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Abstract. The 1 : −2 resonant center problem in the quadratic case is to find neces-
sary and sufficient conditions (on the coefficients) for the existence of a local analytic first
integral for the vector field (x+A1x

2 +B1xy+Cy2)∂x + (−2y+Dx2 +A2xy+B2y
2)∂y .

There are twenty cases of center. Their necessity was proved in [4] using factorization
of polynomials with integer coefficients modulo prime numbers. Here we show that, in
each of the twenty cases found in [4], there is an analytic first integral. We develop a new
method of investigation of analytic properties of polynomial vector fields.

1. Introduction. Recall the classical problem of center for polynomial
real planar vector fields

(1) ẋ = −y + P (x, y), ẏ = x+Q(x, y),

where P and Q are polynomials belonging to some natural class (e.g. of
degree ≤ n, homogeneous of degree n). One has to find conditions, on the
coefficients of P and Q, under which a neighborhood of the origin is covered
by periodic solutions of the system (1).

This problem was completely solved only in the two general situations:

(i) when P and Q are homogeneous quadratic polynomials (by Dulac
and Kapteyn) and

(ii) when P and Q are homogeneous cubic polynomials (by Sibirskĭı).

(We do not cite many special results in this field.)
In [5] the following generalization of the center problem was proposed.

When we treat (1) as a system in the complex plane (with complex time)
then after a simple change of variable it is equivalent to ẋ = x+. . . , ẏ = −y+
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. . . , i.e. to a 1 : −1 resonant saddle. The existence of a center is equivalent
to the existence of a local analytic first integral of the form H = xy + . . .
(Equivalent condition: absence of the resonant terms (xy)k(x∂x + y∂y) in
the normal form.)

In [5] conditions for the existence of a local analytic first integral H =
xqyp + . . . (i.e. for the existence of a p : −q resonant center) for the polyno-
mial system

(2) ẋ = px+ . . . , ẏ = −qy + . . .

were investigated. (Equivalent condition: absence of the resonant terms
(xqyp)k(px∂x + qy∂y) in the normal form. One can also associate with such
a center a family of homologically different cycles in the leaves of the holo-
morphic foliation defined by (2); see [5].) One can also consider the case
p = 0 (i.e. saddle-node) and the case pq < 0 (i.e. resonant node).

A series of relevant results were proven, including a number of sufficient
conditions for a p : −q resonant quadratic center (eleven cases for the 1 : −2
resonance). The corresponding first integrals were written down explicitly
(see Theorem 2 below).

The only way to get necessary conditions for a center is to compute
the p : −q resonant focus numbers, the analogues of the Poincaré–Lyapunov
focus quantities. One calculates the successive terms in the Taylor expansion
of the supposed first integral and the focus numbers gk are the coefficients
of the obstacles to its existence:

Ḣ =
∑

gk(xqyp)k+1, H = xqyp + . . .

The gk’s are polynomials in the coefficients of (2) and are calculated algo-
rithmically (see [4]).

Unfortunately, they are very complicated; it is the main reason of slow
progress in the center problem. One should not only calculate gk but also
factorize them modulo the ideal Jk−1 generated by gj , j < k. The com-
putation of the Gröbner bases of the ideals Jk requires a lot of computer
memory. In the case of 1 : −2 resonance it fills 9000 written pages (over the
ring Z).

The success of the paper [4] relied on replacing the ring Z[A] by the
ring Z/rZ[A], where A denotes the coefficients and r is some prime number.
This idea was elaborated on by Faugère [2], in the so-called “GB” package.
Of course, using one prime p would not be sufficient and hence in [4] the
calculations were repeated for the primes 65111, 65437, 65213, 65513, 64693,
64919, 65033, 65167, 65521, 31991.

Although this method does not provide a rigorous proof of necessary
conditions it is practically sure that they are complete. The probability of
the opposite event is lower than 10−25.
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The list of the 20 necessary conditions from [4] (see Theorem 1 below)
contains 11 sufficient conditions found in [5]. The aim of this paper is to
prove that the remaining 9 cases are also sufficient.

In 8 of these 9 cases the first integral is written explicitly (of Darboux
type or of Darboux–Schwartz–Christoffel type or of Darboux-hyperelliptic
type). In one case, i.e. (2.2), we do not even know if it is integrable in
quadratures. We have developed a new method of proving analyticity of the
local first integral. This method can be described as follows.

Firstly, assume that there is an invariant rational algebraic curve passing
through the center point. There is a rational invertible change of variables
such that the invariant curve becomes one of the invariant axes (it is the
Abhyankar–Moch theorem [1]). Thus we can write the equation for the phase
curves in the form

dz

du
=
a1(u)z + . . .+ ak(u)zk

b0(u) + . . .+ bl(u)zl
= c1(u)z + c2(u)z2 + . . .

where ai and bj are polynomials. We seek a first integral in the form of the
series

H = H1(u)z +H2(u)z2 + . . .

