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Abstract. This paper analyzes the proof-theoretic strength of an infinite version of
several theorems from algorithmic graph theory. In particular, theorems on reachabil-
ity matrices, shortest path matrices, topological sorting, and minimal spanning trees are
considered.

For finite graphs, polynomial time algorithms can be used to find reach-
ability matrices, shortest path matrices, topological sortings and minimal
spanning trees. We will analyze the proof-theoretic and recursion-theoretic
strength of infinite statements related to these topics using the techniques
of reverse mathematics.

The subsystems of reverse mathematics which are used below include
RCAy, ACAy, and H%—CAO. The system RCA( consists of basic arith-
metic axioms, a restricted induction scheme, and a comprehension axiom
asserting the existence of AY definable sets. ACA( adds to RCA( a compre-
hension axiom for arithmetically definable sets. Similarly, II}-CA includes
a comprehension axiom for I} definable sets. A nice introduction to reverse
mathematics can be found in [4]. Details on the encoding of graph-theoretic
statements in subsystems of second order arithmetic can be found in [1].

Reachability and shortest path matrices. Given a graph G = (V, E)
with vertex set V' and edge set E, the reachability matriz for G is a function
M :V xV — {0,1} such that M(v,w) = 1 if and only if there is a path
in G from v to w. The next three results explore the proof-theoretic and
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recursion-theoretic strength of statements concerning reachability matrices.
The following theorem is closely related to Theorem 2.5 of [2]. Clauses in
parentheses may be included or deleted without affecting the validity of the
theorem. A graph is 2-regqular if every vertex is contained in exactly two
edges.

THEOREM 1. (RCAy) The following are equivalent:

(1) ACA,.
(2) If G is a (2-regular) (directed) graph, then the reachability matriz of
G ezists.

Proof. To prove that (1) implies (2), assume ACA( and let G be a
graph. The reachability matrix of G can be defined by setting M (v, w) =1
if and only if some finite sequence of edges forms a (directed) path from v
to w. Since the non-zero entries of M are a X definable set, by ACA, the
reachability matrix exists.

To prove that (2) implies (1), assume RCA and the version of (2) which
includes all the parenthetical hypotheses. By Lemma 2.3 of [3] it suffices
to prove the existence of the range of an arbitrary injection, denoted by
f + N — N. Define the graph G as follows. The vertices of G will be of the
form 7 and r! for all 4,5 € N. Include all edges of the form (r?,1{) in G.
For each ¢ and j, if f(j) # 4, then include the directed edges (lf,l{“) and
(r7**,77) in G. On the other hand, whenever f(j) = i, include the edges
(,r7) and (T, 7T in G. Since G is A definable, RCA( proves its
existence. G is a 2-regular directed graph, so (2) implies that the reachability
matrix of G exists. Since for each ¢ € N, ¢ is in the range of f if and only if
there is a directed path from 1Y to r¥, the range of f is AY definable in the
reachability matrix of G. Thus, by RCAj, the range of f exists, completing

the proof. m

COROLLARY 2. (RCAy) The following are equivalent:

(1) ACA,.
(2) For any sequence (G, | i € N) of (2-regular) (directed) graphs, there
is a sequence (M; | i € N) such that for each i, M; is the reachability matriz

for G;.

Proof. To prove that (1) implies (2), it suffices to note that the se-
quence of non-zero entries of the reachability matrices is ¥ definable in the
sequence of graphs. The proof that (2) implies (1) follows immediately from
Theorem 1. m

COROLLARY 3. There is a recursive (2-reqular) (directed) graph G such
that 0’ is recursive in the reachability matriz of G. If (G; | i € N) is a recur-



Reverse mathematics 3

sive sequence of (2-reqular) (directed) graphs, then the sequence of reacha-
bility matrices for these graphs is recursive in 0.

