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Dense pairs of o-minimal structures

by

Lou v a n d e n D r i e s (Urbana, Ill.)

Abstract. The structure of definable sets and maps in dense elementary pairs of
o-minimal expansions of ordered abelian groups is described. It turns out that a certain
notion of “small definable set” plays a special role in this description.

Introduction. In a classical paper [8] A. Robinson proved the complete-
ness of the theory of real closed fields with a predicate for a proper dense
real closed subfield. Here I generalize this work of Robinson to o-minimal
expansions of ordered abelian groups. My main objective, however, is to
characterize definable sets and definable functions in dense elementary pairs
of such structures. The results obtained in this direction are, to my knowl-
edge, also new in the case considered by Robinson. For an extension of [8]
in another direction, see Macintyre [3]. I now proceed to precise definitions
and statements.

Throughout, T denotes a complete o-minimal theory that extends the
theory of ordered abelian groups with distinguished positive element 1. Thus
the language L of T extends {<, 0, 1,+,−} and T has definable Skolem
functions. In general, we use the same notations and conventions as in [1].
In particular, “intervals” are always open intervals (a, b) with −∞ ≤ a <
b ≤ ∞, and we let k,m, n range over N = {0, 1, 2, . . .}. Unless indicated
otherwise, “definable” means “definable with parameters”. We let A, B, C,
D (possibly with subscripts or superscripts) denote models of T , and A,
B, C, D their underlying sets, if it is useful to make this distinction. An
elementary pair is a pair (B,A) where A is an elementary substructure of
B (with A and B both models of T according to our convention). A dense
elementary pair (or just dense pair for simplicity) is an elementary pair
(B,A) such that A 6= B and A is dense in B, that is, every interval in
B contains elements of A. We let T 2 denote the theory whose models are
exactly the elementary pairs, formulated in the language L2 which extends
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L by an extra unary predicate symbol U to denote the (underlying set of
the) elementary substructure. We let T d be the theory of dense pairs, also
formulated in the language L2.

Given a dense pair (B,A) we say that a set X ⊆ B is A-small if X is
definable in (B,A) and X ⊆ f(An) for some function f : Bn → B that
is definable in B. For example, let (R,Ra) denote the ordered field of real
numbers with a predicate for the subfield Ra of algebraic real numbers.
Then every Ra-small subset of R is countable. The first section proves the
following key fact, which is related to Macintyre’s “Assumption 4” in [3]:

If (B,A) is a dense pair , then the set B is not A-small.

In Section 2 we give a back-and-forth proof of the completeness of T d,
which on closer analysis leads to the following elimination of quantifiers (in
a suitably extended language).

Theorem 1. Each L2-formula ψ(y1, . . . , yn) is equivalent in T d to a
boolean combination of formulas of the form

∃x1 . . . ∃xm(U(x1) & . . .& U(xm) & φ(x, y))

where φ(x1, . . . , xm, y1, . . . , yn) is an L-formula.

I thank Anand Pillay for pointing out this theorem and its proof. (It
replaces an embedding property and model-completeness result in an earlier
version of this paper, and led to more efficient proofs of several lemmas and
corollaries.)

Certain kinds of definable sets are characterized in more detail in Theo-
rems 2–5 below. In these results (B,A) denotes a dense pair.

Theorem 2. Given a set Y ⊆ An the following are equivalent :

(1) Y is definable in (B,A);
(2) Y = Z ∩An for some set Z ⊆ Bn that is definable in B;
(3) Y is definable in the structure (A, (A ∩ (0, b))0<b∈B) which expands

A by the traces on A of the intervals (0, b) in B.

It follows that the structure (A, (A∩(0, b))0<b∈B) (and in fact its theory)
is weakly o-minimal, a result that for T = RCF is due to MacPherson,
Marker and Steinhorn [4]. Here and below RCF denotes the theory of ordered
real closed fields.

Turning now our attention to definable functions, an instructive example
is the function f : R→ R defined by f(x) = r if x = r + se for (necessarily
unique) algebraic reals r and s, where e is the usual (transcendental) real
number, while f(x) = 0 if x is not of this form. This function is definable in
the dense pair (R,Ra), and not continuous at any point; in fact, the graph
of f is dense in the plane R2. This example shows that definable functions
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can be rather wild from the “graphical” point of view. Nevertheless, f is the
identity on Ra and is constant off the Ra-small set Ra + eRa.

The next theorem is established in Section 3 and shows that this kind
of behaviour is the general rule. It also shows how definability in (B,A) is
related to definability in B and in A.

Theorem 3. (1) If F : B → B is definable in (B,A), then F agrees
off some A-small subset of B with a function F̂ : B → B that is definable
in B.

(2) If S ⊆ B is definable in (B,A), then there exists an A-small set
X ⊆ B such that S \X = S′ \X for some set S′ ⊆ B that is definable in B.

(3) If f : An → A is definable in (B,A), then f is piecewise given by
functions that are definable in A: there are functions f1, . . . , fk : An → A
definable in A such that for each x ∈ An there is i ∈ {1, . . . , k} with f(x) =
fi(x).

A consequence is that if T extends RCF and |A| < |B|, then the A-small
subsets of B are exactly the subsets of B that are definable in (B,A) and
of cardinality ≤ |A|, and all other subsets of B definable in (B,A) have
cardinality |B|. (Here and below |S| denotes the cardinality of a set S.)

In Section 4 we describe one-variable definable sets and open definable
sets:

Theorem 4. If X ⊆ B is A-small , then there is a partition

−∞ = b0 < b1 < . . . < bk < bk+1 = +∞
of B such that for each i = 0, . . . , k either X∩(bi, bi+1) = ∅, or X∩(bi, bi+1)
as well as (bi, bi+1) \X are dense in (bi, bi+1).

If S ⊆ B is definable in (B,A), then there is a partition

−∞ = b0 < b1 < . . . < bk < bk+1 = +∞
of B such that for each i = 0, . . . , k either S∩(bi, bi+1) = ∅, or (bi, bi+1) ⊆ S,
or S ∩ (bi, bi+1) as well as (bi, bi+1) \ S are dense in (bi, bi+1).