Calculations show that H1 is of Darboux type, a product of powers of linear
factors: H1 = uα0(u−u1)α1 . . . (u−ur)αr . Amazingly, it has turned out that
the other Hk’s are also of Darboux type in the case (2.2): Hk = H1(u)·Wk(u)
with rational factors Wk. This is proved by induction.

This integral usually cannot be analytic near the origin because it con-
tains negative powers of u; namely, we always have Wk = u−k · Zk(u),
Zk(0) 6= 0. However, after blowing-up we obtain a new singular point (with
another resonance) which is orbitally linearizable. It is easy to show, using
the formal orbital normal forms theory, that also the point u = v = 0 has
trivial formal orbital normal form.

Therefore the study of the quadratic 1 : −2 resonant case is finished.
It is the third general case which is solved completely, after the quadratic
1 : −1 resonant and homogeneuos cubic 1 : −1 resonant cases.

Before passing to the theorems and proofs we want to underline some
general characteristics, which distinguish the p : −q resonances from the
1 : −1 resonance.

(a) All known 1 : −1 cases of polynomial center contain at least one
modulus, i.e. the quotient of the center variety by the action of affine changes
of coordinates and time has all components of positive dimension. In the
quadratic p : −q resonant case there are components without moduli, i.e. of
maximal possible codimension. In particular, there is no analogue of Bautin’s
theorem about the bound 3 for the number of small limit cycles bifurcating



194 A. Fronvil le et al.

from a quadratic 1 : −1 resonant center. In [5] it was shown that the number
of such cycles can be ≥ 4.

(b) In all known p : −q resonant polynomial centers at least one of its
separatrices lies in an invariant algebraic curve. This is not the case for the
1 : −1 resonance; for example, in the Lotka–Volterra quadratic center or in
the reversible quadratic center.

(c) In all known real elementary polynomial centers (1 : −1 case with
additional antisymmetry), the vector field is either reversible (in a general-
ized rational sense) or has a first integral of liouvillian type. In this paper
we present some cases of p : −q resonant center with a first integral ex-
pressed by means of hypergeometric functions (see Theorem 2). The latter
have non-solvable monodromy group and cannot be of liouvillian type (with
solvable monodromy). They are not reversible either.

A rigorous estimate of the cyclicity of a quadratic 1 : −2 resonant center
from above would be difficult because we need some radicality property of
the ideal generated by the focus numbers. However, it seems that using the
calculations from [4] it should be possible to get an almost sure upper bound.
Namely, one has to compute the first five 1 : −2 resonant focus numbers in
order to get the center conditions from Theorem 1. It seems that the further
focus numbers can be expressed by means of the first five; i.e. they lie in
the ideal generated by g1, . . . , g5, which should be radical. (Fronville checked
that the next two focus numbers lie in this ideal.) In such a case one could
apply the method of Françoise and Yomdin [3] which allows showing that
there are no more than 5 limit cycles bifurcating from the center. One could
also use the arguments from the Appendix of [5] where the analogue of
Bautin’s theorem in the complex case is proven.

If the above conjecture is true, then we would have the inequalities

4 ≤ number of small limit cycles ≤ 5

where the first inequality is rigorous and the second one is to be proven.

2. Results. Consider the system

(3) ẋ = x+A1x
2 +B1xy + Cy2, ẏ = −2y +Dx2 +A2xy +B2y

2.

(Here the notation Ai, Bj , C,D is chosen in such a special way because of
the additional symmetry structure. Namely, the change of variable x →
µx, y → µ−2y, µ ∈ C∗ = C \ 0, results in the action of the torus C∗ on the
coefficients: Ai → µAi, Bj → µ−2Bj , C → µ−5C, D → µ4D. The focus
numbers are invariant with respect to this action.)

Definition. We say that the system (3) has a 1 : −2 resonant center iff
it has a local analytic first integral H = xy2 + . . . near x = y = 0.
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Theorem 1. The system (3) has a 1 : −2 resonant center iff one of the
following twenty conditions holds:

(1.1) C = D = 2A1B1 −A1B2 −A2B2 = 0,
(2.1) A2 = D = 0,
(2.2) A1 + 2A2 = B1 = B2 = D = 0,
(2.3) A1 − 2A2 = B1 = B2 = D = 0,
(2.4) 4A1 +A2 = 2B1 + 3B2 = D = 0,
(2.5) A1 +A2 = B1 = D = 0,
(3.1) B1 = B2 = C = 0,
(3.2) 2A1A2 + 2A2

