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Abstract. Transformations 7" : [0,1] — [0, 1] with two monotonic pieces are con-
sidered. Under the assumption that T" is topologically transitive and hiop(T') > 0, it is
proved that the invariant measures concentrated on periodic orbits are dense in the set of
all invariant probability measures.

Introduction. In order to investigate generic properties of invariant
measures for a topological dynamical system R. Bowen [2] introduced the
specification property. This is a topological property which implies that
the measures concentrated on periodic orbits are dense in the set of all
invariant measures. The specification property implies generic properties
for different types of invariant measures, e.g. ergodic measures, nonatomic
measures, measures with zero entropy and strongly mixing measures
(see [3]). It is known that the specification property holds for basic sets of
axiom A-diffeomorphisms ([2], [3]), for monotonic mod one transformations
([5]) and for continuous maps on the interval ([1]).

We investigate in this paper dynamical systems generated by piecewise
monotonic maps. If these maps have discontinuities, it becomes complicated
to prove the density of periodic orbit measures.

Besides generic properties of invariant measures there are two more rea-
sons to consider this problem for piecewise monotonic maps 7" : [0,1] — [0, 1].
We describe these reasons below.
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The first reason occurs in the calculation of the Hausdorff dimension of
certain invariant subsets A. Assume that T is piecewise differentiable, the
derivative satisfies certain regularity conditions, and there exist no attracting
periodic points. Let A be a completely invariant closed subset of [0, 1], where
“completely invariant” means x € A is equivalent to T'z € A. Define 7(t) :=
p(T|a, —tlog|T’|), where p(-,-) denotes the pressure. It is shown in [6] that
HD(A) equals the smallest ¢ty > 0 with 7 (¢y) = 0, provided that there exists
a t > 0 with m(t) = 0. Therefore one is interested in showing the existence
of a zero of m. The proof of Theorem 1 in [6] shows that there exists a
t > 0 with 7(¢) = 0 if the periodic orbit measures are dense in the set of all
T-invariant probability measures on [0, 1].

Investigating piecewise monotonic maps one sometimes has to exclude
the dynamics of the critical orbits. This leads to a modified definition of the
pressure (see [7] and [8]). One defines ¢(7, f) := supp(T|p, f|B), where the
supremum is taken over all T-invariant closed B C [0, 1] for which a Markov
partition exists. Naturally the question arises whether (T, f) = p(T, f).
For continuous functions f the proof of Proposition 1 in [7] shows that
q(T, f) = p(T, f) if the periodic orbit measures are dense in the set of all
T-invariant probability measures on [0, 1].

These reasons indicate that the density of periodic orbit measures plays
a fundamental role in the investigation of piecewise monotonic maps. For
piecewise monotonic maps in general it seems to be rather difficult to find
a proof or a counterexample. Therefore we consider only transformations
T :10,1] — [0,1] with two monotonic pieces. If T is topologically transitive
and hiop (7)) > 0, then we prove in Theorem 2 that the periodic orbit mea-
sures are dense in the set of all T-invariant probability measures on [0, 1].
This result has been proved in [5] if T is strictly increasing on both intervals
of monotonicity. The case of three or more monotonic pieces remains open.

1. Piecewise monotonic maps and their Markov diagram. A map
T :1]0,1] — [0,1] is called piecewise monotone if there exists a set Z of
finitely many pairwise disjoint open intervals with |, Z = [0, 1] such that
T|z is strictly monotone and continuous for all Z € Z. We call a piecewise
monotonic map 7' : [0,1] — [0,1] a transformation with two monotonic
pieces if there exists a Z with card Z = 2 such that T is piecewise monotone
with respect to Z. Excluding the trivial case we always assume that for a
transformation T" with two monotonic pieces there exists no partition ) with
card) = 1 such that T is piecewise monotone with respect to Y.

Set E:={inf Z,supZ : Z € Z}\{0,1}. Then T need not be continuous
at x if x € E. We can use a standard doubling points construction as de-
scribed e.g. in [9] to obtain a dynamical system. For our purpose it is enough
to replace each ¢ € E by ~ and ™, and define 7"z~ := lim,_,,- T"y and
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Tra™ :=lim,_,,+ T"y for n € Ny, where Ng = NU{0}. For simplicity of no-
tation we write [0, 1], although from now on we mean ([0,1]\ E)U{z~,z" :
x € E}. An a € [0,1] is called a critical point if a = x~ or a = z™ for an
x € E. We call a critical point a an essential critical point if T**"a # T"a
for every k € Ny and every n € N. If a is a critical point but not an es-
sential critical point, then let k(a) € Ny and n(a) € N be minimal with
Tk(a)+n(a), — Tk(a) g