Hence subsets of B that are definable in (B,A) and open are finite unions
of intervals in B. Similarly, discrete subsets of B that are definable in (B,A)
are finite. (“Discrete” means that each point of the set lies in an interval
that contains no other points of the set.)

In combination with recent work by Miller and Speissegger [5] this leads
to

Theorem 5. Suppose B is an expansion of the ordered field of real num-
bers. If S ⊆ Rn is open and definable in (B,A), then S is definable in B.

For some nice consequences of this last theorem, see the end of Section 4.
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Further notations and conventions. Given a language L and a set E we
let L(E) be the language obtained from L by adding a new constant symbol
c for each element c ∈ E. Often E is given as a subset of the underlying
set of an L-structure, and then that L-structure will also be regarded as an
L(E)-structure in the obvious way. Given L-structures M and N we write
M⊆ N to indicate that M is a substructure of N .

From now on we assume for convenience that T admits QE and is univer-
sally axiomatizable: this extra assumption on T does not affect the theorems
as stated above since we can always achieve this situation by passing from T
to a suitable extension by definitions of T . A consequence of this convention
is that substructures of models of T are elementary substructures.

Let A and B be models of T with A ⊆ B, that is, A is a substructure
of B. Given a set X ⊆ B we let A〈X〉 denote the definable closure of A∪X
in B. Thus A〈X〉 is the underlying set of a substructure of B, which we
also denote by A〈X〉. The operation that associates with each X ⊆ B the
set A〈X〉 is a pregeometry on B by a result of Pillay and Steinhorn [7]. In
particular, we say that X is independent over A if A〈X〉 6= A〈Y 〉 for each
proper subset Y of X, and that X is a basis of B over A if X is independent
over A and A〈X〉 = B. The cardinality of a basis of B over A is independent
of the choice of basis and is called the rank of B over A, written as rk(B|A).

For n > 0, x, y ∈ Bn and nonempty S ⊆ Bn, definable in B, we put
d(x, y) := max{|xi − yi| : i = 1, . . . , n} and d(x, S) := inf{d(x, s) : s ∈ S}.

1. Small sets

Lemma 1.1. Suppose T extends RCF. Let A ≺ B, let f : Bn+1 → B be
A-definable in B, and let b ∈ B \ A. Then there exist a0, . . . , an ∈ A such
that

a0 + a1b+ . . .+ anb
n 6∈ f(An × {b}).

P r o o f. Otherwise there is for each a = (a0, . . . , an) ∈ An+1 a tuple α ∈
An such that p(a, b) = f(α, b), where p(a, x) = a0+a1x+. . .+anxn for x ∈ B.
Since b 6∈ A it follows that for a and α as above we have p(a, x) = f(α, x)
for infinitely many x ∈ A. Since T has definable Skolem functions there is
an A-definable map α∗ : An+1 → An such that for all a ∈ An+1 there is an
interval I inA with p(a, x) = f(α∗(a), x) for all x ∈ I. For dimension reasons
there exist then a 1-dimensional cell E in An+1 and a tuple α ∈ An such that
α∗(a) = α for all a ∈ E. Again by definability of Skolem functions there are
A-definable functions β∗, γ∗ : E → A such that if a ∈ E, then β∗(a) < γ∗(a)
and p(a, x) = f(α, x) for all x ∈ (β∗(a), γ∗(a)). By cell decomposition we
may reduce to the case that β∗ and γ∗ are continuous. Take some a ∈ E
and some x ∈ (β∗(a), γ∗(a)). Then we have p(a′, y) = p(a, y) (= f(α, y)) for
all a′ ∈ E sufficiently close to a, and all y ∈ A sufficiently close to x. But
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p(a′, y) = p(a, y) gives p(a′ − a, y) = 0, which can hold for at most n values
of y in A if a′ 6= a. This contradiction finishes the proof of the lemma.

While our main interest is in dense pairs of o-minimal expansions of real
closed fields, the next lemma makes most of our work go through in the
more general setting of this paper at no extra cost. The proof of this lemma
uses the following special case of a theorem by Peterzil and Starchenko [6]:

Let A be an o-minimal expansion of an ordered vector space over an
ordered field F , let g : Ap+1 → A be definable in A and suppose that
for infinitely many scalars λ ∈ F there exists a tuple aλ ∈ Ap such that
g(aλ, x) = λx for infinitely many x ∈ A. Then there exists an interval J in
A and binary operations ⊕,⊗ : J2 → J , definable in A, that make J into a
real closed field whose ordering is the given ordering of J .

Lemma 1.2. Let (B,A) be a dense pair , let f : Bn+1 → B be A-definable
in B, and let b ∈ B \A. Then f(An × {b}) 6= B.

P r o o f. We may as well assume that for each k ∈ N there is a tuple ak ∈
An with f(ak, b) = kb since otherwise we would be done. Then f(ak, x) = kx
for all x ∈ Ik, where Ik is some interval in B. Since A is dense in B we may
assume that Ik is of the form (ck, dk) with ck, dk ∈ A. Put rk := (ck + dk)/2
and sk := (dk − ck)/2, and note that rk, sk ∈ A. Let g : An+2 → A be
given by g(u, v, x) = f(u, v + x) − f(u, v) for u ∈ An and v, x ∈ A. Then g
is definable in A and g(ak, rk, x) = kx for −sk < x < sk. By the result of
Peterzil and Starchenko quoted above there exist then an interval J in A
and binary operations ⊕,⊗ : J2 → J , definable in A, that make J into a
real closed field whose ordering is the given ordering of J . Since A is dense
in B we may assume by translation that the extension JB of this interval to
B contains b. It now follows as in the proof of Lemma 1.1 (with the role of
An+1 taken over by Jn+1) that there exist a0, . . . , an ∈ J such that

a0 ⊕ (a1 ⊗ b)⊕ . . .⊕ (an ⊗ b⊗n) 6∈ f(An × {b}).
Corollary 1.3. Let (B,A) be a dense pair. Then each A-small subset

of B is a proper subset of B.