2 +B2D = B1 = C = 0,
(3.3) A2 = B1 +B2 + C + 0,
(3.4) 3A1 +A2 = B1 +B2 = C = 0,
(3.5) A1 − 3A2 = B1D + 3A2

2 = B2D + 2A2
2 = C = 0,

(3.6) 2A1 − 11A2 = 121B1D + 30A2
1 = 121B2D + 12A2

1 = C = 0,
(3.7) A2 = 2B1 −B2 = C = 0,
(4.1) A1 −A2 = 11B1 − 8B2 = 25B1D − 16A2

2 = 4A3
2 − 25D2C = 0,

(4.2) 4A1 − 19A2 = B1 −B2 = 125A3
2 + 16D2C = 4B1D + 35A2

2 = 0,
(4.3) A1 + 2A2 = 2B1D −B2D + 2A2

2 = A2B2D − 2A3
2 + CD2 = 0,

(4.4) 28A1 + 29A2 = 17B1 +B2 = 196B1D + 5A2
2 =

125A3
2 + 5488CD2 = 0,

(4.5) 4A1 − 7A2 = 4B1 −B2 = 2B1D +A2
2 = 5A3

2 + 4CD2 = 0,
(4.6) 8A1 +A2 = B1 + 5B2 = 32B1D − 5A2

2 = 5A3
2 − 128CD2 = 0,

(4.7) 65A4
2−40A1CD

2 +104A2CD
2 = 55A5

2 +148A2
2CD

2 +40B1CD
3 =

45A5
2 + 32A2

2CD
2 + 40B2CD

3 = 5A6
2 + 8A3

2CD
2 − 16C2D4 = 0.

(The labelling is taken from [4]. All cases are divided into four groups,
labelled by the first number: 1. C = D = 0, 2. C 6= 0 = D, 3. C = 0 6= D,
4. C 6= 0 6= D. The above conditions are written in the general (equivariant)
form; in [4] they were simplified with C = 1 in 2., D = 1 in 3., and C = 5,
D = 2 in 4.)

The proof of Theorem 1 consists of two parts: necessity of the condi-
tions (1.1)–(4.7) and their sufficiency. The first part was done in [4] using
computer programs; recall that this proof is almost surely complete but not
absolutely rigorous.

In [5] it was shown that eleven of the above conditions are sufficient by
finding explicit formulas for first integrals. Below we recall these formulas in
some special affine coordinates and for generic coefficients. In these formulas,

F1(z) = F (a, b; c; z) = 1 +
ab

c1!
z +

a(a+ 1)b(b+ 1)
c(c+ 1)2!

z2 + . . .
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is the hypergeometric function, and F2(z) = F (a− c+ 1, b− c+ 1; 2− c; z).
Theorem 2 [5]. The following functions define first integrals for the

system (3) in the eleven cases below.

(1.1) x2y(1 + x+ y)a (case (7) in [5]),

(2.1) x1/2{[x+ cy/(ab)]F1(y)− y(1− y)F ′1(y)}/{[1/2 + x+ (c/(ab)−
1/2)y]F2(y)− y(1− y)F ′2(y)}, c = 3/2 (case (1) in [5]),

(2.3) (y2 + 5x)4y2(y2 + 4x+ 1)−5 (case (12) in [5]),

(2.4) (x+ x2 + axy + y2)2y (case (6) in [5]),

(3.1) (1 + x)−a[1 +
(
a
1

)
x+

(
a
2

)
x2 +

(
a
3

)
x3 + x2y] (case (4) in [5]),

(3.2) x2{[y+cx/(ab)]F1(x)−x(1−x)F ′1(x)}/{[2+y+(c/(ab)−2)y]F2(x)−
x(1− x)F ′2(x)}, c = 3 (case (3)1 in [5]),

(3.3) [(1 + x+ xy − (a− 2)x2/6)a]/[1 + ax+ axy + (2a− 1)x2/6] (case
(8) in [5]),

(3.4) x2(y + x2 + axy + y2) (case (5) in [5]),

(3.7) [1+y+(a+1)x]a[1+y+(a−2)x]1−a[1+y+(4a−2)x+9a(a−1)x2/2]−1

(case (9) in [5]),

(4.1) [(x+ y)2 + 6x]2[(x+ y)2 + 12y][x+ y + 2]−6 (case (10) in [5]),
(4.6) [1 + (x+ y − 1)(−2x+ y + 1)]2[1 + (x+ y − 1)(x− 3y + 1)] (case

(13) in [5]).

Remark 1. In [5] also the case A1 = −1, A2 = 1, B1 = D = 0, B2 = 7,
C = −5, i.e. (14), was investigated. It is included in (2.5) as a subcase.