For the definitions of the topological entropy hiop (1) and of T-invariant
measures see e.g. [10]. The set of all T-invariant Borel probability measures
is denoted by M ([0,1],T"). We call R C [0, 1] topologically transitive if there
exists an € R whose w-limit set equals R. If [0, 1] is topologically transitive,
then the map T is called topologically transitive. A point p € [0, 1] is called
a periodic point if there exists an n € N with T"p = p. Let p be a periodic
point with T"p = p, and define p,(A) = %Z;:ol 14(T7p) for every Borel
set A C [0,1]. Then p, € M([0,1],T). A measure p is called a periodic
orbit measure if there exists a periodic point p € [0, 1] with p = p,. We say
the periodic orbit measures are dense in M([0,1],T) if for every nonempty
U C M([0,1],T) which is open in the weak star topology there exists a
periodic point p € [0, 1] with p, € U.

Let C' C [0,1] be nonempty. Then D is called a successor of C' if there
exists a Z € Z with D = TC N Z, and we write C — D. Now let D be the
smallest set with Z C D and such that C' € D and C' — D imply D € D.
We call (D, —) the Markov diagram of T (with respect to Z).

Define Dy := Z, and for n €N define D,, :=D,,_1U{DeD :3C€D,,_,
with C — D}. Then Dy C Dy € Dy C ... and Dy, := D = | Jo—; Dy.
Furthermore, for n € N let Z,, be the set of all Z with Z = ﬂ;‘:—ol T-9Z;
and Z # (0, where Zy, Z1,...,Z,_1 € Z.

We call Dy — Dy — ... — Dy_1 a path of length n in D if Dj_; — D;
for j = 1,...,n — 1 (a path of length 1 is an element of D). Moreover,
Dy — Dy — Dy — ... is called an infinite path in D if D;_; — D, for all
j € N. We say an infinite path Dy — D; — Dy — ... represents z € [0, 1]
if TVz € Dj for all j € Np. A subset C C D is called irreducible if for ev-
ery C,D € C there exists an n € N and a path Dy —- D; — ... — D,
of length n + 1 in C with Dy = C and D,, = D. If C C D is irreducible
and every C’' with C G C" C D is not irreducible, then C is called mazimal
wrreducible.

Ifa=Dy— Dy — ... — D,_1is a path of length n in D, 8 = Cy —
Ci — ... — (Cp,_1 is a path of length m in D, and D,,_1; — Cj, then denote
by o — 3 the path Dy - Dy — ... > D,_1 —>Cy —C; — ... = Cy,_1 of
length n+m in D. A path « = Dy — D1 — ... — D,,_; of length n in D is
called a periodic path if D,,_1 — Dgy. Assume that « = Dy — D1 — ... —
D,,_; is a periodic path. Then set o' := «, and for k£ € N, k > 1, define
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ak := a*~1 — a. We say z is represented by o if Cy — C; — Cy — ... with
Cyn+r =D, for g € Ng and r € {0,1,...,n — 1} represents z.
For x € [0, 1] there exists a unique infinite path C§ — CT — C% ...in

D with C§ € Dy which represents x. Define Rj := 0. If j € Nand RY_; # oo,
then set

(1.1) Ry :==min{n > Rj_; : Cj_; has at least 2 different successors},
where we set R} := oo if C} has only one successor for every n > Rj_;
Finally, define vy := R} — R7_, if R} # oo.

The Markov diagram can be described in the following way (see [4]). We
have

(1.2) D ={Cy :n € Ny, a is a critical point or a € {0,1}}.
Suppose that = € [0, 1] and j € N with R} # oo. Then there exists a critical
point a such that C’wz p CCpfork €{0,1,...,7f—1} (choose a # THi-1z

if this is possible). Hence C’Rz , has the two dlfferent successors C“I and

C(z,j), where C(z,j) N {1nfTC’RL 1,5up TChe P FEDUCE. has more
J

than two successors, then all other successors (b681des C and C(zx,j)) are

contained in Dy. Furthermore, there exists a ¢ € N with r = Ry. Obviously,
ri < Ry if j > 1. We have C(:U j) =Che if 7 > 1 and a; is a critical point
J

orx € {0, 1}.

2. Initial segments of critical orbits. In this section we prove that
to show the density of periodic orbit measures in M([0,1],7) it suffices to
prove that certain initial segments of critical orbits can be approximated by
periodic points.

Let T : [0,1] — [0,1] be a piecewise monotonic map. If p € [0,1] is a
periodic point, then let u, be the invariant measure concentrated on the
orbit of p. For z € [0,1], U C [0,1] and 7, s € Ny with 0 < r < s define

1 s—1 ;

(2.1) Frps(U) = — ]Z 1y(T7x)
Recall that we denote the Markov diagram of T' by (D, —). If T is topolog-
ically transitive and hiop(T") > 0, then Theorem 11 of [4] implies that there
exists a maximal irreducible D’ C D such that every = € [0, 1] is represented
by an infinite path in D’. Furthermore, there exists no arrow C — D with
C €D and D € D\ D', and there exists an Ny € N such that C%;, € D’ for
every essential critical point a.

