sa¹vi = vias
i−k ∈ qωviÃ for infinitely

many k ≤ i < ω. Hence asn ∈ qωÃ ∩ A = qωA for some n < ω and this
completes the proof.

3. Construction. Now we are going to construct the required R-module
G. As in [3] and [8] we shall use Black Box arguments to prove realization
theorems. Different versions of the Black Box are known; the one presented
here is very similar to that given in [3].

First we need to say what we mean by a “trap”; since we are concerned
only with discrete realizations we can omit one of the parameters used in
the definition of “trap” in [3], but we shall need to use the elements s of S
as an additional parameter. As we want to catch and “kill” homomorphisms
via their induced actions on the corresponding quotients, it seems natural
to consider endomorphisms on quotients from the outset. Our definition of
a trap then becomes:

Definition 3.1. A quadruple (f, P, s, φ) is called a trap if f : ω>κ→ T
is a tree embedding, P is a canonical module, s ∈ S, and φ ∈ EndP s

satisfying the following conditions:

(a) Im f ⊆ P ,
(b) [P ] is a subtree of T ,
(c) ‖P‖ is a limit ordinal of cofinality ω, and
(d) ‖v‖ = ‖P‖ for each v ∈ Br(Im f).

We are now ready to present the Black Box in a suitable form.

The Black Box Lemma 3.2. For an ordinal λ∗ ≥ λ there exists a
transfinite sequence (fα, Pα, sα, φα)α<λ∗ of traps such that , for α, β < λ∗,

(i) β < α⇒ ‖Pβ‖ ≤ ‖Pα‖,
(ii) β 6= α⇒ Br(Im fβ) ∩ Br(Imfα) = ∅,

(iii) β + κℵ0 ≤ α⇒ Br(Im fα) ∩ Br([Pβ ]) = ∅,
(iv) if K is a potential module, X a subset of K with |X| ≤ κ, s ∈ S and

φ ∈ EndKs, then there exists an α < λ∗ such that

X ≤ Pα, ‖X‖ < ‖Pα‖, s = sα, and φ¹P sα = φα.

A detailed proof of the existence of a slightly different Black Box is given
in [3]. Besides the aforementioned differences it is necessary to replace the
“fixed” S-adic completion, as used in the version of the prediction prin-
ciple (iv) in [3], by arbitrary potential modules (see also [8]); this is due to
the fact that in general there is no “universal” module to which suitable
homomorphisms can be (uniquely) extended.
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Note that the Black Box is very robust under changes of its setting; the
only real concern is the cardinality of the objects in question. Lemma 1.3
and the choice of κ and λ guarantee that all cardinalities of interest are
bounded by λ.

Construction 3.3. Choose a transfinite sequence (fα, Pα, sα, φα)α<λ∗
as in Lemma 3.2. Moreover, let∞ be a fixed element which does not belong
to B̃.

We will construct inductively a sequence (bβ)β<λ∗ in POT ∪ {∞} and
an ascending smooth chain (Gµ)µ≤λ∗ of potential modules such that, for all
µ ≤ λ∗,
(Iµ) bβ + sωβ B̃ 6∈ Gsβµ for each β < µ.

If µ = 0 we put G0 = B =
⊕

τ∈T τA. Therefore G0 is a potential module
by definition.

If µ is a limit we assume that the potential modules Gα and the elements
bβ are given for all α, β < µ such that (Iα) is satisfied for each α < µ. We
take Gµ =

⋃
α<µGα, which is obviously also potential and it satisfies (Iµ)

since bβ + sωβ B̃ 6∈ Gsβα for all β < α < µ.
Now let µ = α + 1 be a successor, Gα a potential module and let the

elements bβ (β < α) be given satisfying (Iα). Suppose it is possible to choose
a branch vα ∈ Br(Im fα), an (sα, Gα)-chain (gkα)k<ω, bα ∈ POT∪{∞}, and
Gα+1 in such a way that (Iα+1) and the following conditions are satisfied:

(IIα+1) Gα+1 = Gα +
∑
k<ω g

k
αA,

(IIIα) supk<ω‖gkα − vk,sαα ‖ < ‖vα‖ (= ‖Pα‖),
(IVα) gkα + sωαB̃ ∈ P̂ sαα for each k < ω, and

(Vα+1) either

bα + sωαB̃ = (g0
α + sωαB̃)φα (1)

or
bα =∞. (2)

We then make such a choice and depending on the outcome of (Vα), we
call α a strong ordinal in case (1) and a weak ordinal in case (2). Note that
whenever it is possible to get α to be strong we do so. If such a choice is not
possible, then we call α useless and we put Gα+1 = Gα, g

k
α = 0 (k < ω),

and bα = ∞. (We shall show that in fact this case never arises.) However,
in every case Gα+1 consists of potential elements.

Finally, let G be given by

G = Gλ∗ = B +
∑

α<λ∗

∑

k<ω

gkαA

with bβ + sωβ B̃ 6∈ Gsβ for each β < λ∗.
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Note that the above construction is also very similar to the one given in
[3]; the obvious changes are due to the “local” approach used in this paper.

4. Properties of the constructed module. In this section we are
going to assemble some properties of G, e.g. we shall describe the essential
part of the support of the elements of G and Gs (s ∈ S). Again, the re-
sults and methods used are very similar to those in [3]; indeed, we get the
same results with respect to the quotients Gs for each s ∈ S. Moreover, we
also need to include corresponding results for the elements of G. However,
detailed proofs are given for the convenience of the reader.

First we summarize a few properties satisfied by the elements which we
use to extend the submodules Gα in the strong or weak case.

Lemma 4.1. Let α < λ∗ be any weak or strong ordinal and s = sα. Then
there exists ν < ‖vα‖ such that , for all a ∈ A, q ∈ S and k < ω,

(i) gkαa¹τ = vk,sα a¹τ for each τ with ‖τ‖ > ν,

(ii) ν [gkαa] ⊆ ν [gkαa] = ν [vk,sα a] ⊆ vα,
(iii) a = 0⇔ gkαa = 0⇔ ν [gkαa] is finite, and
(iv) (asn = 0 for some n < ω)⇔ gkαa ∈ Gqα ⇔ ν [gkαa] is finite,

where gkα = gkα + qωB̃, a = a+ qωA.

P r o o f. By (IIIα) in Construction 3.3 we have supk<ω ‖gkα−vk,sα ‖ < ‖vα‖.
Since ‖vα‖ is a limit ordinal by Definition 3.1 we may choose ν < ‖vα‖ such
that ν > supk<ω ‖gkα − vk,sα ‖. Therefore we get (gkα − vk,sα )¹τ = 0 for each
τ with ‖τ‖ > ν. Hence, for any a ∈ A, we have gkαa¹τ = vk,sα a¹τ whenever
‖τ‖ > ν. So ν [gkαa] ⊆ ν [gkαa] = ν [vk,sα a] ⊆ vα according to Lemma 2.4, which
proves (i) and (ii).