Proof. To prove the first statement, imitate the proof of Theorem 1, let-
ting f be a recursive function such that 0’ is recursive in the range of f. The
second statement follows immediately from the X9 definability argument in
the proof of Corollary 2. m

Additional information can be encoded in the reachability matrix with-
out changing the proof-theoretic strength of the statement. In the following,
we refer to acyclic paths as arcs. Also, we say that two arcs v,ag, a1, ...
ooy Gm,w and v, bg, by, ..., by, w are distinct if for some j, a; # b;.

THEOREM 4. (RCAy) The following are equivalent:

(1) ACA,.

(2) If G is a (2-regular) (directed) graph, then there is a function M :
V xV — NU{oo} such that for all pairs of vertices v and w of G, M (v, w)
s the number of distinct arcs from v to w.

Proof. To prove that (1) implies (2), it suffices to note that the de-
sired function M is 19 definable in G, and thus exists by ACAg. Since the
reachability matrix for G is A{ definable in M, (2) implies (1) follows via
an application of Theorem 1. m

Imitating Corollary 2, one can easily formulate a version of part (2) of
Theorem 4 for sequences of graphs which is provably equivalent to ACA,.
However, the use of II9 definability in the proof of Theorem 4 indicates a
change in the recursion-theoretic content of the statement. This is explicitly
demonstrated by the following result.

THEOREM 5. There is a recursive graph G such that the function M of
Theorem 4 is 11 complete.

Proof. By the proof of Theorem 4, the counting function for any re-
cursive graph is IT3 definable. Thus it suffices to define a recursive graph
G such that some II3 complete set is 1-reducible to M. Note that INF =
{x : W, is infinite} is II complete [5]. Let the vertices of G be of the form
by, en, and vy, ;i for all j, k,n € w. If {n}(j) halts at precisely stage k, the
edges (by,vn j k) and (vp jk,en) are included in G. Clearly, G is recursive.
Let M be the counting function for G. Then for all n € w, n € INF if and
only if M (b, e,) = co. Thus INF <; M as desired. (In this proof, G can be
viewed as undirected or directed.) m

A graph is integer weighted if there is a function w : E — N7 that assigns
a positive integer to each edge of G. If G is directed, the edges (u,v) and
(v,u) could conceivably have distinct weights. RCAg can prove that if two
vertices of an integer weighted graph are connected by a path, then there is
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a path of minimal total weight connecting them. A shortest path matriz for
a graph G is a function M : V x V — NU{oo} such that M (v,w) = o0 if G
contains no path from v to w, and otherwise M (v, w) is a code for a path of
minimal total weight. Including the code for a minimal weight path in the
reachability matrix does not require additional proof-theoretic strength.

THEOREM 6. (RCA) The following are equivalent:

(1) ACA,.
(2) If G is a (2-regular) (directed) integer weighted graph, then there is
a shortest path matriz for G.

Proof. To prove that (1) implies (2), it suffices to note that a shortest
path matrix is II{ definable in G, thus exists by ACA,. Since the reachability
matrix of G is A? definable in any shortest path matrix, (2) implies (1)
follows via an application of Theorem 1. m

The reader may wish to verify that Corollaries 2 and 3 can be modified
by replacing reachability matriz by shortest path matriz. Also, Theorem 6
holds for rationally weighted graphs, that is, graphs with positive rationals
assigned to the edges.

Topological sorting. In this section we consider two infinite versions
of topological sorting of directed graphs. The following definition is non-
traditional in that it allows the same label to be assigned to many vertices.

DEFINITION 7. (RCAy) A function s : V' — N is a weak topological
sorting of the directed graph G = (V, E) if

(1) the range of s is either N or an initial segment of N, and
(2) if (u,v) € E, then s(u) < s(v).

To simplify the following development, we restrict our attention to graphs
with a source node. The vertex vg is a source node for G if for every u € V
such that u # wvg, there is a directed path from vy to w. If vy is a source
node for G, we say G is path bounded if for every u # vg, there is an integer
k such that the length of every path from vy to u is at most k. Clearly,
path bounded graphs are acyclic. In fact, path boundedness is a necessary
and sufficient condition for the existence of a weak topological sorting. Part
of this equivalence is provable in RCA, as demonstrated by the following
theorem.