Consider z,y € [0,1] and n € N. If C¥ and C} are contained in the same
element of Z for all k € {0,1,...,n—1}, then [nFy 0,(Z) —nEFyon(Z)| <m
for all m € Nand all Z € Z,,.



Density of periodic orbit measures 225

In order to prove the density of periodic orbit measures in M (][0, 1],T)
we need the following result.

LEMMA 1. Let T : [0,1] — [0,1] be a topologically transitive piecewise
monotonic map with hiop(T) > 0. Fiz k € N, and for j € {1,...,k} let

€ [0,1]) and l; € N. Furthermore, let qi,...,qx € Q with ¢; > 0 for
je{l,...,k} and Z?Zl q; = 1. Assume that for every V € J -_, Zp, there
exist ay > 0 and by > 0 with the following property: for every j € {1,...,k}
there exists a periodic point p; € [0,1] such that

‘ij,(),l]‘ (V) — Hp; (V)| <ay fOT’ 2<y< ka and
‘Ffﬂl,ﬂ,h (V) — Hp, (V)‘ < by

for every V € \Joo_, Zm. Then for every n > 0 there exists a periodic point
p € [0,1] such that

(2.2)

k
23) D Fe 00 (V) = (V)| < (1= a)av + by +om
j=1

for every m € N and every V € Z,,.

Proof. For j € {1,...,k} let o; be a periodic path in D’ representing
pj. Set agt1 = aq. Then for every j € {1,...,k} there exists a path v; of
length u; in D’ with a;; — v; — a;j41. Define u := max{uy, ..., us}. Choose
an n € N such that
2ku

(2.4) % -

n
< <2,
= 2

and ng;/l; € Ng and ng;/a; € Ny for every j € {1,...,k}, where q; is the
length of «;.
We define the periodic path « in (D, —) by

(2.5) o= a;”“/al — v — a;m/” —S Uy — ... — ank/a’“ — Ug.

Then « represents a periodic point p € [0,1]. Set N :=n + Zle uj.
Choose an m € N, and let V' € Z,,. By (2.1) we obtain

Nup(V)=NFpon(V) and ng;j tp, (V)= nq;jFp; 0,nq; (V)

for j € {1,...,k}. If we use Z?Zl ng; = n and (2.5) this implies

k k
26) | Yo naying, (V) = Niug(V)] < 32 + m) < ku+m).

Jj=

Since n < N < n+ ku we get [Nuy(V) — nu,(V)| < ku. Therefore (2.2)
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and (2.6) give
k
‘ anszj,o,zj(V) —npp,(V)| <n((1 —q1)ay + qrby) + 2ku + km.
j=1

Dividing by n and using (2.4) we obtain (2.3). =
We will need the following special case of Lemma 1.

LEMMA 2. Let T : [0,1] — [0,1] be a topologically transitive piecewise
monotonic map with hyop(T) > 0. Suppose that x € [0,1], k € N and
Li,...,Ly € Nwith Lo :=0< L1 < ... < L := L. Assume that for every
m € N and every V € Z,, there exist ay > 0 and By > 0 with the following
property: for every j € {1,...,k} there exists a periodic point p; € [0,1]
such that

|Fon; 10, (V) = pp, (V)| <av  for2<j<k, and

(2.7) By +m
|F0,, (V) = pp, (V)] < ‘/Lil

for every m € N and every V € Z,,. Then there exists a periodic point
p € [0, 1] such that

By +2m
(2.8) Feo (V) = ip(V)| < ay + ==
for every m € N and every V € Z,,.

Proof. If j € {1,...,k}, then define z; := T*i-1z, 1, := L; — L;_1 and
q; :=1;/L. By (2.1) we have

k
FI,O,L(U) = Z QjFa:j,O,lj (U)
3=0

for every U C [0,1]. Now apply Lemma 1 with by := (By + m)/L; and
n:=1/L,anduse 1 —¢; < 1. m

Consider a topologically transitive piecewise monotonic map 7' : [0, 1]
— [0, 1] with hyop(7) > 0, and let D" be the maximal irreducible subset of
(D, —) such that every x € [0, 1] is represented by an infinite path in D’.
By Theorem 10 in [4] there exists an ny € N such that for every z € [0, 1]
there exists an infinite path Dy — D; — Dy — ... in D’ with Dy € D,,
which represents x. There exist ny,ng € N with ny > ny such that for every
C € D, and every D € D' ND,, there exists a path Dy — Dy — ... — D,
of length n+1 < ng in D with Dy = C and D,, = D. If s € R, then let R(s)
be the set of all C' € D such that for every D € D' ND,, there exists a path
Dy— Dy —...—> D,oflengthn+1<sinD with Dy =C and D,, = D.
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For n € N with n > n% define
(2.9) y(n) := max{r € N: D, C R(v/n)},

where we set y(n) := oo if D C R(y/n). Obviously vy(n) > ng if n > n3,
n < n’ implies y(n) < v(n'), and lim,,_.~ y(n) = oc.