P r o o f. This reduces to showing that if g : Bn → B is definable in
B, then g(An) 6= B. Given such a function g there exists a function f :
Bn+p → B that is A-definable in B and a point (b1, . . . , bp) ∈ Bp such that
g(x) = f(x, b1, . . . , bp) for all x ∈ Bn. By increasing A if necessary we may
reduce to the case that B = A〈b〉 for some b ∈ B \ A. Write each bi as
bi = hi(b) for some function hi : B → B that is A-definable in B. Replacing
f by the function

(x, y) 7→ f(x, h1(y), . . . , hp(y)) : Bn+1 → B

and (b1, . . . , bp) by b we reduce to the case treated in the previous lemma.
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Remark 1.4. It is clear from the definitions that for any dense pair
(B,A) the union of finitely many A-small subsets of B is again an A-small
subset of B.

Lemma 1.5. If the dense pair (B,A) is κ-saturated where κ is an infinite
cardinal and κ > |T |, then rk(B|A) ≥ κ.

P r o o f. Let (B,A) be as in the hypothesis of the lemma. Let E be a
basis of B over A, and suppose that |E| < κ. Let Γ (v) be the set of all
L2(E)-formulas of the form

∀y1 . . . ∀yn((U(y1) & . . .& U(yn))→ t(y1, . . . , yn, e1, . . . , ep) 6= v)

where t(y1, . . . , yn, z1, . . . , zp) is an L-term. By Corollary 1.3 and Remark
1.4 every finite subset of Γ (v) is realized in (B,A). By saturation there exists
b ∈ B that realizes the type Γ (v) in (B,A). Thus b 6∈ A〈E〉, contradicting
B = A〈E〉.

2. Quantifier elimination

2.1. Let (B,A) ⊆ (D, C) |= T 2, that is, the elementary pair (B,A) is a
substructure of the elementary pair (D, C). Then B ∩C = A and we have a
diagram of (necessarily elementary) inclusions between models of T :

B D

A C

//
O O

//

OO

In this situation we say that B and C are free over A (in D) if every set
Y ⊆ B that is independent over A is also independent over C. Familiar
results about pregeometries imply that then:

(i) C and B are free over A (symmetry);
(ii) if Z ⊆ C, then (B,A) ⊆ (B〈Z〉,A〈Z〉) ⊆ (D, C) and B〈Z〉 and C are

free over A〈Z〉.
We mention here the following fact, although we do not use it further

on.

Fact 2.2. Each elementary pair (B,A) |= T 2 can be embedded into a
dense pair.

P r o o f. Let a, b ∈ B with a < b. It suffices to show that (B,A) can be
embedded into a model (B′,A′) of T 2 such that a < x < b for some x ∈ A′.
Take an elementary extension B〈x〉 generated over B by an element x 6∈ B
such that a < x < b. Then B∩A〈x〉 = A, hence (B〈x〉,A〈x〉) is an extension
of (B,A) with the desired property.
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Lemma 2.3. Let (B,A) � (B∗,A∗) be an elementary extension of models
of T 2. Then in the diagram of (elementary) inclusions

B B∗

A A∗

//
OO

//

OO

the structures B and A∗ are free over A.

P r o o f. Let b1, . . . , bn ∈ B be independent over A. We have to show that
b1, . . . , bn remain independent over A∗. If they did not, then after permuting
b1, . . . , bn if necessary, we may assume that bn is dependent on b1, . . . , bn−1

over A∗, so there are an L-formula φ(u1, . . . , um, v1, . . . , vn), and an m-tuple
a∗ from A∗ such that

B∗ |= φ(a∗, b1, . . . , bn) & ∃!vnφ(a∗, b1, . . . , bn−1, vn).

Since (B,A) � (B∗,A∗) it follows that for some m-tuple a from A we have

B |= φ(a, b1, . . . , bn) & ∃!vnφ(a, b1, . . . , bn−1, vn),

which contradicts the assumption that b1, . . . , bn are independent over A.

Lemma 2.4. If (B,A) is a dense pair , then B \A is dense in B.

P r o o f. It is easy to reduce this to showing that, given any ε > 0 in A
where (B,A) is a dense pair, there exists δ ∈ B \ A with 0 < δ < ε. Take
any b ∈ B \ A. Then b− ε < a < b for some a ∈ A, hence 0 < b− a < ε, so
δ := b− a has the required property.

We can now prove completeness as well as Theorem 1:

Theorem 2.5. The theory T d is complete. Each L2-formula ψ(y1, . . . ,
yn) is equivalent in T d to a boolean combination of formulas of the form

∃x1 . . . ∃xm(U(x1) & . . .& U(xm) & φ(x1, . . . , xm, y1, . . . , yn))

where φ(x1, . . . , xm, y1, . . . , yn) is an L-formula.

P r o o f. Let (B,A) and (D, C) be κ-saturated models of T d where κ >
|T |. Let Γ be the set of all isomorphisms i : (B′,A′) ∼= (D′, C′) between
substructures (B′,A′) of (B,A) and (D′, C′) of (D, C) such that |B′| < κ,
|D′| < κ, B′ and A are free over A′, and D′ and C are free over C′. The
completeness of T d will follow if we can show that (B,A) and (D, C) are
elementarily equivalent, and this in turn follows from

Claim. The collection Γ has the back-and-forth property.

P r o o f. Let i : (B′,A′) ∼= (D′, C′) belong to Γ . Consider first an element
a ∈ A\A′. Then we take an element c ∈ C \C ′ such that the cuts realized by
a in B′ and by c in D′ correspond via i. Then i extends to an isomorphism



68 L. van den Dries

j : (B′〈a〉,A′〈a〉) ∼= (D′〈c〉, C′〈c〉) with j(a) = c, and clearly j ∈ Γ . Now
consider more generally an element b ∈ B \B′.

Case 1: b ∈ B′〈A〉. Then take elements a1, . . . , ak ∈ A such that b ∈
B′〈a1, . . . , ak〉. Applying the above construction several times we obtain el-
ements c1, . . . , ck ∈ C such that i extends to an isomorphism

(B′〈a1, . . . , ak〉,A′〈a1, . . . , ak〉) ∼= (D′〈c1, . . . , ck〉, C′〈c1, . . . , ck〉)
in Γ , which includes b in its domain.