Clearly a = 0⇒ gkαa = 0⇒ ν [gkαa] is finite.
To complete (iii) assume that ν [gkαa] = ν [vk,sα a] is finite. By Lemma 2.4

we have [vk,sα a] ⊆ [vk,sα ] = {vα,i = vα¹i | i ≥ k} = M . It follows that
ν [vk,sα a] is a finite subset of M and therefore there is n ≥ k such that
ν [vk,sα a] ⊆ {vα,i | k ≤ i ≤ n}. Now, since ‖vα,i‖ ≤ ‖vα,j‖ for all i ≤ j < ω, it
follows that [vk,sα a] is finite. Hence a = 0 by Lemma 2.4 and therefore (iii)
is proved.

For (iv) we assume asn = 0 (in Aq) for some n < ω. Using gk+n
α asn ≡

0 mod qωB̃ we get gkαa ≡ gkαa− gk+n
α asn mod qωB̃. Since g′ = gkα − gk+n

α sn

is an element of Gα by the definition of a chain, gkαa = g′a is an element of
Gqα.

Therefore ν [gkαa] ⊆ [gkαa] ⊆ vα ∩ [g′] is finite because vα does not appear
before the (α+ 1)th step by 3.3 and Lemma 3.2.



224 R. Göbel and S. Pabst

Finally, assume that ν [gkαa] is finite. Therefore ν [vk,sα a] is finite according

to (ii). Now, in the same way as before, we find that [vk,sα a] is finite. Hence
asn = 0 (inAq) for some n < ω by Lemma 2.4, which completes the proof.

In the next lemma we describe the supports of the elements of G and
Gs (s ∈ S). As also in [3] and [8], this will be the main tool for testing if a
given potential element belongs to G or not.

The Recognition Lemma 4.2. Let g ∈ G \ B, s ∈ S, and g = g +
sωB̃ ∈ Gs.
(a) (i) There exists a unique α < λ∗ such that g ∈ Gα+1 \Gα.

(ii) Moreover , either g ∈ Bs or there is a unique β ≤ α such that
g ∈ Gsβ+1 \Gsβ.

(b) (i) With α as in (a)(i) there is a strictly decreasing sequence of ordinals
α = α(0) > . . . > α(r) in λ∗ (r < ω) with ‖Pα(i)‖ = ‖Pα‖ for i ≤ r
and an ordinal ν < ‖Pα‖ such that

ν [g] = F ∪
⋃

i≤r
ν [vα(i)] (disjoint union)

where F is a finite set of elements of T each of norm greater than
‖Pα‖.

(ii) With β as in (a)(ii) there is a strictly decreasing sequence of ordinals
β = β(0) > . . . > β(k) in λ∗ (k < ω) with ‖Pβ(i)‖ = ‖Pβ‖ for i ≤ k
and an ordinal µ < ‖Pβ‖ such that

µ[g] = F ′ ∪
⋃

i≤k
µ[vβ(i)] (disjoint union)

where F ′ is a finite set of elements of T each of norm greater than
‖Pβ‖.

(c) (i) For any γ < λ∗ with ‖Pγ‖ = ‖Pα‖ there exist a ∈ A and l < ω such
that , for almost all τ ∈ vγ , we have g¹τ = τas

l(τ)−l
γ .

(ii) For any δ < λ∗ with ‖Pδ‖ = ‖Pβ‖ there exist a′ ∈ As and l′ < ω

such that , for almost all τ ∈ vδ, we have g¹τ = τa′sl(τ)−l′
δ .

P r o o f. Since the modules Gα (α ≤ λ∗) and therefore the modules
Gsα (α ≤ λ∗) form an ascending smooth chain, (a) is obviously satisfied.

Now g ∈ Gα+1 = B +
∑
γ≤α

∑
k<ω g

k
αA. By 3.3 we see that (gkγ)k<ω is

an (sγ , Gγ)-chain for each γ ≤ α. Moreover, every strictly decreasing chain
of ordinals is finite. Therefore we can split the sums in finitely many steps
in such a way that we may consider g as an element of B +

∑
i≤n g

m
α(i)A

for ordinals α = α(0) > . . . > α(n) and for some n,m < ω, i.e. g =
b+

∑
i≤n g

m
α(i)ai (b ∈ B, ai ∈ A).
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Now, for every weak or strong ordinal γ we have ‖gmγ ‖ = ‖Pγ‖ (m < ω)
by Lemmas 2.4 and 4.1. Moreover, the Black Box induces ‖Pγ‖ ≤ ‖Pγ′‖ ≤
‖Pα‖ whenever γ ≤ γ′ ≤ α. Therefore there is r ≤ n such that ‖Pα(i)‖ =
‖Pα‖ for i ≤ r and ‖Pα(i)‖ < ‖Pα‖ otherwise. Hence g = b+x+

∑
i≤r g

m
α(i)ai

where ‖x‖ ≤ maxr<i≤n ‖gα(i)‖ < ‖Pα‖.
Since ‖Pα‖ is a limit, [b] does not contain any element of norm ‖Pα‖. The

branches vα(i) (i ≤ r) are different and therefore the pairwise intersections
are finite. Thus we may choose ν < ‖Pα‖ (large enough) such that

• ν [gmα(i)a] = ν [vα(i)a] for i ≤ r,
• ν [vα(i)] ∩ ν [vα(j)] = ∅ for i 6= j ≤ r,
• ‖x‖ < ν, and
• either ‖τ‖ ≤ ν or ‖τ‖ > ‖Pα‖ for any τ ∈ [b].

Defining F = {τ ∈ [b] | ‖τ‖ > ‖Pα‖} we get ν [g] = F ∪⋃i≤r ν [vα(i)], which
is a disjoint union by our choice of ν. This proves part (i) of (b).

To get the second part of (b) we can use similar arguments.

Note that ‖gmγ ‖ = ‖Pγ‖ whenever sjγ 6∈ sωA for all j < ω. Since gjβ(i)a
′
i ∈

Gsβ(i) whenever a′is
j
β(i) = 0 (in As) by Lemma 4.1, we may assume that

sjβ(i) 6∈ sωA for all i ≤ k, i.e. we get g = b+
∑
i≤n g

m
β(i)a

′
i (b ∈ Bs, a′i ∈ As).

Finally, we get (c) choosing a = ai (a′ = a′i) for γ = α(i) (δ = β(i))
for some i ≤ r (i ≤ k) and a = 0 (a′ = 0) for γ 6∈ {α(0), . . . , α(r)}
(δ 6∈ {β(0), . . . , β(k)}).

As an immediate consequence of the above Recognition Lemma we have:

Corollary 4.3. An element g ∈ G is contained in B iff [g] is finite,
and an element g ∈ Gs (s ∈ S) is contained in Bs iff [g] is finite.

Now we are ready to prove further properties of G.

Lemma 4.4. G is an RD-submodule of B̃ and G is S-reduced and S-
torsion-free.

P r o o f. We immediately see that G ⊆ B̃ is S-torsion-free since B̃ is
S-torsion-free by Corollary 1.4. We prove inductively that G is an RD-
submodule of B̃.