The cases (11) and (15) from [5] (for p = 1, q = 2) are particular subcases
of (3.7).

The cases (2) and (3)k, k > 1, from [5] concern other resonances (different
p, q).

In Sections 3–13 we will prove the analyticity of the first integrals in the
remaining cases, i.e. (2.2), (2.5), (3.5), (3.6), (4.2), (4.3), (4.4), (4.5), (4.7).

We also have one result concerning the case of saddle with general 1 : −q
resonance. Namely, we consider the Lotka–Volterra case

(4) ẋ = x(1 +A1x+B1y), ẏ = y(−q +A2x+B2y).

Proposition 1. The system (4) has a 1 : −q resonant center at (0, 0)
iff

(5) A2[A1 +A2][2A1 +A2] . . . [(q − 2)A1 +A2]

× [qA1B1 − (q − 1)A1B2 −A2B2] = 0.

We will prove this in the last section.
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3. Blowing-up of resonant saddles. Consider the resonant analytic
vector field (2), i.e. ẋ = px+ . . . , ẏ = −qy + . . .

Its formal orbital normal form (i.e. with respect to formal changes of the
coordinates x, y and multiplication by formal nonzero functions) is either

(6) ˙̃x = px̃, ˙̃y = −qỹ(1 + az/(1 + bz)), z = x̃kq ỹkp

where k is a positive integer, a 6= 0 (it is the p : −q resonant focus number
and can be normalized to 1), and b is a formal modulus, or

˙̃x = px̃, ˙̃y = −qỹ.
In the latter case the change is analytic and the initial system has the

analytic first integral x̃q ỹp. It is just the p : −q resonant center.
Consider now the blowing-up of this singularity. It means that we apply

the change (x, y) → (ξ, η) = (x̂, ŷ/x̂), where x̂, ŷ is some linear system
of coordinates. The point x = y = 0 is replaced by the line ξ = 0, which
contains two singular points of the resolved field of directions. These singular
points correspond to the separatrices of (2) and are saddles:

• P1 which is (p+ q) : −p resonant, and
• P2 which is (p+ q) : −q resonant.

Lemma 1. If one of the points P1 or P2 is orbitally analytically lineariz-
able then the point x = y = 0 is a p : −q resonant center.

P r o o f. The formal system (6) is equivalent to

˙̃x = px̃, ż = −aqz2/(1 + bz)

with first integral 1
p ln x̃+ b

aq ln z − 1
aqz containing logarithmic singularities

along the separatrices x̃ = 0 and ỹ = 0. (The separatrices of a saddle always
form analytic curves.)

After the blowing-up ξ = x̃, η = ỹ/x̃ (for example) the above first integral
transforms to 1

p ln ξ + b
aq ln z − 1

aqz , z = (ξp+qηp)k. It is a first integral of

the system ξ̇ = pξ, η̇ = −(p + q)η(1 + ãz/(1 + bz)), ã = aq/(p + q), in its
normal form.

Thus if x = y = 0 is not a center then neither is ξ = η = 0.

As a corollary we get some useful property which will be used in the
next sections. It allows us to replace the expansion of a first integral in the
Taylor series by an expansion of another first integral in a series containing
terms with negative powers.

Proposition 2. Assume that there is a Taylor series F of two variables
and a polynomial resolution map Φ : C2 → C2 (which defines a diffeomor-
phism between C2 \ Φ−1(0) and C2 \ 0) such that the series F ◦ Φ−1(x, y) is
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a formal first integral of the resonant saddle (2). Then the point x = y = 0
is a p : −q resonant center for (2).

For example, if the series
∑∞
n=0Wn(y) · xq/p−nyn+1, Wn(0) 6= 0,∞, is a

formal first integral for a p : −q resonant point then we have a center.

4. Darboux form of the Chebyshev function. Liouville showed that
the Chebyshev integral

(7) Φ(x) =
x\
τα−1(1− τ)β−1 dτ

is elementary iff one of the numbers α, β, α+β is an integer. We ask whether
it is of Darboux type

(8) xα(1− x)βP (x)

(up to a constant) with a polynomial P for both α and β noninteger.

Proposition 3. If neither α nor β is an integer then the function (7)
has the form (8) iff α + β is a nonpositive integer. Moreover , in that case
degP ≤ −(α+ β).

P r o o f. We can define the principal value of the Chebyshev function at
the singular points 0, 1.

Let x0 6= 0, 1 be the initial limit in the integral (7). Then near x = 0 we
have the representation Φ(x) = c0 + xα × analytic function. Similarly near
x = 1 we have Φ(x) = c1 + (x− 1)β × analytic function.