Case 2: b 6∈ B′〈A〉. Then (B′〈b〉,A′) ⊆ (B,A), and B′〈b〉 and A are free
over A′, as is easily checked. By Lemma 1.5 we have D′〈C〉 = C〈D′〉 6= D,
and thus by Lemma 2.4 and saturation there exists an element d ∈ D\D′〈C〉
such that the cuts realized by b in B′ and by d in D′ correspond via i. Thus
i extends to an isomorphism j : (B′〈b〉,A′) ∼= (D′〈d〉, C′) with j(b) = d, and
clearly j belongs to Γ .

This proof of the completeness of T d provides the extra information that
if i ∈ Γ and (b1, . . . , bN ) is a tuple from the domain of i, then (b1, . . . , bN )
realizes the same type in (B,A) as (i(b1), . . . , i(bN )) in (D, C). We shall use
this fact below in the proof of the second part of the theorem where we
fix the tuple of free variables y = (y1, . . . , yn). Call an L2-formula ψ(y)
special if it is of the form ∃x(U(x) & φ(x, y)) as described in the theorem,
where x = (x1, . . . , xm) and U(x) abbreviates U(x1) & . . . & U(xm). Let
b = (b1, . . . , bn) ∈ Bn and d = (d1, . . . , dn) ∈ Dn satisfy the same special
formulas in (B,A) and (D, C) respectively. It suffices to show that then b and
d realize the same types in (B,A) and (D, C) respectively. Let rk(A〈b〉|A) =
r. By permuting coordinates we may assume that b1, . . . , br are independent
overA. Then also rk(C〈d〉|C) = r and d1, . . . , dr are independent over C. (For
example, suppose d1, . . . , dr were dependent over C. Then r > 0 and, say,
dr = f(c, d1, . . . , dr−1) for some c ∈ Cm and some function f : Dm+n → D
which is 0-definable in D. Then the hypothesis on b and d implies that
also br = f(a, b1, . . . , br−1) for some a ∈ Am, where, abusing notation, f
now denotes the corresponding function Bm+n → B defined in B. But this
contradicts the independence of b1, . . . , br over A.)

Take a tuple a = (a1, . . . , am) ∈ Am such that rk(A′〈b〉,A′) = r where
A′ is the definable closure of {a1, . . . , am} in A. Note that then (A′〈b〉,A′) ⊆
(B,A) and that A′〈b〉 and A are free over A′. If φ1(x, y), . . . , φk(x, y) are
L-formulas such that B |= φj(a, b) for j = 1, . . . , k, then by the hypothesis on
b and d we have (D, C) |= ∧kj=1(U(x) & φi(x, d)). Hence by saturation there
is a tuple c = (c1, . . . , cm) ∈ Cm such that (a, b) and (c, d) realize the same
types in B and D respectively. One easily checks that then rk(C′〈d〉, C′) = r
where C′ is the definable closure of {c1, . . . , cm} in C. Hence (C′〈b〉, C′) ⊆
(D, C) and C′〈d〉 and C are free over C′. Thus we obtain an isomorphism
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i : (A′〈b〉,A′) ∼= (C′〈b〉, C′) in Γ with i(a, b) = (c, d). Therefore b and d
realize the same types in (B,A) and (D,A) respectively.

Corollary 2.6. Let (B,A) be a dense pair and suppose Y ⊆ Bn is
A0-definable in (B,A) where A0 ⊆ A. Then Y ∩An is A0-definable in A.

P r o o f. By the theorem this reduces to the case of Y defined in (B,A)
by a formula ∃x(U(x) & φ(x, y)) where φ(x, y) is an L(A0)-formula. Then
Y ∩An is defined in A by the L(A0)-formula ∃xφ(x, y).

The next corollaries record some consequences of the proof of Theorem
2.5.

Corollary 2.7. Let (B,A) and (B′,A′) be dense pairs such that (B′,A′)
⊆ (B,A) and B′ and A are free over A′ in B. Then (B′,A′) � (B,A).

P r o o f. Take some cardinal κ > max(|B′|, |T |) and some κ-saturated
elementary extension (D, C) of (B′,A′). Then B′ and C are free over A′
by Lemma 2.3. By that same lemma we may assume, by passing to an
elementary extension of (B,A) if necessary, that (B,A) is κ-saturated. By
the proof of 2.5 any tuple in (B′,A′) realizes the same type in (B,A) as in
(D, C). Since (B′,A′) � (D, C) this gives (B′,A′) � (B,A).

Corollary 2.8. Let (B,A) |= T 2 have extensions (B1,A1) |= T d and
(B2,A2) |= T d such that B and A1 are free over A, and B and A2 are free
over A in B2. See the inclusion diagram:

B1 B B2

A1 A A2

oo //
OO OO

oo //

OO

Then (B1,A1) ≡B (B2,A2), that is, (B1,A1) and (B2,A2) satisfy the same
sentences with parameters from B. More generally , if a1 ∈ (A1)n and a2 ∈
(A2)n realize the same types over B in B1 and B2 respectively , then they
even realize the same types over B in (B1,A1) and (B2,A2) respectively.

P r o o f. By passing to suitable elementary extensions we may assume
that (Bk,Ak) is κ-saturated with κ > max(|B|, |T |), k = 1, 2. Note that
B〈ak〉 and Ak are free over A〈ak〉 (k = 1, 2). The hypothesis on a1 and a2

implies that there exists an isomorphism i : (B〈a1〉,A〈a1〉) ∼= (B〈a2〉,A〈a2〉)
that is the identity on B with i(a1) = a2. Then Theorem 2.5 and its proof
tell us that a1 and a2 realize the same types over B in (B1,A1) and (B2,A2)
respectively.

Corollary 2.9. Let (B1,A1) and (B2,A2) be dense pairs and let A1

and A2 have a common (elementary) substructure A. Suppose b1 ∈ B1 \A1

and b2 ∈ B2 \A2 realize the same cut in A. Then they realize the same types
over A in (B1,A1) and (B2,A2) respectively.
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P r o o f. By passing to a suitable elementary extension we may assume
that (Bk,Ak) is κ-saturated with κ > max(|A|, |T |), k = 1, 2. Consider the
diagram

B1 A〈b1〉 A〈b2〉 B2

A1 A A A2

oo i // //
OO

oo

OO

//

OO

//

OO

where i : A〈b1〉 → A〈b2〉 is the isomorphism over A that sends b1 to b2.
Except for i the arrows in this diagram are inclusions. In the leftmost rect-
angle, A〈b1〉 and A1 are free over A, while in the rightmost rectangle, A〈b2〉
and A2 are free over A. Hence by Theorem 2.5 and its proof b1 and b2 realize
the same types over A in (B1,A1) and (B2,A2) respectively.