For ν = 0 we have G0 = B ⊆∗ B̃ and therefore G0 ⊆rd B̃. If ν is a limit
and if Gµ ⊆rd B̃ for all µ < ν, then Gν =

⋃
µ<ν Gµ ⊆rd B̃, since RD-purity

is of finite character.
Now we investigate ν = α + 1 assuming Gα ⊆rd B̃. If α is a useless

ordinal, then there is nothing to show since Gα = Gα+1. Otherwise we
consider b̃r ∈ Gα+1 \Gα with r ∈ R and b̃ ∈ B̃. There are k < ω, 0 6= a ∈ A,
and g ∈ Gα such that

(1) b̃r = g + gkαa.
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By Lemma 4.2 we see that [g]∩ vα is finite. On the other hand, since a 6= 0,
there is ν < ‖vα‖ such that

(2) ν [gkαa] = ν [vk,sαα ] ⊆ vα is infinite

by Lemma 4.1. Therefore, for all τ ∈ ν [gkαa] \ [g],

(3) b̃r¹τ = (gkαa)¹τ.
By (2), (3) and Lemma 2.4 it follows that b̃r¹τ = (gkαa)¹τ = (vk,sαα )¹τ =
τas

l(τ)−k
α for each τ ∈ ν [gkαa] \ [g]. Hence asl(τ)−k

α is an element of Ar, i.e.
as
l(τ)−k
α = a′r for some a′ ∈ A. According to the definition of an (sα, Gα)-

chain, g′ = gkαa − g
l(τ)
α as

l(τ)−k
α is an element of Gα. Thus, using (1), we

have g + g′ = b̃r − gl(τ)
α as

l(τ)−k
α = (̃b − gl(τ)

α a′)r ∈ Gα. Since Gα ⊆rd B̃ by
assumption, there exists h ∈ Gα such that g+g′ = hr = (̃b−gl(τ)

α a′)r, which
implies b̃r = (h+gl(τ)

α a′)r where h+gl(τ)
α a′ ∈ Gα+1. Therefore, Gα+1 ⊆rd B̃.

Finally, G =
⋃
α≤λ∗ Gα ⊆rd B̃.

Similarly, using the fact that A is S-reduced, it is easy to show by trans-
finite induction that G =

⋃
α≤λ∗ Gα is an S-reduced R-module as well.

Note that we now may identify (G+sωB̃)/sωB̃ with G/sωG since G is an
RD- and hence an S-RD-submodule of B̃. Moreover, we may consider Ĝs, the
s-adic completion of Gs = G/sωG, as a submodule of B̃

s
by Theorem 1.6.

The key lemma for the non-existence of useless ordinals and for “killing”
unwanted endomorphisms is given next.

Lemma 4.5. Let α < λ∗, ν < ‖Pα‖, and for each v ∈ Br(Im fα) let
(gkv )k<ω be an (sα, Gα)-chain such that , for all k < ω, ν [gkv − vk,sα ] = ∅.
Then there exists v ∈ Br(Im fα) such that

(1) bβ + sωβ B̃ 6∈ (Gα+1(v))sβ for all β < α

where Gα+1(v) = Gα +
∑
k<ω g

k
vA.

P r o o f. Let s = sα and suppose that the conclusion is false. Then there
exists, for each v ∈ Br(Im fα), an ordinal β = β(v) such that bβ + qωB̃ ∈
(Gα+1(v))q where q = sβ . By our Construction 3.3 that means bβ 6=∞ and

bβ + qωB̃ = (g0
β + qωB̃)φβ ∈ P̂ qβ . Moreover, there are a = a(v) ∈ Aq and

k = k(v) < ω such that

(2) (bβ + qωB̃)− gkva ∈ Gqα.
Since (gkv )k<ω is an (s,Gα)-chain and bβ + qωB̃ 6∈ Gqα by assumption, we
have asn 6= 0 (in Aq) for each n < ω. Clearly we also have ν [gkva] = ν [vk,sa].

Now, using Lemma 2.4, we find that ν [gkva] is infinite. For all γ < α it
is certainly true that ‖vγ‖ ≤ ‖Pα‖ = ‖v‖ and v 6= vγ . Therefore there is an
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infinite subset X of v such that X ⊆ [bβ + qωB̃] ⊆ [Pβ ] by our Recognition
Lemma. Since [Pβ ] is a subtree of T this implies v ⊆ [Pβ ]. Hence v is an
element of Br(Im fα) ∩ Br([Pβ ]). The Black Box tells us that this is only
possible for β < α < β + κℵ0 .

We have shown by now that for each v ∈ Br(Im fα), there exist β(v) <
α, k(v) < ω, and a(v) ∈ Asβ(v) such that

(3) β(v) < α < β(v) + κℵ0 and (bβ(v) + qωB̃)− gk(v)
v a(v) ∈ Gsβ(v)

α .

Now let β0 be the smallest ordinal satisfying β0 < α < β0+κℵ0 . This implies

β0 ≤ β(v) < α < β0 + κℵ0 for all v ∈ Br(Im fα).

Therefore |{β(v) | v ∈ Br(Im fα)}| < κℵ0 = |Br(Im fα)|. Hence there are
different branches v, u ∈ Br(Im fα) with β(v) = β(u) = β. Subtracting the
corresponding equations in (3) gives gk(v)

v a(v)−gk(u)
u a(u) ∈ Gsβα . Arguing as

before we show that an infinite subset of v is contained in ν [gk(u)
u a(u)] ⊆ u,

which contradicts the assumption that v, u are different branches.

Corollary 4.6. There are no useless ordinals. An ordinal α < λ∗ is
strong or weak according as (g0

α + sωαB̃)φα lies outside or in Gsα .

P r o o f. Take gkv = vk,sα for each v ∈ Br(Im fα) and apply Lemma 4.5.

After we have considered the R-module G from a more general point of
view, we are now going to investigate special cases.

5. The cotorsion-free case. Considering the classical definition of a
cotorsion-free module in the countable case (see e.g. [3], [4]) there seem to
be different ways to generalize it to the uncountable case. In [8] an (ω-)
cotorsion-free module is defined by having 0 as the only (ω-) complete sub-
module where (ω-) completeness is an obvious replacement for completeness
in the S-adic completion for countable S. Our notion of cotorsion-freeness
is adapted to the modules under consideration.

Definition 5.1. An R-module M is defined to be cotorsion-free if it is
S-torsion-free, S-reduced, and Hom(R̂s,Ms) = 0 for each s ∈ S.

Note that it is easy to check that a module which is cotorsion-free in the
above sense is also (ω-) cotorsion-free with respect to the definition given in
[8] and both definitions coincide if S is countable.

The above version of cotorsion-freeness allows us to follow “locally” the
arguments in [3], which are sketched below for the convenience of the reader.

Using the special form of G we are able to show that G is cotorsion-free
if A is. We assume that A is cotorsion-free throughout this section.

Lemma 5.2. If A is cotorsion-free then G , constructed as in 3.3, is also
cotorsion-free.
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P r o o f. We already know that G is S-torsion-free and S-reduced by
Lemma 4.4. Now it remains to show that Hom(R̂s, Gs) = 0 for each s ∈ S.
Clearly B is cotorsion-free as a direct sum of copies of A.