The difference c1 − c0 is equal to the Euler Beta-function
1\
0

τα−1(1− τ)β−1 dτ = Γ (α)Γ (β)/Γ (α+ β),

where the right-hand side defines its analytic prolongation to the domain
with Reα ≤ 0 or Reβ ≤ 0.

The first part of Proposition 3 follows from the fact that Γ (α)Γ (β) 6= 0
and the Gamma-function has poles at nonpositive integers.

The estimate for the degree follows from the fact that Φ(x) tends to a
constant as x tends to infinity.

Corollary. If α, β are not integers, n is a nonnegative integer and
α + β + n is a nonpositive integer then for any polynomial Qn of degree n
the integral

x\
Qn(τ)τα−1(1− τ)β−1 dτ

is of Darboux type (8) with P of degree ≤ −(α+ β).
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5. The case (2.2). The equation for the phase curves is

(9) 3
dy

dx
= − (2−A2x)y

x(1− 2A2x) + Cy2

where, after some simple changes, we can assume that A2 = −1, C = −1.
(If A2 = 0 or C = 0 then one can easily integrate (9).)

We expand the right-hand side of (9) in a power series

dy

dx
= a(x)y

[
1 +

∑
y2n/b(x)n

]

where a(x) = −2/x+ 3/(1 + 2x), b(x) = x(1 + 2x). We seek a first integral
also in the form of a power series

H = H1(x)y +H3(x)y3 +H5(x)y5 + . . .

The functions Hn satisfy the system of equations

H ′1 + aH1 = 0,

H ′3 + 3aH1 + (a/b)H1 = 0,

. . . . . . . . . . . . . . . . . . . . . . . . . . .

H ′2n+1 + (2n+ 1)H2n+1 +
(2n− 1)a

b
H2n−1

+
(2n− 3)a

b2
H2n−3 + . . .+

a

bn
H1 = 0.

. . . . . . . . . . . . . . . . . . . . . . . . . . .

The first of them has the solution

H1 = x2(1 + 2x)−3/2

and the others are solved in the form

H2n+1 = H1(x)2n+1
x\
H1(s)−2n−1Ψn(s) ds

where Ψn is calculated algebraically using the previous steps.
The next lemma in combination with Proposition 2 proves the existence

of a center in the case (2.2).

Lemma 2. We have

H2n+1 = x2−n(1 + 2x)−3n−3/2P2n(x)

where P2n(x) are polynomials of degree 2n.

P r o o f. We use induction with respect to n. Of course H1 has the form
from Lemma 2.
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Next

H2n+3 =
−x4n+6

(1 + 2x)3n+9/2
(10)

×
x\ (1 + 2s)3n+9/2

s4n+6 · a
b

(s) ·
[ n∑

j=0

(2j + 1)H2j+1

bn−j

]
ds.

Here each summand in the integrand equals

(1 + 2s)3n+9/2

s4n+6 · s+ 2
s2(1 + 2s)2 ·

1
sn−j(1 + 2s)n−j

· (2j + 1)P2j(s)
sj−2(1 + 2s)3j+3/2

= (2j + 1)
(s+ 2)(1 + 2s)2n−2j+1P2j(s)

s5n+6 .

We see that the degree of the numerator is 2n+2 and is smaller than the
degree of the denominator (power of s) minus 1. Therefore, we can integrate
this expression term-by-term to obtain Q(j)(x) · x−5n−5, with polynomial
Q(j) of degree 2n+ 2.

This together with (10) gives the result.

Remark 2. After applying the change y2 = xz the system (9) is trans-
formed to

(11) ẋ = x(1 + 2x− z), ż = z(−5− 4x+ z),

which has a center at x = z = 0 (by Proposition 1 with q = 5). The above
change is the composition (x, y) → (x, y2) → (x, y2/x) of a fold map and
a blowing-up map. Therefore, applying the arguments from Section 3 we
obtain another proof of the existence of a center for the system (9).

The analyticity of a first integral of (9) can also be obtained by refining
the proof of Proposition 1 from Section 14. Namely, one seeks a first integral
of the Lotka–Volterra system (11) in the form H = x5y[H0(x)+H1(x)z+. . .].
In the proof of Proposition 1 it is shown that Hj = (1 + 2x)−3(j+1)P2j(x),
where P2j are polynomials of degree 2j.

In the special case of the system (11) it can be shown that P2j =
xj−4Qj+4(x), j > 4, where Qm are of degree m. This allows us to show
the analyticity of the first integral H(x, y2/x) near x = y = 0.