For Theorem 2 we also need the following:

Lemma 2.10. Let Z ⊆ Bn be definable in B. Then Z is a finite union
of sets of the form {z ∈ Bn : f(b, z) = 0, g(b, z) > 0} where b ∈ Bm and
f, g : Bm+n → B are continuous and 0-definable in B.

P r o o f. Write Z = Z ′b where b ∈ Bm and Z ′ ⊆ Bm+n is 0-definable in
B. By decomposing Z ′ into 0-definable cells we may reduce to the case of
Z ′ being a 0-definable cell (with respect to B). Then the functions f, g :
Bm+n → B given by f(x) = d(x, cl(Z ′)) and g(x) = d(x, cl(Z ′) \ Z ′) are
continuous and 0-definable in B. (By convention we let d(x, ∅) := 1.) As a
cell Z ′ is locally closed, and thus cl(Z ′) \ Z ′ is closed. Hence Z ′ = {x ∈
Bm+n : f(x) = 0, g(x) > 0}. Thus Z = {z ∈ Bn : f(b, z) = 0, g(b, z) > 0}.

2.11. Proof of Theorem 2. We are given (B,A) |= T d and a set Y ⊆ An.
(1)⇒(2). We assume here that Y is definable in (B,A) and have to show

that Y = Z ∩ An for some set Z ⊆ Bn that is definable in B. Let φ(y) be
an L2(B)-formula defining Y in (B,A), y = (y1, . . . , yn). We have to show
there is an L(B)-formula ψ(y) such that (B,A) |= U(y) → (φ(y) ↔ ψ(y)).
By a standard model-theoretic argument this will be the case if for any two
elementary extensions (B1,A1) and (B2,A2) of (B,A) and any two n-tuples
a1 ∈ (A1)n and a2 ∈ (A2)n that realize the same types over B (in their
ambient models B1 and B2 respectively) we have

(B1,A1) |= φ(a1)⇔ (B2,A2) |= φ(a2).

But this is immediate from 2.8.
(2)⇒(3). We assume Y = Z ∩An with Z ⊆ Bn definable in B. We have

to show that Y is definable in (A, (A ∩ (0, b))0<b∈B). By Lemma 2.10 we
may reduce to the case of either Z = {z ∈ Bn : f(b, z) = 0} or Z = {z ∈
Bn : f(b, z) > 0} where f : Bm+n → B is continuous and 0-definable in B,
and b = (b1, . . . , bm) ∈ Bm. Assume Z = {z ∈ Bn : f(b, z) = 0}. (The other
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case is handled similarly.) Then by continuity of f and density of A in B we
have the following equivalence for elements y ∈ Am:

y ∈ Y ⇔ for each ε > 0 in A there is a = (a1, . . . , am) ∈ Am such that

a1 < b1, . . . , am < bm and for all a′ = (a′1, . . . , a
′
m) ∈ Am,

if a1 < a′1 < b1, . . . , am < a′m < bm, then |f(a′, y)| < ε.

Clearly, the set of all y ∈ Am that satisfy the right-hand condition is
definable in the structure (A, (A ∩ (0, b)0<b∈B), and thus Y is definable in
this structure.

(3)⇒(1) is obvious.

3. Definable closure and definable functions. In this section we
prove Theorem 3, for which we need results on “definable closure”.

Lemma 3.1. Let (B,A) |= T d. Then the set A is definably closed in
(B,A).

P r o o f. Let b ∈ B \A. We will show that b is not A-definable in (B,A).
Take some κ-saturated elementary extension (B∗,A∗) of (B,A) with κ >
max(|B|, |T |). Then there exists b∗ ∈ B∗ \ A∗ such that b∗ 6= b, and b∗ and
b realize the same cut in A. Corollary 2.9 implies that then b∗ and b realize
the same type over A in (B∗,A∗). Thus b is not A-definable in (B∗,A∗), and
therefore not A-definable in (B,A).

Lemma 3.2. Let (B,A) |= T d, and A0 � A. Then A0 is definably closed
in (B,A).

P r o o f. Let a ∈ B be in the definable closure of A0 in (B,A). By the
previous lemma we have a ∈ A. Then 2.6 implies that a ∈ A0.

Proposition 3.3. Let (B,A) ⊆ (B∗,A∗) |= T d and suppose that B and
A∗ are free over A. Then the set B is definably closed in (B∗,A∗).

P r o o f. The previous lemma shows this is true if A = B. Suppose that
A 6= B. Then (A∗〈B〉,A∗) � (B∗,A∗), so the definable closure of B in
(B∗,A∗) is contained in (the underlying set of) A∗〈B〉 = B〈A∗〉. Let b∗ be
an element of this definable closure. Take k ∈ N minimal such that there
exists a∗ = (a∗1, . . . , a

∗
k) ∈ (A∗)k with b∗ ∈ B〈a∗〉, and fix such a tuple a∗. It

suffices to show that k = 0. Suppose k > 0. The minimality of k implies that
a∗1, . . . , a

∗
k are independent over B. Let f : (B∗)k → B∗ be B-definable in B∗

such that f(a∗) = b∗. Take a finite partition Π of (B∗)k into B-definable
cells such that if E ∈ Π is open, then either f |E is strictly increasing in
its kth variable, or f |E is independent of its kth variable, or f |E is strictly
decreasing in its kth variable. (The existence of such a partition is a routine
exercise in cell decomposition which we leave to the reader.) Note that a∗

necessarily belongs to an open cell E ∈ Π. Passing to a suitable elementary
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extension if necessary we may assume that (B∗,A∗) is κ-saturated with
κ > max(|B|, |T |).

Case 1: The function f |E does not depend on the last variable. Then
b∗ = f(a∗) = g(a∗1, . . . , a

∗
k−1) for some function g : (B∗)k−1 → B∗ that is

B-definable in B∗, contradicting the minimality of k.