Suppose that there is a non-zero homomorphism φ : R̂s → Gs for some
s ∈ S, hence 0 6= g = 1φ ∈ Gs ⊆ Ĝs. We have rφ = 1φr = gr ∈ Gs for all
r ∈ R̂s by continuity. Hence the supports are defined and

(1) [gr] ⊆ [g] for each r ∈ R̂s.
(i) First we consider the case g ∈ Bs. Then [g] is finite and therefore

[gr] is finite for each r ∈ R̂s as well by (1). By Corollary 4.3 it follows that
gr ∈ Bs for each r ∈ R̂s, hence φ ∈ Hom(R̂s, Bs) = 0 contrary to the
assumption.

(ii) Now suppose g ∈ Gs\Bs. Thus, by Lemma 4.2, there are β < λ∗ with
g ∈ Gβ+1 \ Gβ , µ < ‖g‖, and ordinals β = β(0) > β(1) . . . > β(k) (k < ω)
such that

(2) µ[g] = F ∪
⋃

i≤k
µ[vβ(i)]

where F is finite. Moreover, we may assume that there is an a ∈ As such
that

(3) g − g0
βa ∈ Gsβ

(otherwise multiply φ by snβ for some suitable n).

To get a contradiction we define a homomorphism ψ : R̂s → As. Let
rφ = gr ∈ Gs for any r ∈ R̂s. By (1) and (2), [gr] cannot contain infinitely
many elements from a branch vγ with γ > β. Therefore, by Lemma 4.2
again, gr is an element of Gsβ+1. Thus we find q ∈ {snβ | n < ω} and a′ ∈ As
with

(4) gqr − g0
βa
′ ∈ Gsβ .

Multiplying (3) by qr we get (g−g0
βa)qr ∈ GsβR̂s, hence g0

β(a′−aqr) ∈ GsβR̂s
by (4). Moreover, [g0

β(a′ − aqr)] ⊆ [g0
β ]. The intersection [g0

β(a′ − aqr)] ∩ vβ
must be finite by the Recognition Lemma. Therefore g0

β(a′−aqr)¹(vβ¹k) = 0

for almost all k < ω, i.e. a′ ∈ Ãsq ∩ As = Asq. Hence a′ = a∗q for some
a∗ ∈ As and (4) reduces to gr − g0

βa∗ ∈ Gsβ . Clearly a∗ 6= 0 (in As) by our

choice of β. Finally, we define ψ : R̂s → As by rψ = a∗ and get a non-zero
homomorphism, contradicting the hypothesis on A.

Note that, if G is cotorsion-free, there are no non-zero homomorphisms
from any s-complete module K̂s into Gs (s ∈ S).

The desired result EndG = A will follow from its local form EndGs = As

for each s ∈ S, and this needs
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Proposition 5.3. For s ∈ S let K be a potential module containing G ,
and φ ∈ Ks with φ¹Gs 6∈ As. Then there exists a canonical module P ⊆ G
such that

(1) P̂ s(φ− a) 6⊆ Gs for each a ∈ As.
P r o o f. Let P0 be an arbitrary canonical module contained in G and

assume P̂ s0 (φ − a∗) ⊆ Gs for some a∗ ∈ As. Therefore we have φ¹P s0 = a∗
since Hom(P̂ s0 , G

s) = 0. We know that φ¹Gs 6∈ As, i.e. there is a g =
g+sωB̃ ∈ Gs with gφ 6= ga∗. Now let P be a canonical module containing P0

and g; also assume that P does not satisfy (1). Then we get P̂ s(φ−a′) ⊆ Gs
for some a′ ∈ As. Therefore it follows that P̂ s0 (a′ − a∗) ⊆ Gs, which implies
a′ = a∗; but then gφ = ga′ = ga∗ ∈ Gs, contradicting our choice of g.

Now we extend 5.3(1) to homomorphisms of the form φsn − a where
either n is zero or s does not divide a; let

∆s = {(a, n) ∈ As × ω | n = 0 ∨ (n ≥ 1 ∧ a 6∈ Ass)} for any s ∈ S.

Corollary 5.4. For s ∈ S let K be a potential module containing G ,
and φ ∈ EndKs with φ¹Gs 6∈ As. Then there exists a canonical module
P ⊆ G such that

P̂ s(φsn − a) 6⊆ Gs for all (a, n) ∈ ∆s.

P r o o f. Choose P as in Proposition 5.3, i.e. P̂ s(φ − a) 6⊆ Gs for each
a ∈ As. If n ≥ 1 then P̂ s(φsn − a) ⊆ Gs is only possible for φsn − a = 0,
hence s divides a and (a, n) 6∈ ∆s.

Next we show that a homomorphism of G, unwanted when viewed on
Gs (s ∈ S), extends to a module G′, and when the extension is viewed
on (G′)s it cannot occur, which “kills” the candidate. This is based on the
existence of certain elements of Ĝs which are mapped outside of (G′)s. For
this purpose we define a constant branch w = w(η) : ω → {η} for each
η < λ. As an immediate consequence of the Recognition Lemma we get the
following

Proposition 5.5. For any g ∈ G or g ∈ Gs (s ∈ S) the support [g]
cannot contain an infinite subset of a constant branch of norm ‖g‖.

Lemma 5.6. For s ∈ S let K be a potential module containing G , and
φ ∈ EndKs with φ¹Gs 6∈ As. Then there exists an (s,G)-chain (xk)k<ω
such that

(1) (x0 + sωB̃)φ = x0φ 6∈
(
G+

∑

k<ω

xkA
)s
.
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P r o o f. Choose P as in Corollary 5.4 and pick an ordinal µ < λ such
that

(2) max{‖P‖, ‖P sφ‖} < ‖µ‖.
Consider the constant branch w = w(µ). Either the (s,B)-chain (wk,s)k<ω
will satisfy 5.6 or else (1) does not hold for this chain. Then there is a least
r < ω such that, for some a ∈ As,
(3) w0,sφ− wr,sa ∈ Gs.
Then (a, r) ∈ ∆s by the minimality of r. There exists an element y =
(y + sωB̃) ∈ P̂ s with

(4) y(φsr − a) 6∈ Gs.
We may extend y to an (s, P )-chain (yk)k<ω with y ≡ y0 mod sωB̃ taking a
solution of yk − yk+1s = pk in (

⊕
τ∈[P ] τA)∼ ⊆ B̃ where y =

∑
i<ω pis

i for
pi ∈ P, i < ω. Next define xk = yk + wk (k < ω). The sequence (xk)k<ω is
an (s,G)-chain with ν = ‖y‖ ≤ ‖P‖ < ‖µ‖ = ‖w0‖ = ‖x0‖. We claim that
(xk)k<ω satisfies (1). Otherwise there are r′ ≥ r and a′ ∈ As with

(5) (w0,s + y)φ− (wr′,s + yr′)a′ ∈ Gs.
Now subtracting (5) and (3) gives yφ − yr′a′ − wr′,sa′ + wr,s ∈ Gs. Using
wr,s − wr′,ssr

′−r ∈ B we get

(6) (yφ− yr′a′) + wr′,s(asr
′−r − a′) ∈ Gs.