6. The case (2.5). By using the changes x → λx, y → µy the variety
described by the four general conditions (2.5) can be reduced to one line
in the parameter space. More precisely, we can assume that A1 = −A2 =
1, C = −1, B2 = −b ∈ C. We obtain the system

(12) ẋ = x(x+ 1)− y2, ẏ = −(x+ 2)y − by2.
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One can check that the point x = −1, y = 0 is a 1 : 1 resonant node with
diagonal linear part. This implies that the system (12) has three invariant
lines passing through (−1, 0) and through the singular points at infinity.

Moreover, this system can be integrated by means of a Darboux–
Schwartz–Christoffel integral. Indeed, in the variables u = y/(x + 1), z =
x+ 1 we have the linear equation

dz

du
=

1 + (u2 − 1)z
u(2 + bu− u2)

with first integral

H = zu1/2(u− u2)a1(u− u2)a2 −
u\
s−1/2(s− u1)a1−1(s− u2)a2−1 ds.

Here u1,2 = (b±√b2 + 8)/2, a1,2 = (±3b+
√
b2 + 8)/(2

√
b2 + 8).

Remark 3. One can prove the existence of a center in the case (2.5) in
the same way as in the case (2.2), i.e. using the arguments from Section 3.
Namely, one expands the first integral in a power series H =

∑
Hj(x)yj

and shows (by induction) that H2n+1 = Pn(x)x2−n(x+ 1)−2n−1 and H2n =
Qn−1(x)x3−n(x+ 1)−2n, where Pj and Qj are polynomials of degree j.

Remark 4. The case (2.5) can be generalized in the following way. The
system

ẋ = px(1 + x)− y2, ẏ = y(−q + (p− q)x− by)
has the singular point (−1, 0), which is a 1 : 1 resonant and linearizable
node with three invariant lines. It also has a Darboux–Schwartz–Christoffel
integral.

The corresponding conditions for center (in the equivariant form) are

pA2 + (q − p)A1 = B1 = D = 0.

7. The case (3.5). This case is of codimension four and after a suitable
reduction we can assume that A1 = 3, A2 = 1, B1 = −3, B2 = −2, C = 0,
D = 1 or that

ẋ = x(1 + 3x− 3y), ẏ = −2y(1 + y) + xy + x2.

One checks that the curves
f1 = 4(x− y)3 + x2 − 20xy − 8y2 − 4y = 0,

f2 = (x− y)2 + 4x+ 2y + 1 = 0

are invariant and ḟ1 = 2(−1 + 3x− 3y)f1, ḟ2 = 4(x− y)f2. This means that
the function H = x2f1/f

3
2 is a first integral.

Remark 5. If XH denotes the Hamiltonian vector field with Hamilton
function H as above then it is of the form XH = xf−4

3 VH , where VH is
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a quintic vector field. It turns out that VH has nonisolated critical points.
Namely, 1−(27/4)H = f2

3 /f
3
2 , f3 = (x−y)3−15x2/2−3xy−3y2−6x−3y−1,

which means that XH vanishes at f3 = 0. Thus the vector field VH/f3 is
proportional to our quadratic vector field.

Remark 6. Using the change z = y−z and expansion of the first integral
H = H2(z)x2 +H3(z)x3 + . . . one can show the existence of a center using
the method described in Section 3 (as in the case (2.2)). By induction, one
proves that Hn = Pn−2(z)z3−n(1 + z)−2n, where Pj denotes a polynomial
of degree j.

8. The case (3.6). After some change the problem is reduced to the
study of the system

ẋ = x+ 11x2 + 30xy, ẏ = −2y − x2 + 2xy + 12y2.

It is useful to make the change z = x+ 6y − 1 (the point (1 : −6 : 0) at
infinity is singular). Then we get

ẋ = x(6 + 6x+ 5z), ż = 6x+ 2z + 3xz + 2z2.

One checks that this system has the following invariant curves:

f = z3 − 18xz − 36x = 0,

g = z4 − 24xz2 − 48xz + 72x2 = 0.

More precisely, ḟ = 3(2 + 3x+ 2z)f, ġ = 4(2 + 3x+ 2z)g. This means that
H = g3/f4 is a first integral.

Remark 7. Notice that

g = z4
(

1− 18
x

z2 − 36
x

z3

)4/3

+O[1] = z4(f/z3)4/3 +O[1]

where O[n] = O(|(x, z)|n) as |(x, z)| → ∞. This implies that the vector field
VH = g−2f5XH is cubic. But H − 1 = x2(y + . . .), which implies that the
line x = 0 is critical for VH . Thus VH = xV with quadratic vector field V .

Remark 8. Initially, the authors used the method of Section 3 to show
the existence of a center in the case (3.6). However, that proof needs a lot
of preliminary transformations and the calculations were quite complicated.

9. The case (4.2). After reduction we obtain the system

ẋ = x− 19x2 − 14xy + 5y2, ẏ = −2y + 10x2 − 4xy − 14y2.