THEOREM 8. (RCAy) If G is a directed graph which has a source node
and a weak topological sorting, then G is path bounded.

Proof. Suppose G has source node vy and a weak topological sorting
s : V. — N. Suppose by way of contradiction that G is not path bounded.
Then there is a vertex u such that there are arbitrarily long paths from v
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to u. Suppose s(u) = k. Let vo,v1,...,vj,u be a directed path such that
j > k. By the definition of a weak topological sorting, 0 < s(vg) < s(v1) <
... < s(vj) < s(u), so s(u) > j > k, a contradiction. m

Proving that path boundedness is sufficient to guarantee the existence
of a weak topological sorting requires ACAg.

THEOREM 9. (RCAy) The following are equivalent:

(1) ACA,.
(2) Every path bounded directed graph with a source node has a weak
topological sorting.

Proof. To prove that (1) implies (2), assume ACA( and let G be a path
bounded directed graph with source node vg. Define s : V' — N by setting
s(v) to the least integer k such that every path from vy to V is of length at
most k. By ACAy, the function s exists. Whenever (u,v) is an edge of G,
s(v) > s(u) + 1, so s is the desired weak topological sorting.

To prove the converse, assume RCA( and (2). As in the proof of Theo-
rem 1, it suffices to prove the existence of the range of an injection f : N — N.
Let G be the directed graph with vertices {r; | i € N} and {d; | i € N}.
For each ¢ € N, include the directed edges (r;,r;1+1) in G. Additionally, if
f(j) =4, include the edges (7,d;) and (dj, ri+1). RCAg proves that G ex-
ists and is a path bounded directed graph. Because the domain of f is N, rq
is a source node for G. Applying (2), let s : V' — N be a weak topological
sorting of G. Since s maps V onto N, for each i we have s(ri41) = s(r;) + 2
if and only if i is in the range of f. Since the range of f is A{ definable in
s, RCA( proves its existence, completing the proof. m

Note that one can still prove Theorems 8 and 9 if the first clause is omit-
ted from Definition 7. To do this, the immediately preceding argument must
be modified by inserting a chain of j nodes between r; and r;+; whenever
1) = i.

The proof of Theorem 9 can be adapted to provide recursion-theoretic
consequences.

COROLLARY 10. Fach path bounded directed recursive graph with a source
node has a weak topological sorting recursive in 0'. Also, there is a path
bounded directed recursive graph G with a source node such that 0" is recur-
stve in any weak topological sorting of G.

Proof. To prove the first statement, it suffices to note that the weak
topological sorting constructed in the first part of the proof of Theorem 9 is
1Y and X9 definable. By Post’s Theorem (see [5]), the result follows. To con-
struct the recursive graph for the second statement, imitate the construction
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in the second part of the proof of Theorem 9, letting f be some recursive
injection with 0’ recursive in its range. m

Traditionally, topological sortings of graphs do not assign the same label
to many nodes. Consequently, we will now consider the following definition.

DEFINITION 11. (RCAy) A function is a topological sorting if it is an
injective weak topological sorting.

Not all graphs that have weak topological sortings have topological sort-
ings. We say that a directed graph G with source node vy is path sparse if
for every vertex u # vg, there are at most finitely many directed paths from
vo to u. Path sparseness plays the same role for topological sorting as path
boundedness played for weak topological sorting, as reflected by the next
two theorems.

THEOREM 12. (RCAy) If G is a directed graph which has a source node
and a topological sorting, then G is path sparse.

Proof. Similar to the proof of Theorem 8. m
THEOREM 13. (RCAy) The following are equivalent:

(1) ACA,.
(2) Every path sparse directed graph with a source node has a topological
sorting.