Note that ‖(yφ − yr′a′)‖ < ‖µ‖ and w is a constant branch of norm ‖µ‖.
Therefore [wr′,s(asr

′−r−a′)] must be finite by Proposition 5.5. Since asr
′−r

= a′ (in As) by Lemma 2.4, condition (6) reduces to yφ − yr′asr′−r ∈ Gs.
Multiplying this by sr gives yφsr − ya = y(φsr − a) ∈ Gs, contradicting
(4).

Now we show that an unwanted homomorphism killed by an extension 5.6
has already been treated this way while constructing G, hence

Theorem 5.7. EndGs = As for each s ∈ S.

P r o o f. Let s ∈ S, φ ∈ EndGs and assume φ 6∈ As. Then, by Lemma 5.6,
there exists an (s,G)-chain (xk)k<ω satisfying

(1) x0φ 6∈
(
G+

∑

k<ω

xkA
)s
.

Since {xk − xk+1s | k < ω} is a countable subset of G there exists β < λ∗

such that (xk)k<ω is an (s,Gβ)-chain. Moreover, it is easy to check that there
exist potential elements zk (k < ω) such that zk + sωB̃ = (xk + sωB̃)φ.
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Now the Black Box provides an α < λ∗ with

{xk, zk | k < ω} ⊆ Pα, ‖{xk, zk | k < ω}‖ < ‖Pα‖,
(2)

s = sα, φα = φ¹P sα
where we may assume β ≤ α. We have gα = g0

α ∈ G satisfying gα+sωB̃ ∈ P̂ sα
by our construction of G.

If α is strong then (gα+sωB̃)φ = (gα+sωB̃)φα = bα+sωB̃ 6∈ Gs, which
contradicts φ ∈ EndGs. We shall show that α is strong indeed.

Consider any branch v ∈ Br(Im fα). We claim that there are ε = ε(v) ∈
{0, 1} such that

(3) (v0,s + εx0 + sωB̃)φα 6∈
(
Gα +

∑

k<ω

(vk,s + εxk)A
)s
.

Otherwise there exist k > ω and a0, a1 ∈ A with

(v0,s + εx0 + sωB̃)φα − (vk,s + εxk + sωB̃)aε ∈ Gsα (ε = 0, 1),

and the subtraction of both terms in (3) gives

(4) (x0 + sωB̃)φα − xka1 + vk,s(a0 − a1) + sωB̃ ∈ Gsα
where ‖(x0 +sωB̃)φα−xka1 +sωB̃‖ < ‖Pα‖ = ‖v‖ by (2). Therefore, by the
Recognition Lemma and Lemma 2.4, we have vk,s(a0 − a1) ≡ 0 mod sωB̃
and thus (4) reduces to (x0 +sωB̃)φα−xka1 +sωB̃ ∈ Gsα, contradicting (1).

Hence we have proved, for each v ∈ Br(Im fα), that there exists an
(s,Gα)-chain (gkv = vk,s + εxk)k<ω which obviously satisfies the hypothesis
of Lemma 4.5 and is such that (g0

v+sωB̃)φα 6∈ (Gα+
∑
k<ω g

k
vA)s. Applying

Lemma 4.5 it is now easy to see that α is a strong ordinal, which completes
the proof.

Note that all the results and proofs above follow very closely the argu-
ments given in [3].

For lifting the “local results” in Theorem 5.7 to EndG = A we need an
additional assumption on A. The notion of F -completeness with respect to
a filtration F as introduced in [6] turns out to be exactly what we need. Let
F be the filtration of A given by {sωA | s ∈ S}. We will assume that A is
F -complete, which means that for every family C = (as + sωA)s∈S of cosets
with the finite intersection property there is a ∈ A with a ∈ ⋂s∈S(as+sωA).
Note that for S countable this condition is no restriction since F contains
only 0 in this case. Moreover, a module which is complete in the R-filtration
is also F -complete and thus any linearly compact module is F -complete (see
[6] for details).

Before we prove the realization theorem we give a non-trivial example of
a cotorsion-free and F -complete algebra A.
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Example 5.8. Let R = R[x] be the polynomial ring over the real numbers
and S be the multiplicative closure of the set {pa = x−a | a ∈ R}. Therefore
S is uncountable and R is S-torsion-free.

We define R(a) = {f/g | f, g ∈ R; (g, pa) = 1} for each a ∈ R and
A =

∏
a∈RR(a). It is easy to verify that A is S-torsion-free and S-reduced.

Moreover, we have
⋂
s∈S′ As 6= 0 for each countable subset S′ of S, i.e. we

cannot replace S by a countable subset.
It remains to show that Hom(R̂s, As) = 0 for each s ∈ S (to get A

cotorsion-free) and A is F -complete.
We first determine R̂s and As. For each s ∈ S we have sωR = 0; thus

Rs = R and R̂s consists of all formal power series of the form
∑∞
n=0 fns

n

where fn ∈ R for each n < ω. By continuity arguments we conclude

(1) HomR(R̂s, R) = 0 for each s ∈ S.

By pωaR(a) = 0 and pωaR(b) = R(b) for b 6= a it follows that pωaA =
∏
b6=aR(b)

and thus Apa = A/pωaA
∼= R(a). In general we have As ∼= ∏

i≤nR(ai) =⊕
i≤nR(ai) for s = pr1a1

· . . . · prnan .

Therefore it is enough to consider homomorphisms φ : R̂s → R(a) to get

HomR(R̂s, As) = 0 for each s ∈ S.
Suppose φ is such a homomorphism and 1φ = f/g ∈ R(a). Multiplying

φ by g gives φg : R̂s → R and thus φg = 0 by (1). Therefore φ = 0 and A is
cotorsion-free.

To show that A is F -complete with respect to F = {sωA | s ∈ S} we con-
sider a family (fs+sωA)s∈S of cosets having the finite intersection property.
We may assume fs ∈

∏
i≤nR(ai) since fs + sωA ∈ As ∼= ∏

i≤nR(ai) (s =
pr1a1
· . . . · prnan).
Let fa denote fs for s = pa and define g = (fa)a∈R ∈ A. We claim that

g ∈ ⋂s∈S(fs + sωA), i.e. g ≡ fs mod sωA for each s ∈ S.
Obviously, for each a ∈ R,

(2) g ≡ fa mod pωaA.

For s = pr1a1
· . . . · prnan we have fs ≡ fai mod pωaiA for each i ≤ n by the finite

intersection property and sωA ⊆ pωaiA. Therefore fs ≡ g mod pωaiA (i ≤ n)
by (2) and thus fs ≡ g mod sωA as

⋂
i≤n p

ω
aiA = sωA. Hence A is F -

complete.

Finally, we get

Theorem 5.9. If A is cotorsion-free and F-complete then EndG = A.