Here the curves
f1 = 2y − 5x2 − 64xy + 22y2 + 18(x+ y)2(7x− 2y) + 81(x+ y)4 = 0,

f2 = x+ (x+ y)2 = 0,

f3 = 1− 24x+ 12y = 0



1 : −2 resonant center problem 203

are invariant. More precisely, ḟ1 = −2[1+18(x+y)]f1, ḟ2 = [1−18(x+y)]f2,
ḟ3 = −24(x+ y)f3, and H = f1f

2
2 /f

3
3 is a first integral.

Remark 9. Here VH = f−1
2 f4

3XH is a sixtic vector field with a quartic
curve f4 = 1−18(2x−y)+54(2x−y)2 +108(8x−y)(x+y)2 +486(x+y)4 = 0
of nonisolated critical points. We have V = VH/f4.

Another form of a first integral is f2
4 /f

3
3 .

Remark 10. Passing to the variables u = x+y, z = x+u2 we can apply
the method of Section 3. We obtain H = H2(u)z2 + H3(u)z3 + . . . , where
Hn = Pn−2(u)u3−n(1 + 6u)−2n. This gives another proof of the existence of
a center.

10. The case (4.3). Reduction gives the 1-parameter family of systems

ẋ = x− 2x2 + bxy − 2by2,

ẏ = −2y + x2 + xy + (2b+ 2)y2.

This system has invariant algebraic curves

f = (x+ 2y)2 − 4y = 0, g2
1 − f = 0, g2

2 − f = 0

where g1,2 = x+ 2y + α1,2/(b+ 2) and α1,2 = 3±√1− 4b.
We have presented the invariant curves in this special form because it

suggests the existence of a first integral of a special form. We have

(g1,2 ±
√
f)˙ = [4(b+ 2)y − α2,1(x+ 2y ±

√
f)](g1,2 ±

√
f)/4.

This means that we have the following first integral of Darboux-hyperelliptic
type:

H =
(
g1 −

√
f

g1 +
√
f

)α1
(
g2 +

√
f

g2 −
√
f

)α2

.

Remark 11. After introducing the new coordinates u = x + 2y, z =
4y − u2 one obtains

dz

du
=

[2(b+ 2)u2 − 8]z + 2(b+ 2)z2

u[(b+ 2)u2 − 6u+ 4]− [6− (b+ 2)u]z

=
(−2
u

+
2ϕ′(u)
ϕ(u)

)
z +

∑ Qn(u)
unϕn(u)

zn

where ϕ = (b + 2)u2 − 6u + 4 and Qn are polynomials of degree n. Next,
expanding the first integral H = H1z +H2z

2 + . . . we get H1 = u2/ϕ2 and
Hn = P3n−4(u)u2−nϕ−2n(u).

This provides another proof of the existence of a center in this case.
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11. The case (4.4). After reduction we arrive at the system

ẋ = x− 29x2 − 2xy − 5y2, ẏ = −2y + 10x2 + 28xy + 34y2.

Here the curves

f1 = 2y − 5(x2 + 16xy + 10y2) + 6(x+ 5y)(19x2 + 25xy + 10y2)

+ 9(x+ 5y)2(5x+ y)2 = 0,

f2 = x− (5x+ y)2 = 0,

f3 = 1− 24x− 12y = 0

are invariant with ḟ1 = 2[−1 − 6x + 42y]f1, ḟ2 = [1 − 54x + 18y]f2 and
ḟ3 = 24(y − x)f3. Thus H = f1f

2
2 /f

5
3 is a first integral.

Remark 12. Here VH is a sixtic vector field and it has a quartic curve
1 − 30(2x + y) + 270(2x + y)2 − 108(8x2 + 5xy + 5y2)(5x + y) − 162(x +
5y)(5x+ y)3 = 0 of nonisolated singular points.

Remark 13. The existence of a center in this case can also be proved
using Propositions 2 and 3 (and its Corollary).

After introducing the variables u = y + 5x, z = x − u2 one obtains the
equation

dz

du
=

(1 + 24u)(6u− 1)z + 144z2

2u(6u− 1)2 + 3(24u− 1)z

=
(−1

2u
+

15
6u− 1

)
+
∑ Qn−2(u)

un(6u− 1)2n−1 z
n.

We look for H = H2(u)z2 + . . . and find

H2 = u(6u− 1)−5,

H3 =
−u3/2

(6u− 1)7+1/2

u\ (6u− 1)7+1/2

s1+1/2
· 2Q0s ds

s2(6s− 1)3+5 .

We integrate the latter function using Proposition 3 and its Corollary. We
get

H3 =
−u3/2

(6u− 1)7+1/2

u\ 2Q0 ds

s2+1/2(6s− 1)1/2
=

P1

(6u− 1)7 .