Proof. To prove that (1) implies (2), assume ACA( and let G = (V, E)
be a path sparse graph with source node vy. Fix an enumeration of V in
which each node occurs infinitely often. Define s=! : N — V and a sequence
of integer markers (j,, | n € N) as follows. Let s71(0) = vy and jo = 0. Sup-
pose that s71(n) and j, have been defined. Let S be the set of all vertices
v such that v is not in {s71(k) | kK < n} and every vertex other than v lying
on any path leading from vy to v is in {s71(k) | k¥ < n}. Let s71(n + 1)
be the vertex in S appearing first after v;, in the enumeration. Let j,1 be
the least integer greater than j, such that v;, ., = s !'(n+1). ACAq suf-
fices to prove that s~! exists. Since G is path sparse, use of the j,s insures
that s~! is a bijection between N and V. A straightforward induction argu-
ment shows that the inverse function s : V' — N is the desired topological
sorting.

To prove that (2) implies (1), imitate the reversal of Theorem 9. m

Recursion-theoretic analysis of the proof of Theorem 13 yields a ver-
sion of Corollary 10 with weak topological sortings replaced by topological
sortings.

Our results concerning topological sortings can easily be extended to
sequences of graphs. The reader may wish to verify the following results.
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COROLLARY 14. (RCAy) The following are equivalent:

(1) ACA,.

(2) For any sequence (G; | i € N) of directed graphs with source nodes,
there is a function g : N — {0,1} such that g(i) = 1 if and only if G; has a
(weak) topological sorting.

One can construct a recursive sequence of graphs such that the deciding
function of Corollary 14 for the existence of (weak) topological sortings is
19 complete.

Spanning trees. In this section we consider spanning trees. A spanning
tree for a graph G is an acyclic connected subgraph of G that contains
every vertex of G. For Theorem 15 through Theorem 19, we will restrict our
attention to undirected graphs. A proof that every connected recursive graph
has a recursive spanning tree can be derived from the following theorem.

THEOREM 15. (RCA) Every connected graph has a spanning tree.

Proof. We work in RCAy. Let G be a connected graph and let (e; |
i € N) be an enumeration of the edges of G. Define h : N — {0,1} by
letting ~2(0) = 1 and setting h(n) = 1 if and only if the subgraph with edges
{en}U{e; | i <nAR(i) =1} does not contain a cycle. RCAy proves that h
exists and is the characteristic function for the edge set of a spanning tree
for G. m

Every spanning tree is minimal in the sense that deletion of one edge
yields a disconnected graph. Minimality is more subtle for edge weighted
graphs. A graph is rationally weighted if there is a function w : E — Q7 that
assigns a positive rational to each edge. We say that a rationally weighted
graph G has a minimal spanning tree if there is a spanning tree for G whose
edge weights sum to a finite value which is no greater than the sum of the
edge weights for any other spanning tree of G. The next theorem shows that
connectedness of G does not guarantee the existence of a minimal spanning
tree.

THEOREM 16. There is a rationally weighted connected recursive graph
with no minimal spanning tree.

Proof. Let G be the ladder graph with vertices labeled I; and r; and
edges (I;,1;4+1), (ri,ri41), and (1;, ;) for each i € w. Define a weight function,
w, for the edges by setting w(l;, ;1) = w(r;,riz1) = 27¢ and w(l;, r;) =
5-27% Suppose T is a spanning tree for G. Then there is a lowest rung of
the form (l;,7;) in T. Consider the graph 7" obtained by deleting (I;,r;)
from T and adding the edges (I;4+1,7j41), ({j,1j+1), and (7;,7j41). (One of
these edges may be omitted if the resulting graph is not acyclic.) Note that
T’ spans G and w(T") < w(T) — 20+ < w(T), so T is not minimal. =
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We can formulate a sufficient condition for the existence of a minimal
spanning tree using the following terminology. A graph G is finitely con-
nected if it is connected and each pair of vertices is connected by only finitely
many distinct arcs.

THEOREM 17. (RCAy) The following are equivalent:

(1) ACA,.
(2) Every finitely connected rationally weighted graph of bounded total
weight has a minimal spanning tree.