P r o o f. We consider an endomorphism φ of G. For each s ∈ S we get
a canonical endomorphism φs of Gs = G/sωG. By Theorem 5.7 there are
as ∈ A (s ∈ S) such that φs = as + sωA. We claim that (as + sωA)s∈S has
the finite intersection property. Let N be a finite subset of S and q ∈ S the
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product of all elements in N . For all g ∈ G and for each s ∈ N we have
gφ ≡ gas mod sωG and gφ ≡ gaq mod qωG. Therefore as ≡ aq mod sωA
for each s ∈ N , since qωG ⊆ sωG, i.e. aq ∈

⋂
s∈N (as + sωA). Since A is

F -complete it follows that there is an a ∈ A with a ≡ as mod sωA for every
s ∈ S. Hence φs = a + sωA for each s ∈ S. Therefore φ = a because G is
S-reduced by Lemma 4.4.

6. Inessentials. In this section we state the most general case (we will
give an application in §7). Its proof follows by modifications of the arguments
given in §5 combined with obvious changes similar to [3, §§ 4, 5]; see also
[9, II, §§3, 4]. The definition of an inessential endomorphism is, as usual,
strongly related to the notion of cotorsion-freeness: in the cotorsion-free
case there are no non-zero inessential endomorphisms. Moreover, the notion
of inessentials depends on the topic of consideration (e.g. see [3]). In our
context we shall use Definition 6.1, which differs from the one used in [8];
note that the latter should read as follows: φ is inessential if Imφ is contained
in (rather than equal to) an ω-complete module.

We now have

Definition 6.1. The inessential endomorphisms of Gs and G are de-
fined by

(a) InesGs = {φ ∈ EndGs | Ĝsφ ⊆ Gs} for all s ∈ S.
(b) InesG = {φ ∈ EndG | φs ∈ InesGs for each s ∈ S} where φs denotes

the induced endomorphism of Gs.

Note that we are identifying φ in (a) with its unique extension to Ĝs.
It is easy to check that InesGs and InesG are ideals of EndGs and EndG,
respectively. Moreover, we can verify As ∩ InesGs = 0 by applying Proposi-
tion 5.5 to the element w0,s ∈ Ĝs for a constant branch w.

The key arguments are assembled in the following three statements.

Proposition 6.2. For s ∈ S let K be a potential module containing G ,
and φ ∈ EndKs with φ¹Gs 6∈ As ⊕ InesGs. Then there exists a canonical
module P ⊆ G such that P̂ s(φsn − a) 6⊆ Gs for all (a, n) ∈ ∆s where ∆s is
defined as in §5.

Lemma 6.3. For s ∈ S let K be a potential module containing G , and
φ ∈ EndKs with φ¹Gs 6∈ As ⊕ InesGs. Then there exists an (s,G)-chain
(xk)k<ω such that

(x0 + sωB̃)φ = x0φ 6∈
(
G+

∑

k<ω

xkA
)s
.

Theorem 6.4. If A is an S-reduced and S-torsion-free R-algebra, then
EndGs = As⊕ InesGs for each s ∈ S, where G is the R-module constructed
in 3.3.
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Extension of the local result 6.4 to EndG = A⊕ InesG again requires A
and the ideals InesGs to be of a special form.

Definition 6.5. InesG is well related if, for any φ ∈ EndG with φq ∈
InesGq (q ∈ S), the endomorphism φs of Gs belongs to InesGs for each s
dividing q.

Theorem 6.6. If A is S-reduced , S-torsion-free, F-complete and InesG
is well related , then EndG = A⊕ InesG.

P r o o f. Obviously, A ∩ InesG = 0 since As ∩ InesGs = 0 for all s ∈ S.
Let φ be an endomorphism of G. For all s ∈ S, by Theorem 6.4 there

are as ∈ A and ψs ∈ InesGs such that φs = as + ψs. Defining %s = φ − as
we can identify ψs with %ss. We claim that (as + sωA)s∈S has the finite
intersection property. Let N ⊆ S finite and q be the product of all elements
of N . Then %sq = (φ − aq)s ∈ InesGs for each s ∈ N , since InesG is well
related. Hence φs = %sq + aq = %ss + as and this induces aq ≡ as mod sωA.
Therefore aq ∈

⋂
s∈N (as + sωA). Since A is F -complete there exists a ∈ A

with a ≡ as mod sωA for all s ∈ S. Defining % by % = φ−a we get φ = a+%
with %s = %ss = ψs ∈ InesGs, i.e. % ∈ InesG.

Note that the above result has been obtained using a different approach
for a more general class in [8]; the above less general result is, however,
considerably simpler in its approach.

In the last section we give an example for well-related inessentials.

7. The ℵ0-cotorsion-free case. In the final section we consider the
ℵ0-cotorsion-free case. For S uncountable no such notion has been intro-
duced yet. Our notion of ℵ0-cotorsion-freeness generalizes the definition for
countable S; it is also adapted to the local approach. Assuming that S is
linearly ordered we shall show that the ideal InesG is well related when G
is ℵ0-cotorsion-free.

Hence we get a realization EndG = A⊕ InesG. Throughout this section
let S be linearly ordered, i.e. s divides q or q divides s for all s, q ∈ S.

First we introduce the notion of a sub-finitely generated homomorphism,
or sfg-homomorphism, and a “local” version of the same concept. Note that
this differs from the definition of finite rank used in [3] but that for the
situations where ℵ0-cotorsion-freeness has previously been considered, e.g.
p-adic modules or subgroups of the Baer–Specker group, the two concepts
coincide.

Definition 7.1. (a) Let M,H be s-reduced, s-torsion-free R-modules
(s ∈ S). A homomorphism φ : M → H is sub-finitely generated if there
exists a finitely generated submodule H0 ⊆ H such that Mφ ⊆ H0.
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(b) Let M,H be S-reduced and S-torsion-free R-modules. A homomor-
phism φ : M → H is locally sub-finitely generated if the induced homomor-
phisms φs : Ms → Hs are sub-finitely generated for all s ∈ S.

Note that we shall also use the notation “locally sfg-homomorphism” for
a locally sub-finitely generated homomorphism. We are now ready for

Definition 7.2. An S-torsion-free and S-reduced R-module M is ℵ0-
cotorsion-free if for all s ∈ S and for each homomorphism φ : F̂ s → Ms,
the restriction φ¹F s is sub-finitely generated for any free R-module F =⊕

i∈I eiR.

In the following we outline the arguments to prove that, in the ℵ0-
cotorsion-free case, the inessential endomorphisms coincide with the locally
sfg-endomorphisms. As before, the proofs are similar to the corresponding
ones in [3].

It will be useful to consider the support of an element g ∈ Gs with
respect to its “top”.

Definition 7.3. Let s ∈ S, g ∈ Gs. The top of the support of g is
defined by

[g]∗ =
{ {σ ∈ T | ‖σ‖ = ‖g‖ ∧ σ ∈ [g]} for ‖g‖ successor,
{α < λ∗ | ‖vα‖ = ‖g‖ ∧ [g] \ vα finite} for ‖g‖ limit.

Note that [g]∗ is always finite and non-empty for g 6= 0.

The next lemma is the key for the further conclusions in this section.

Lemma 7.4. Let s ∈ S, G be constructed as in 3.3, and φ : F̂ s → Gs.
Then

(a)
⋃
i∈I [eiφ]∗ is finite, and

(b) {‖eiφ‖ | i ∈ I} is finite.