The general formula is

H2n =
P3n−4(u)

u2n−3(6u− 1)5n , H2n+1 =
P3n−2(u)

u2n−2(6u− 1)5n+2 .

12. The case (4.5). Here the problem is reduced to the analysis of the
system

(13) ẋ = x+ 7x2 − 2xy − 5y2, ẏ = −2y + 4x2 + 4xy − 8y2.
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Lemma 3. The system (13) has the first integral

H = [y − (x− y)2][x− (x− y)2]2[1 + 6x+ 3y − 9(x− y)2]−3.

P r o o f. One checks that the curves f = y − (x − y)2 = 0 and g =
x− (x− y)2 = 0 are invariant. More precisely,

ḟ = 2f(−1− 3f + 3g), ġ = g(1− 6f + 6g).

The latter is a Lotka–Volterra system with first integral

f−1/3g−2/3(1 + 3f + 6g)

equivalent to H.

Remark 14. In fact, this type of integral also appears in the case of
general p : −q resonance. It is of the form

[y−(x−y)2]p[x−(x−y)2]q[pq+2q(p+q)x+2p(p+q)y−2(p+q)2(x−y)2]−p−q

and the corresponding conditions for center (in invariant form) are

2qA1 − (3p+ 2q)A2 = 2q2B1D + p(2p+ q)A2

= 4q2B2D + (2p+ 3q)(2p+ q)A2
2

= (p+ 2q)(2p+ q)A3
2 + 8q3CD2 = 0.

13. The case (4.7). This case is also of codimension four but it cannot
be reduced to one system with rational coefficients. In fact, we obtain a
polynomial vector field with coefficients in the number field Q(

√
6). An

analyst would say that we have two systems, depending on the choice of the
solution of the equation λ2 − 6 = 0.

The reduced system is

ẋ = x+ 13(1±
√

6)x2 − 2(26± 11
√

6)xy + 10(1±
√

6)y2,

ẏ = −2y + 5x2 + 10xy + 2(1∓ 9
√

6)y2.

In the further analysis we choose the + sign in ±.
Here the curves

f1 = 6−
√

6 + 90
√

6(x+ y) + 270[5x2 − 8(1 +
√

6)xy + 2(7 + 2
√

6)y2] = 0,

f2 = 1 + 24(1 +
√

6)(x+ y)

+ 12[(72 + 17
√

6)x22− 4(3 + 8
√

6)xy + 50(3 +
√

6)y2]

− 72(16 +
√

6)[x− (2 +
√

6)y]2[x− (
√

6− 1)y] = 0

are invariant and ḟ1 = 18(1 +
√

6)(x − 2y)f1, ḟ2 = 24(1 +
√

6)(x − 2y)f2.
Thus H = f4

1 /f
3
2 is a first integral.

Here VH is a quartic vector field divisible by the polynomial 2(7+3
√

6)x+
[x− (2 +

√
6y]2.
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14. Proof of Proposition 1. We seek a first integral in the form

H = xqy[H0(x) +H1(x)y + . . .]

where Hj satisfy the following system of equations:

x(1 +A1x)H ′j + [−jq + (qA1 + (j + 1)A2)x]Hj

+B1xH
′
j−1 + (qB1 + jB2)Hj−1 = 0.

We find

H0 = (1 +A1x)−A−q, A = A2/A1.

Calculation of the next term gives

H1 = xq(1 +A1x)−2(A+q)
x\
s−q−1(1 +A1s)A+q−2R1(s) ds

where R1(x) = (A2B1 −A1B2)x− (qB1 +B2).
Vanishing of the residue at s = 0 of the above integrand is a necessary

condition for center. This residue equals

qAq−1
1

(
A+ q + 2
q − 1

)
[(A2B1 −A1B2)q − (qB1 +B2)(A2 −A1)]

=
q

(q − 1)!
× (the expression (5)).

If qA1B1 + (1− q)A1B2−A2B2 = 0 (see (5)), then we have the case (7)
of center from [5]. If A2 = 0, then we have a subcase of the case (1) from
[5]. It is enough to show that, if A = −i, i = 1, . . . , q − 2, then we have a
center.

Let A = −i. We can assume that A1 = 1. We calculate successively the
Hj ’s. We get

H1 = (1 + x)2(i−q)Pq−i−1(x)

where Pq−i−1 is a polynomial of the indicated degree. By induction we show
that

Hj = (1 + x)(j+1)(i−q)Pj(q−i−1)(x)

(in the proof we obtain integrals of the form
Tx
s−kRm(s) ds with m < k+1).

This completes the proof of Proposition 1.
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