Case 2: The function f |E is strictly increasing in the last variable. Put
A′ := A〈a∗1, . . . , a∗k−1〉 and B′ := B〈a∗1, . . . , a∗k−1〉. By saturation we can take
an element ak 6= a∗k in A∗ that realizes the same cut in B′ as a∗k. Corollary
2.8 implies that then ak and a∗k realize the same type over B′ in (B∗,A∗),
in particular (a∗1, . . . , a

∗
k−1, ak) ∈ E and b∗ = f(a∗1, . . . , a

∗
k−1, ak) (using the

fact that b∗ is B-definable in (B∗,A∗)). This last equality contradicts the
hypothesis of Case 2.

Case 3: The function f |E is strictly decreasing in the last variable. We
proceed as in Case 2.

We can now prove Theorem 3, which we reformulate here as three sepa-
rate corollaries.

Corollary 3.4. Let the function F : B → B be definable in the dense
pair (B,A). Then F agrees off some A-small subset of B with a function
F̂ : B → B that is definable in B.

P r o o f. Let (B∗,A∗) be a κ-saturated elementary extension of (B,A)
with κ > max(|B|, |T |). Let b∗ ∈ B∗ and note that b∗ lies outside X∗ for all
A-small sets X ⊆ B if and only if b∗ 6∈ B〈A∗〉. Here X∗ denotes the subset
of B∗ defined in (B∗,A∗) by any L2(B)-formula that defines X in (B,A). By
familiar model-theoretic arguments it suffices to show that if b∗ ∈ B∗\B〈A∗〉,
then F (b∗) ∈ B〈b∗〉. But for such b∗ the models B〈b∗〉 and A∗ are free over A
in B∗. Thus by the last proposition the underlying set of B〈b∗〉 is definably
closed in (B∗,A∗), which implies F (b∗) ∈ B〈b∗〉, as desired.

Applying this result to the characteristic function of a set S ⊆ B we
obtain

Corollary 3.5. If S ⊆ B is definable in the dense pair (B,A), then
S \ X = S′ \ X for some A-small set X ⊆ B and some S′ ⊆ B that is
definable in B.

Corollary 3.6. Let (B,A) |= T d, and let f : An → A be definable
in (B,A). Then f is given piecewise by functions definable in A: there are
functions f1, . . . , fk : An → A definable in A such that for each a ∈ An we
have f(a) = fi(a) for some i ∈ {1, . . . , k}.

P r o o f. By a familiar compactness argument it suffices to show that,
given an elementary extension (B∗,A∗) of (B,A) and a point a∗ ∈ (A∗)n,
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we have f(a∗) ∈ A〈a∗〉. It follows from 2.1 and Lemma 2.3 that B〈a∗〉 and
A∗ are free over A〈a∗〉. Hence by Proposition 3.3 the underlying set of B〈a∗〉
is definably closed in (B∗,A∗). Thus f(a∗) ∈ B〈a∗〉. Since also f(a∗) ∈ A∗
and B〈a∗〉 ∩ A∗ = A〈a∗〉 we may conclude that f(a∗) ∈ A〈a∗〉.

4. Definable sets in one variable, and open definable sets. In this
section we fix a dense pair (B,A). We will prove Theorems 4 and 5 after
some preparations.

Lemma 4.1. No interval in B is A-small.

P r o o f. Let I be an interval in B, and f : Bm → B definable in B.
We have to show that I * f(Am). Let (B∗,A∗) be a κ-saturated elementary
extension of (B,A) with κ > max(|B|, |T |), and let I∗ and f∗ be the obvious
extensions of I and f to (B∗,A∗). Then f∗((A∗)m) ⊆ A∗〈B〉. By Lemmas
1.5 and 2.4 there is an element in I∗ that does not lie in A∗〈B〉, and thus
not in f∗((A∗)m). Hence I contains an element that lies outside f(Am).

Lemma 4.2. Let S ⊆ Bm be definable in B, and let the map g =
(g1, . . . , gk) : Bm → Bk be definable in B. Then there is a set S′ ⊆ S,
definable in B, such that

Am ∩ S ∩ g−1(Ak) = Am ∩ S′.
Remark. This lemma goes through (with the same proof) for (B,A) |=

T 2, and does not need the stronger assumption (B,A) |= T d.

P r o o f (of Lemma 4.2). The case of S = ∅ is trivial, so we assume from
now on that S 6= ∅, and we proceed by induction on the triple (m, d, k) ∈ N3

where d := dim(S) and N3 is ordered lexicographically. The desired result is
obvious if m = 0, or d = 0 (that is, S is finite), or k = 0. So we assume that
m > 0, d > 0 and k > 0, and that the desired result holds for lower values
of (m, d, k) (inductive hypothesis). The case k > 1 reduces to the case k = 1
(with same m and d) by means of

Am ∩ S ∩ g−1(Ak) = (Am ∩ S ∩ g−1
1 (Ak)) ∩ . . . ∩ (Am ∩ S ∩ g−1

k (Ak)).

Thus we assume below that k = 1.
Suppose that d < m. Decomposing S into cells we may then reduce to

the case of S being a cell; thus there are i1, . . . , id with 1 ≤ i1 < . . . < id ≤ m
such that the projection map λ : (x1, . . . , xm) 7→ (xi1 , . . . , xid) : Bm → Bd

maps S homeomorphically onto an open cell λ(S) in Bd. Take a map µ :
Bd → Bm that is definable in B and inverse to λ|S, that is, µ(λ(x)) = x for
x ∈ S. By the inductive hypothesis there is a set S′′ ⊆ λ(S), definable in B,
such that

Ad ∩ λ(S) ∩ µ−1(Am) ∩ (g ◦ µ)−1(A) = Ad ∩ S′′.
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Then µ(S′′) ⊆ S and Am ∩ S ∩ g−1(A) = Am ∩ µ(S′′), and we are done.
Thus for the rest of the proof we assume d = m.