P r o o f. Part (b) follows from (a), hence it is enough to prove (a). For I
finite the conclusion is obviously true. Now let I be infinite and suppose that
(a) is false. Then

⋃
i∈I [eiφ]∗ is infinite and there exists a sequence (in)n<ω

in I such that, for all n < ω,

(1) Xn = [fnφ]∗ \
⋃

k<n

[fkφ]∗ 6= ∅

where fn = ein . We may assume that

(2) ‖fnφ‖ ≤ ‖fn+1φ‖ for all n < ω.

Moreover, we may assume that all ‖fnφ‖ are either successors or limits
(otherwise change to a subsequence). If all ‖fnφ‖ are successors then, by
Definition 7.3, (1) and (2), we can choose σn ∈ Xn satisfying the following
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conditions:

(3) sup
n<ω
‖σn‖ = sup

n<ω
‖fnφ‖, fnφ¹σn 6= 0,

fkφ¹σn = 0 for k < n.

If all ‖fnφ‖ are limit ordinals, then we may choose ordinals α(n) ∈ Xn which
are all different by (1). Hence all branches vα(n) are different and we may
choose σn ∈ vα(n) satisfying (3). Additionally, we may assume that

(4) whenever σn ∈ v for infinitely many n < ω and for some v ∈ BrT ,
then σn ∈ v for all n.

Finally, choose an increasing sequence m(n) of natural numbers such
that, for all n < ω,

(5) n · l(σn) + n ≤ m(n) and fns
m(n)φ¹σn 6≡ 0 mod σnÃssm(n+1).

Now we consider the element f =
∑
k<ω fks

m(k) ∈ F̂ s, which we can
split into

f =
∑

k≤n
fks

m(k) + f (n)sm(n+1) (n < ω)

where f (n) ∈ F̂ s for each n < ω. Using (3) we get

fφ¹σn = fns
m(n)φ¹σn + f (n)sm(n+1)φ¹σn

≡ fnsm(n)φ¹σn mod σnÃssm(n+1)

where fφ, f (n)φ ∈ Gs. Therefore, using (5), for each n < ω,

(6) σn ∈ [fφ].

By continuity we get fφ =
∑
k<ω fkφs

m(k). Hence ‖fφ‖ = supn<ω ‖σn‖ by
(3). The Recognition Lemma provides infinitely many σn which belong to
a finite union of branches. Hence there exists β < λ∗ such that σn ∈ vβ for
infinitely many n < ω, thus σn ∈ vβ for all n < ω by (4). Again using the
Recognition Lemma we find k < ω, a ∈ As with fφ¹σn = σnas

l(σn)−k
β for

large n. On the other hand, we have fφ¹σn ∈ σnÃssm(n), hence

(7) as
l(σn)−k
β ∈ Ãssm(n) ∩As = Assm(n) for almost all n.

If sβ ∈ sωR then as
l(σn)−k
β ≡ 0 for almost all n, and for sβ 6∈ sωR we find

t < ω such that sβ 6∈ Rst. Therefore st ∈ Rsβ since S is linearly ordered;
also, a ∈ Assn for almost all n by (5) and (7). Hence a = 0 because As is
s-reduced. We deduce fφ¹σn = 0 in any case, contradicting (6).

Now we are prepared to say more about a homomorphism φ : F̂ s →
Gs (s ∈ S). The next lemma will be used to prove that G is ℵ0-cotorsion-free
if A is.
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Lemma 7.5. Let F =
⊕

i∈I eiR and G be given by Construction 3.3.
Then any homomorphism φ : F̂ s → Gs (s ∈ S) can be written as a sum
φ = φ1 + φ2 of homomorphisms φ1, φ2 ∈ Hom(F̂ s, Gs) such that ‖eiφ1‖ is
a limit for all i ∈ I, and eiφ2 ∈

⊕
τ∈T ′ τA

s for all i ∈ I and for some finite
subset T ′ of T.

P r o o f. For each i ∈ I the Recognition Lemma provides bi ∈ B, gi ∈ G
such that

(1) eiφ = gi + bi with ‖gi‖ a limit and ‖τ‖ > ‖gi‖ for all τ ∈ [bi].

Let T ′ =
⋃
i∈I [bi], which is finite by Definition 7.3 and Lemma 7.4. Moreover,

let ν be the maximum of all ‖τ‖ with τ ∈ T ′; hence ν is a successor. We
prove 7.5 by induction on ν. If ν = 0 then T ′ = ∅; hence φ1 = φ and φ2 = 0
by (1).

Suppose 7.5 is true for all homomorphisms such that max{‖τ‖ | τ ∈
T ′′} < ν with T ′′ a finite subset of T as in 7.5. Consider φ : F̂ s → Gs

with max{‖τ‖ | τ ∈ T ′} = ν and let Z = {τ ∈ T ′ | ‖τ‖ = ν}. Define
ψ : F̂ s → Bs by fψ =

∑
τ∈Z fφ¹τ . We need to check that fψ ∈ Bs for each

f ∈ F̂ s. Since Z ⊆ T ′ is finite, it is enough to show fφ¹τ ∈ Bs for each
τ ∈ Z. By our choice of ν we certainly have ‖fφ‖ ≤ ν for all f ∈ F̂ s. If
‖fφ‖ < ν, then fφ¹τ = 0 for all τ ∈ Z. If ‖fφ‖ = ν we get fφ = gf + bf
where ‖gf‖ < ν and bf ∈ Bs with ‖bf‖ = ‖fφ‖. Hence fφ¹τ = bf ¹τ ∈ Bs.
Thus ψ : F̂ s →⊕

τ∈Z τA
s and obviously ‖f(φ− ψ)‖ < ν for all f ∈ F̂ s. So

there are homomorphisms φ′1, φ
′
2 satisfying 7.5 for φ− ψ = φ′1 + φ′2. Hence

φ1 = φ′1 and φ2 = φ′2 + ψ are the desired homomorphisms.

Lemma 7.6. If A is ℵ0-cotorsion-free then so is G.

P r o o f. We want to show that Gα is ℵ0-cotorsion-free for all α ≤ λ∗.
(i) Let α = 0, s ∈ S, φ : F̂ s → Gs0 = Bs. Then, by Lemma 7.5, there

exists a finite subset T ′ of T such that φ : F̂ s → ⊕
τ∈T ′ τA

s. Since A is
ℵ0-cotorsion-free, φ¹F s is sub-finitely generated.

By Lemma 7.5 it is enough to consider homomorphisms φ : F̂ s → Gsα
with ‖eiφ‖ a limit for all i ∈ I.

(ii) Assume α is a limit and Gβ is ℵ0-cotorsion-free for all β < α. By
Lemma 7.4 there exist ordinals α(1) < . . . < α(n) (n < ω) such that⋃
i∈I [eiφ]∗ = {α(i) | i ≤ n}. We get α(i) < α for all i ≤ n. Hence

F̂ sφ ⊆ Gsα(n)+1 using ‖fφ‖ ≤ ‖vα(n)‖ and [fφ] ⊆ ⋃i∈I [eiφ] for all f ∈ F̂ s.
Thus φ¹F s is a sfg-homomorphism.