Proof. To prove that (1) implies (2), assume ACAy, and let G be a
finitely connected graph of bounded total weight. For any finite set €& of
edges and any integer k, let G(€, k) denote the subgraph of G whose edges
consist of € together with those edges whose codes are greater than k. Fix
an enumeration of all pairs of vertices from G. Build the tree T' as follows.
Each node of T' is an arc between the pair of vertices corresponding to its
level. If o is a sequence of such nodes, then o € T if and only if

Ve VE[(G (€, k) spans G) — w(G(e, k)) > w({Jo)].

Since G is finitely connected, T is finitely branching. Also, for the sequence
of pairs of vertices of a given length [, there are only finitely many ways to
assign arcs to the vertex pairs. Consequently, there is an assignment o of
length [ which minimizes w(|J o). Since every spanning graph must contain
an arc between each pair of vertices, if G(€,k) spans G, then w(G(€é,k)) >
w(|J o). Thus, T contains a sequence of length [ for arbitrary [. Summarizing,
T is infinite and finitely branching. Applying Konig’s Lemma (which is a
consequence of ACA) yields an infinite path through 7'. Let S denote the
union of the path through 7. Since an arc between each pair of vertices is
included in S at the level of T associated with that pair, S is a spanning
tree.

Suppose, by way of contradiction, that S is not minimal. Then there is
a spanning tree S’ of G and an € > 0 such that w(S’) + & < w(S). Choose
k so large that ¢ is greater than the sum of the weights of all edges of
G whose vertices have codes larger than k. Let € be the collection of all
edges of S’ with codes less than or equal to k. Then G(€, k) spans G and
w(G(€ k) < w(S")+e < w(S). Thus, for some initial segment o of the path
defining S, w(G(€, k)) < w(|J o), contradicting the construction of 7. Thus,
S is a minimal spanning tree.

To prove that (2) implies (1), we will use (2) to prove the existence
of the range of an injection. Assume RCA(, and (2), and let f : N — N
be an injection. Define the graph G as follows. The vertices of G will be
l;; and r; ; for each 7,5 € N. For each i,j € N, add the edges (i j,li j+1)
and (Ti,j,r¢7j+1) to G, assigning the Weights w(li,j, li,jJrl) = w(rm, Ti,j+1) =



Reverse mathematics 9

2777, For each i € N, add the edges (I;0,7i0) and (ri0,li+1,0), assigning
the weights w(l;0,70) = w(ri0,li+1,0) = 2. Finally, whenever f(s) = t,
add the edge (It s41,7t.s4+1) to G, with w(l; s41,7¢s+1) = 27771, Note that
w(G) < 13, so G is bounded. Additionally, RCA, can prove that G is
finitely connected. By (2), G has a minimal spanning tree. For each ¢ € N,
t is in the range of f if and only if (I;0,7+,0) is not in the minimal spanning
tree. By recursive comprehension, the range of f exists. m

In the terminology of recursive graph theory, a graph is highly recursive
if there is a recursive function f : V' — N mapping the vertices of the graph
into the integers such that f(v) is an upper bound on the codes of all vertices
adjacent to v. The following corollary is a recursion-theoretic recasting of
the preceding result.

COROLLARY 18. There is a bounded finitely connected highly recursive
graph G such that 0 is recursive in every minimal spanning tree of G.

Proof. Imitate the reversal in the proof of Theorem 17, letting f be a
recursive function such that 0’ is recursive in the range of f. m

If G is a weighted finite graph in which no two edges have the same
weight, then G has a unique minimal spanning tree. Given the existence of
a minimal spanning tree, RCA( suffices to prove uniqueness in the infinite
analog of this case, as shown below.

THEOREM 19. (RCA) Suppose that G is a rationally weighted graph in
which no two edges have the same weight. If G has a minimal spanning tree,
then G has a unique minimal spanning tree.