Take a function G : Bm+n → B that is A-definable in B, and a point
b = (b1, . . . , bn) ∈ Bn such that g(x) = G(x, b) for all x ∈ Bm. We also
arrange that b1, . . . , bn are independent over A. We now proceed by a further
induction on n. If n = 0 then g = G is A-definable, and the desired result
holds with S′ = S. In the remainder of the proof we assume that n > 0.
We take a finite partition Π of Bm+n into cells, all A-definable in B, such
that if E ∈ Π is open, then either G|E is strictly increasing in its last (i.e.
(m + n)th) variable, or G|E is independent of its last variable, or G|E is
strictly decreasing in its last variable. For E ∈ Π, let E′ ⊆ Bm be the image
of E under the projection map (x1, . . . , xm+n) 7→ (x1, . . . , xm) : Bm+n →
Bm, and let SE := {x ∈ S : (x, b) ∈ E}, so that SE ⊆ E′. Let E ∈ Π.

Claim. There exists a set S′E ⊆ SE that is definable in B such that

Am ∩ SE ∩ g−1(A) = Am ∩ S′E .
The validity of this claim for every E ∈ Π implies the desired result

about S and g, because S is the union of the sets SE . If dim(SE) < m,
then the claim follows by the inductive assumption. So let dim(SE) = m.
Taking into account that then E′ is an A-definable open cell in Bm and that
b1, . . . , bn are independent over A it follows that E is an open cell.

Case 1: The function G|E is independent of the last variable. Thus there
exists a function G′ : Bm+n−1 → B that is A-definable in B and such that

G′(x1, . . . , xm+n−1) = G(x1, . . . , xm+n−1, xm+n)

for all points (x1, . . . , xm+n−1, xm+n) ∈ E. Then we apply the inductive
assumption on n to SE in the role of S, the function g′ : Bm → B given
by g′(x) = G′(x, b1, . . . , bm+n−1) in the role of g, and the function G′ in the
role of G. The claim follows since g(x) = g′(x) for x ∈ SE .

Case 2: The function G|E is strictly increasing in the last variable. In
that case Am ∩ SE ∩ g−1(A) = ∅. To see this, take an A-definable function
H : Bm+n → B such that if x = (x1, . . . , xm+n) ∈ E and G(x) = t,
then H(x1, . . . , xm+n−1, t) = xm. Suppose a ∈ Am ∩ SE ∩ g−1(A). Then
G(a, b) = a′ ∈ A, so that we have H(a, b1, . . . , bn−1, a

′) = bn, and thus
bn ∈ A〈b1, . . . , bn−1〉, contradicting the independence of b1, . . . , bn over A.

Case 3: The function G|E is strictly decreasing in the last variable.
Then we proceed as in Case 2.

Lemma 4.3. Let X ⊆ B be A-small. Then X is a finite union of sets of
the form f(Am ∩E) (for various m) where E is an open cell in Bm (in the
sense of B) and f : E → B is continuous and definable in B.



Dense pairs of o-minimal structures 75

P r o o f. By definition the set X is definable in (B,A) and X ⊆ f(Am) for
some function f : Bm → B that is definable in B. Hence X = f(X ′) for some
set X ′ ⊆ Am that is definable in (B,A). By Theorem 2 we have X ′ = S∩Am
for some set S ⊆ Bm definable in B, so that X = f(Am∩S). We now proceed
by induction on m. The case m = 0 is trivial since then either X = ∅ or
X = {r} for some r ∈ B. Let m > 0 and assume the desired result holds for
A-small sets f(Am∩S) with f and S as above for lower values of m. Take a
finite partition Π of S into cells (in the sense of B) such that for each E ∈ Π
the restriction f |E : E → B is continuous. Thus X is the union of the sets
f(Am ∩ E) for E ∈ Π. The open cells E ∈ Π contribute some of the sets
f(Am ∩ E) described in the lemma. Suppose now that E ∈ Π is not open,
say dim(E) = d < m. Then there are i1, . . . , id with 1 ≤ i1 < . . . < id ≤ m
such that the projection map λ : (x1, . . . , xm) 7→ (xi1 , . . . , xid) : Bm → Bd

maps E homeomorphically onto an open cell E′ := λ(E) in Bd. Take a
map µ : Bd → Bm that is definable in B and inverse to λ|E, that is,
µ(λ(x)) = x for x ∈ E. Then f(Am ∩ E) = (f ◦ µ)(Ad ∩ E′ ∩ µ−1(Am)).
By the previous lemma Ad ∩E′ ∩ µ−1(Am) = Ad ∩ S′ for some set S′ ⊆ E′
that is definable in B. Thus by the inductive hypothesis the A-small set
f(Am ∩ E) = (f ◦ µ)(Ad ∩ S′) is of the form required by the lemma.

4.4. Proof of Theorem 4. Let X ⊆ B be A-small and write X as a finite
union of sets f(Am∩E) as in Lemma 4.3. Since f is continuous the set f(E)
is definably connected (in the sense of B). Thus, neglecting the trivial case
when f(E) is a single point, f(E) is an interval I in B augmented possibly
with one or two endpoints. Since Am∩E is dense in E, the set f(Am∩E)∩I
is dense in I, and by Lemma 4.1 its complement in I is also dense in I. Thus
f(Am∩E) does have the structure described in Theorem 4 for A-small sets.
Using Lemma 4.1 again it follows that X itself has this structure.

Next, let S ⊆ B be definable in (B,A). By part (2) of Theorem 3 we
have S = (S′ \ X) ∪ Y for some set S′ ⊆ B definable in B, and A-small
sets X and Y . Thus there exists a partition −∞ = b0 < b1 < . . . < bk <
bk+1 = +∞ of B such that for each i = 0, . . . , k either S′ ∩ (bi, bi+1) = ∅,
or (bi, bi+1) ⊆ S′. If S′ ∩ (bi, bi+1) = ∅, then S ∩ (bi, bi+1) = Y ∩ (bi, bi+1)
is A-small, and thus has the structure described in Theorem 4 for A-small
sets. If (bi, bi+1) ⊆ S′, then S∩(bi, bi+1) = (bi, bi+1)\Z for some A-small set
Z, and we appeal once again to the structure of such sets. (Note that in this
argument the initial partition −∞ = b0 < b1 < . . . < bk < bk+1 = +∞ may
have to be refined before we are in the situation described by Theorem 4
for S.)

Corollary 4.5. Let S ⊆ Bm+n be definable in (B,A). Then there
exists a positive integer M such that whenever x ∈ Bm and Sx is finite,
then |Sx| < M .
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P r o o f. By induction on n it suffices to prove this for n = 1. For that
case we appeal to a compactness argument and the fact that finiteness of
Sx is equivalent to the definable condition of Sx being discrete in B.