(iii) Next assume Gα+1 = Gα +
∑
k<ω g

k
αA and Gα is ℵ0-cotorsion-free.

Let s ∈ S and φ : F̂ s → Gsα+1 with ‖eiφ‖ limits. If sα ∈ sωR then, for all
k < ω, gkα ≡ gk+1

α sα+gk ≡ gk mod sωG for some gk ∈ Gα, thus Gsα+1 = Gsα.
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Therefore in this case F sφ is contained in a finitely generated submodule of
Gsα. Hence we consider the case sα 6∈ sωR. There is a (minimal) m < ω such
that

(1) sm = sα · q (q ∈ R).

For all f ∈ F̂ s we have

(2) fφ = gf + g
kf
α af

where gf ∈ Gsα, af ∈ As and kf < ω minimal with kf = 0 or af 6∈ Assα.
Let ki = kei (i ∈ I).

(a) First we assume sup{ki | i ∈ I} is finite. We shall show that in this
case sup{kf | f ∈ F̂ s} < ω. Let k = max{ki | i ∈ I}. Then kf ≤ k for all
f ∈ F s. Now we consider f ∈ F̂ s and suppose kf > k; we have f =

∑
i<ω fis

i

where fi ∈ F s. We can decompose f into f =
∑
i<n fis

i + f (n)sn, with

f (n) ∈ F̂ s for each n < ω. Using (2) and kf > k we get

(3) fφ = gf + g
kf
α af , af 6∈ Assα.

On the other hand, we have

fφ =
(∑

i<n

fis
i
)
φ+ f (n)snφ = gn + gk

′
α an + f (n)snφ for all n < ω,

where gn ∈ Gsα, an ∈ As, k′ ≤ k. Since (gkα)k<ω is an (sα, Gα)-chain, there
is a g′n ∈ Gsα, for each n < ω, such that

(4) fφ = g′n + g
kf
α ans

kf−k′
α + f (n)φsn.

We get fφ¹σ = σafs
l(σ)−kf
α = σans

kf−k′
α s

l(σ)−kf
α + f (n)φsn¹σ for almost all

σ ∈ vα using (3) and (4). By (1) we may choose n large enough such that
sn ∈ Rsαs

l(σ)−kf
α and therefore, from kf > k ≥ k′, we get afs

l(σ)−kf
α ∈

Assαs
l(σ)−kf
α and af ∈ Assα. This contradicts (3) and thus we have kf ≤ k

for all f ∈ F̂ s.
Since (gkα)k<ω is an (sα, Gα)-chain we may write fφ = g′f + gkαa

′
f for

all f ∈ F̂ s. We define ψ : F̂ s → Gsα by fψ = g′f and % : F̂ s → gkαA
s by

f% = gkαa
′
f . Hence φ = ψ+% and since Gα, A are ℵ0-cotorsion-free we get a

finitely generated submodule H of Gα+gkαA
s such that F sφ ⊆ H. Therefore

Gα+1 is ℵ0-cotorsion-free if we can exclude sup{ki | i ∈ I} = ω.

(b) Assume for contradiction that there is a homomorphism φ : F̂ s →
Gsα+1 (s ∈ S) such that sup{ki | i ∈ I} = ω where eiφ = gi + gkiα ai
(ki minimal). Then we can choose nj (j < ω) in I and σj in vα (j < ω) such
that
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kn0 < . . . < knj < . . . , enjφ¹σj = σjanjs
l(σj)−knj
α 6= 0,

(5)
eniφ¹σj = 0 for i > j.

Moreover, let m(j) = knj ·m for all j (m is given by (1)). Now we consider

the element f =
∑
j<ω enjs

m(j); we have fφ = gf + g
kf
α af . For almost all

j < ω, we get

fφ¹σj = σjafs
l(σj)−kf
α =

(∑

i≤j
enjs

m(j)φ
)
¹σj

=
∑

i≤j
σjani(sαq)

kni · sl(σj)−kniα =
(∑

i≤j
σjaniq

kni

)
sl(σj)α .

Hence, by our choice of kf (minimal), we get kf = 0 (otherwise sα divides
af ). Therefore we get af =

∑
i≤j aniq

kni for almost all j < ω, which implies

anj+1q
knj+1 = 0 (in As). Since sα · q = sm and As is s-torsion-free we

have anj+1 = 0 for almost all j < ω, but this contradicts (5). Hence G =⋃
α≤λ∗ Gα is ℵ0-cotorsion-free.

Next we describe the inessential endomorphisms of G for ℵ0-cotorsion-
free G.

Theorem 7.7. Let A be ℵ0-cotorsion-free and φ ∈ EndGs for some
s ∈ S. Then φ is inessential iff φ is sub-finitely generated.

P r o o f. (i) Let φ ∈ InesGs, i.e. Ĝsφ ⊆ Gs. As an R-module G is an
epimorphic image of a free module F . Hence Gs is an epimorphic image of
F s; let π : F s → Gs be the epimorphism. We can extend π to a homomor-
phism π̂ : F̂ s → Ĝs. Considering π̂φ : F̂ s → Gs we see that π̂φ¹F s = πφ is
a sfg-homomorphism, since G is ℵ0-cotorsion-free. Therefore φ : Gs → Gs is
sub-finitely generated.

(ii) Conversely, let φ ∈ EndGs with Gsφ ⊆ H0 for some finitely gener-
ated submodule H0 ⊆ Gs. By Theorem 6.4 there are ψ ∈ InesGs and a ∈ As
such that φ = a−ψ. There exists a finitely generated module H1 ⊆ Gs such
that Gsψ ⊆ H1 by (i). Therefore Gsa = Gs(φ + ψ) ⊆ H0 + H1; but this
is only possible for a = 0 (in As), since the τa (τ ∈ T ) are all linearly
independent for a 6= 0. Hence φ = −ψ ∈ InesGs.

As an immediate consequence we have

Corollary 7.8. Let A be ℵ0-cotorsion-free and φ ∈ EndG. Then φ is
inessential iff φ is locally sub-finitely generated.

Now let FinlG = InesG denote the ideal of all locally sub-finitely gener-
ated endomorphisms of G. Thus our realization theorem becomes

Theorem 7.9. If A is F-complete and ℵ0-cotorsion-free then EndG =
A⊕ FinlG.
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P r o o f. By Theorem 6.6 it is enough to show that FinlG = InesG is
well related in this case. Let s, q ∈ S with s dividing q, and φ ∈ EndG such
that φq ∈ InesGq. Moreover, let π be the canonical projection π : Gq →
Gs (qωG ⊆ sωG); obviously, πφs = φqπ. Since φq is a sfg-endomorphism
there is a finitely generated submodule H ⊆ Gq such that Gqφq ⊆ H by as-
sumption. Therefore Gqφqπ = Gqπφs = Gsφs ⊆ Hπ, which is a finitely gen-
erated submodule of Gs. Hence φs is sub-finitely generated and inessential.
So we have shown that InesG is well related, which completes the proof.
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[1] C. Böt t inger and R.Göbe l, Modules with two distinguished submodules, in: Proc.
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