Proof. Suppose G is as hypothesized. By way of contradiction, suppose
Ty and T5 are distinct minimal spanning trees. The recursive comprehension
axiom suffices to prove the existence of the set S of those edges which lie
in exactly one of 17 and T5. Since T and T5 are distinct, S is non-empty.
Furthermore, S must contain an edge e of maximum weight.

Without loss of generality, we may suppose that e € T7. Let 7] denote
T, — {e}. RCA| suffices to prove that 77 has exactly two components and
that there is at least one edge ¢ € T, such that e’ € T} and one vertex of
e’ lies in each component. By the choice of e, w(e’) < w(e). Consequently,
w(T{U{e'}) < w(Ty). Since T7U{e’} spans G, this contradicts the minimality
of T7. Thus, G has a unique minimal spanning tree. m

The condition in Theorem 17 is sufficient to prove the existence of min-
imal spanning trees, but not necessary. The next theorem shows that the
existence of a choice function for graphs with minimal spanning trees is
provable in H%—CAO. For the next two theorems, we will consider both
undirected and directed graphs. We define a spanning tree for a directed
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graph as an acyclic directed spanning graph with a source node. Thus, for
any vertex v in a directed graph G, any spanning tree for G must contain a
directed path from the source node to v.

THEOREM 20. (TI1-CAg) If (G; | i € N) is a sequence of rationally
weighted (directed) graphs, then there is a function f : N — {0,1} such that
f@@) =1 1if and only if G; has a minimal spanning tree.

Proof. First we will prove the statement for directed graphs. Assume
II}-CA, and let (G; | i € N) be a sequence of rationally weighted directed
graphs. We will show that there is a 31 formula with free variable n which
is equivalent to “G,, has a minimal spanning tree.” Since the naive formal-
ization of this statement is X3, some effort is necessary.

We will need to refer to subgraphs of the following form. If S is a sub-
graph of G,,, €' is a finite set of edges of G,,, and k is an integer, let S(€, k)
denote the subgraph of G, whose edges consist of € together with those
edges of S whose codes are greater than k. Let ¢ (T, n) be a formula stating
that there exists an S such that

e S is a spanning tree of G,, of bounded total weight,
e T is a spanning tree of GG,,, and

e for every € and k, if S(€, k) has a source node and spans G, then
w(S(Z,k)) = w(T).

Note that 1(T,n) can be formalized as a ¥} statement with the sequence
(G; | i € N) as a parameter.

Now we show that (7, n) holds if and only if T" is a minimal spanning
tree of G,,. First, if T' is a minimal spanning tree for G, setting S = T
makes all the clauses of the formula true, so ¥ (7,n) holds. Now suppose
that T' is a spanning tree of Gy, but not minimal. Then there is a spanning
tree T of G,, such that w(T') + ¢ = w(T) for some ¢ > 0. Let S be any
spanning tree of G of bounded weight. Since the weight of S is bounded,
there is a k such that w(S(0,k)) < . Let € be the collection of all edges
of T included in paths from the source node of T to vertices which are end
nodes of edges of S that have codes less than or equal to k. Let €2 be the
collection of edges of T that lie on the path from the source node of T' to
the source node of S. Let € = €} U €5, and note that € is finite. Also, note
that S(€, k) is a spanning subgraph of G,, with a source node, and

w(S(E k) < w(T) +w(S0,k)) < w(T) +e=w(T).
Thus, if T is a spanning tree which is not minimal, then —)(7,n) holds.
Combining this with the second clause of (T, n), we have shown that if T
is not a minimal spanning tree, then = (7, n) holds. Summarizing, T is a
minimal spanning tree of G, if and only if (7T, n).
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To complete the proof for the directed case, note that 3T%(T,n) is a 31
formula asserting that GG, has a minimal spanning tree. By H%—CAO, there
is a function f : N — {0,1} such that f(n) =1 if and only if ITY(T, n).

By using the technique of replacing undirected edges by two directed
edges, the preceding argument can be extended to the undirected case. m

A partial converse to Theorem 20 can be proved using the following
lemma.