Corollary 4.6. Let f : B → B be continuous at all but finitely many
points of B, and definable in (B,A). Then f is definable in B.

P r o o f. By part (1) of Theorem 3 there is a function f̃ : B → B definable
in B and an A-small set X ⊆ B such that f and f̃ agree outside X. Let

−∞ = b0 < b1 < . . . < bk < bk+1 = +∞
be such that for each i ∈ {0, . . . , k} the restrictions of f and f̃ to (bi, bi+1)
are continuous, and either X ∩ (bi, bi+1) = ∅ or both X ∩ (bi, bi+1) and
(bi, bi+1) \X are dense in (bi, bi+1). It follows easily that f and f̃ agree on
each interval (bi, bi+1), and hence f is definable in B.

The following is an o-minimal analogue of Hrushovski’s Lemma 1 in [2,
§3].

Lemma 4.7. Let R be an o-minimal expansion of an ordered abelian
group with underlying set R. Let R̂ be an ℵ0-saturated expansion of R such
that all functions f : R → R that are definable in R̂ are definable in R.
Then for all n, all sets S ⊆ Rn definable in R̂ are definable in R.

P r o o f. We proceed by induction on n. The hypothesis guarantees that
the conclusion holds for n = 1, and thus R̂ is o-minimal. Assume inductively
that the conclusion holds for a certain value of n, n > 0. The task of showing
that all sets S ⊆ Rn+1 definable in R̂ are definable in R reduces (by cell
decomposition and the inductive hypothesis) to verifying the following claim.

Claim. Let f : Rn → R be definable in R̂. Then f is definable in R.

This is the case for n = 1 by hypothesis, so we may assume n > 1. For
each a ∈ R the function fa : x 7→ f(a, x) : Rn−1 → R is definable in R̂,
and hence in R, so there exists a function F : RN+(n−1) → R, 0-definable
in R, and an element c ∈ RN such that f(a, x) = F (c, x) for all x ∈ Rn−1.
Of course, F and c depend here on a. Since R̂ is ℵ0-saturated there are
finitely many functions Fi : RN(i)+(n−1) → R, i = 1, . . . , k, all 0-definable
in R such that for each a ∈ R there is i ∈ {1, . . . , k} and c ∈ RN(i) with
f(a, x) = Fi(c, x) for all x ∈ Rn−1. Using dummy variables we can easily
combine these functions F1, . . . , Fk into a single function F : RN+(n−1) → R,
definable in R, such that for each a ∈ R there is c ∈ RN with f(a, x) =
F (c, x) for all x ∈ Rn−1. By definability of Skolem functions there is then a
map c = (c1, . . . , cN ) : R → RN , definable in R̂, such that for all a ∈ R we
have f(a, x) = F (c(a), x) for all x ∈ Rn−1. By hypothesis each function ci
is definable in R. Thus f is definable in R.
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4.8. Proof of Theorem 5. We consider here (B,A) as an expansion of
the field of real numbers. We have to show that each open subset of Rn
that is definable in (B,A) is already definable in B. For each L2(R)-formula
φ(y) with y = (y1, . . . , yn) that defines an open subset of Rn in (B,A)
we introduce a new n-ary relation symbol Oφ. Let L̂ be the language L

augmented by these new relation symbols Oφ. Let B̂ be the L̂-expansion of
B in which each new n-ary relation symbol Oφ is interpreted as the subset
of Rn defined in (B,A) by φ(y). By Theorem 4 the open subsets of R that
are definable in (B,A) are exactly the finite unions of open intervals. It
then follows by a result in [5] about expansions of the real field that B̂ is o-
minimal, and that a subset of Rn is definable in B̂ if and only if it is a boolean
combination of open subsets of Rn each of which is definable in (B,A); thus
each L̂-formula ψ(y) with y = (y1, . . . , yn) is equivalent in B̂ to a boolean
combination of formulas Oφ(y) with n-ary Oφ as above. (The structure B̂ is
the open core of (B,A) in the sense of [5].) Take an ℵ0-saturated elementary
extension (B∗,A∗) of (B,A). We shall apply Lemma 4.7 to R := B∗, with
underlying set R := B∗, and its L̂-expansion R̂ obtained by interpreting
each n-ary Oφ as above to be the subset of Rn defined by the formula φ(y)
in (B∗,A∗). Clearly, R̂ is an ℵ0-saturated elementary extension of B̂, and
thus also o-minimal. By 4.6 each function R→ R definable in R̂ is definable
in R. Thus, by 4.7,

(∗) R̂ and R have the same definable subsets of Rn for all n.

Let now S ⊆ Rn be open and definable in (B,A). We have to show
that S is definable in B. Let S be defined in (B,A) by the L2(R)-formula
φ(y) with y = (y1, . . . , yn), and let S∗ be the subset of Rn = (B∗)n de-
fined by this same formula in (B∗,A∗). By (∗) there is an L-formula φ′(x, y)
with x = (x1, . . . , xm) and an element b∗ ∈ (B∗)m such that φ(y) and
φ′(b∗, y) are equivalent in (B∗,A∗). Because (B,A) is an elementary sub-
structure of (B∗,A∗) it follows that there exists b ∈ Rm such that φ(y)
and φ′(b, y) are equivalent in (B,A). Thus S is defined in B by the formula
φ′(b, y).

In the terminology of [5] we have identified the “open core” of (B,A)
and shown it to be o-minimal. This has some attractive consequences which
we list in the following corollary.

Corollary 4.9. Suppose B expands the ordered field of real numbers.
Let S ⊆ Rn be definable in (B,A). Then:

(1) The closure and interior of S are definable in B.
(2) S is definable in B if and only if S is a boolean combination of closed

subsets of Rn each of which is definable in (B,A).
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(3) There is a finite partition Π of Rn into cells (in the sense of B)
such that for each C ∈ Π either C ∩ S = ∅, or C ⊆ S, or both C ∩ S and
C \ S are dense in C.

While (1) and (2) are immediate consequences of the theorem, (3) is
proved in [5], where also further refinements are given. Note that (3) extends
the second part of Theorem 4 to arbitrary definable sets in the case when B
expands the ordered field of reals.
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