LEmMA 21. (RCAy) Let (T))nen be a sequence of trees. There is a
sequence (T))nen of trees such that for each n, T, is well founded if and
only if T is well founded, and for every m, T) contains a sequence of
length m.

Proof. Let p,, denote the mth prime. Let T be the tree consisting of
sequences of the form (p,,,p2,,...,p’,) where j < m. Given a tree T, let
T be the disjoint union of T,, and 7. =

Now we can state and prove the partial reversal for Theorem 20. In
order to emphasize the resulting equivalence result, we have included the
restriction of Theorem 20 to directed graphs in the following statement.

THEOREM 22. (RCAy) The following are equivalent:

(1) II}-CA,.

(2) If (Gn)nen is a sequence of rationally weighted directed graphs, then
there is a function f : N — {0,1} such that for all n, f(n) =1 if and only
if G, has a minimal spanning tree.

Proof. The proof of (1) implies (2) is as in Theorem 20.

To prove that (2) implies (1), it suffices to use (2) to select the well
founded trees from a sequence of trees. By Lemma 21, we may assume
that each tree contains arbitrarily long sequences. Given T, construct the
directed rationally weighted graph G,, as follows. Let (v,,),en be an enumer-
ation of the sequences in 7', with vg = (). These will serve as the vertices
of G,,. Edges are added to the graph in two ways. First, if vy extends v;
and lh(vg) = 1h(v;) 4+ 1, add the (upward) edge (vj,vi) to Gy, assigning the
weight

w(vj,vy) =27 B8 4 o=k,

Secondly, if 1h(vg) = lh(v;) + 1, but v; is not an initial segment of vy, add
the (downward) edge (vg,v;) to Gy, and set w(vy,v;) = 277. The sequence
(G,,) is AY definable in (T},), so RCA( proves that it exists.

By (2), there is a function f such that f(n) =1 if and only if G,, has a
minimal spanning tree. We will complete the proof by showing that G, has
a minimal spanning tree if and only if 7T}, is not well founded.
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First, suppose that 7;, is not well founded. RCA( can prove that for
every spanning tree S of G,,,

e for each vertex v, S contains an edge of the form (u,v), and
e for each m, S contains an edge of the form (u,v) where lh(u) = m and
lh(v) =m+ 1.

Consequently, every spanning tree of G,, has a total weight of at least 2.
Let vg,, Uk, , Uk, , - - . be an infinite path through T,, where for each i, lh(vg,)
= ¢. Let S be the subgraph of G,, containing upward edges of the form
(Vk; s Vky,, ) for all i together with all downward edges of the form (v, ,v;)
where 1h(v;) + 1 = lh(vg,) and v; is not an initial segment of vy,. RCAg
can prove that S spans GG,, and the total weight of S is exactly 2. Thus, S
is a minimal spanning tree for T,,.

Now suppose that T, is well founded and S is a spanning tree of G,,. We
show that S is not minimal. If for each j, S contains exactly one upward
edge (u,v) such that lh(v) = j, then these edges must form a directed arc,
encoding an infinite path through T;, and contradicting the assumption that
T is well founded. Thus, there is a least j such that S contains at least two
upward edges (u,v) and (w,v) with lh(v) = 1h(v) = j. Since T,, contains
arbitrarily long sequences, let vk,,vg,,...,vx,,, be a path of length j + 1
through T;,. Let S be a graph consisting of

e edges of S of the form (u,v) where lh(v) > j,
e the upward edges (v, ,vy,,,) for i < j, and
e all downward edges of the form (vg,,u) for i < j+ 1.

RCA, can prove that S spans G,, and that w(S) < w(S) — 2797 Thus S
is not minimal, completing the proof that 7T, is well founded if and only if
G, has a minimal spanning tree. m

The preceding argument proves the statement resulting from replacing
“minimal spanning tree” with “spanning tree with weight exactly 2.” Fur-
thermore, “exactly 2” can be replaced by any desired value. We conjecture
that Theorem 22 also holds for undirected graphs, but will require a sub-
stantially different proof.
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