LEMMA 3. Let T : [0,1] — [0,1] be a topologically transitive piecewise
monotonic map with hiop(T) > 0. Suppose that l,n,r € N with n > n3.
Assume that = € [0,1] is represented by an infinite path Dy — Dy — Dy —

.in (D,—) with D, € D' ND,,, and suppose that D;_1 has a successor
in Dy ny. Then there exists a periodic point p € [0,1] such that

2yn+2r+m
(2.10) Feoa(V) (V)] < 20E
for every m € N and every V € Z,,.

Proof. If | < r, then let a be a periodic path of length u < /n. For
r<lset ag:=D;, = Dyy1 — ... — Dj_1. As D;_1 € Dy(y,) the definition
of v(n) gives the existence of a path v of length u < /n in (D,—) with
g — v — ag. Define o := a9 — v. Then « represents a periodic point
p € [0, 1] (this is also true in the case I < r). We get

UFe00(V) = o (V)| < |12 00(V) = (I =7+ w)pp(V)] + [u — 7],
Since [IFy01(V) — (I —r +u)up(V)| <u+r+m and u < /n we obtain
(2.11) UE01(V) = (V)| < 2v/n+ 2r + m.

An analogous calculation proves (2.11) also in the case [ < r. Dividing (2.11)
by [ gives (2.10). m

Now we are able to prove the main result of this section.

THEOREM 1. Let T : [0,1] — [0,1] be a topologically transitive piecewise
monotonic map with hiop(T) > 0. Fiz ng € N and d(m) > 0 for m € N.
Suppose that for every essential critical orbit (T"a)nen and every j € N with
¢ > ng there exists anl € {0,1,...,j — 1} and a periodic point p,; € [0,1]
with
(212) Faipes (2) — i, (2)] <~

R? — Ry

for every m € N and for every Z € Z,,. Then the periodic orbit measures
are dense in M ([0,1],T).

Proof. Let U C M([0,1],7T") be nonempty and open with respect to the
weak star topology. Then there exists a € M([0,1],7), ane >0, a K € N,
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and continuous functions f1,..., fx : [0,1] — R with

(2.13) {ﬂ:‘ | fidi— | ftd,u‘<sfort:1,...,K}§U.
[0,1] [0,1]

Set

(2.14) ¢= max, ||flle

There exists an 7 € N, and for j € {1,...,r} there exists an ergodic p; €
M([0,1],T) and a g; € Q with ¢; > 0 such that Z;Zl ¢; =1 and

(2.15) maxK’iqj S frdp; — S ftd,u’<§.

t=1,..., ;
Jj=1[0,1] [0,1]

As T is topologically transitive, Z is a generator, and therefore there exists
an m € N with

(2.16) max  sup sup [fi(z) — fe(y)| <
t=1,...K zez,, zyeZ 5

3

Fix this m for the rest of this proof. Now choose a ¢ > 0 such that

(2.17) 28 card Z,, < %
Since p; is ergodic, there exists an NV € N and there exist z1,...,2, €
[0, 1] such that
12 €
(2.18) - > Ty - S frdps| < %
5=0 [0,1]

for every j € {1,...,r}, for every t € {1,..., K}, and for every n > N.

Fix a j € {1,...,r}. Then x; is represented by an infinite path Dy —
Dy — Dy — ... in D’ with Dy € D' N D,,,. We claim that there exists an
l; € Nwith [; > N and a periodic point p; € [0,1] with
(219) Znéaé)fn ’ijaoalj (Z) — Hp; (Z)’ <0

If there exists an n € N with y(n) = oo, then choose an [; > N with
(2y/n+m)/l; < 6. In this case Lemma 3 implies (2.19).

It remains to prove (2.19) in the case y(n) < oo for every n € N. As

lim y(n) = oo,

we can choose an R € N with R > N, R > n32, v(R) > n? and v(y(R)) > ng
such that

2 2N +3 2 2
d(m) + pratem ., 2 Ay

1
@200 Gw) ~® ® VR R
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This R may be chosen in such a way that for every C' € D' N D,,, there
exists a path Cy — C; — ... — (), of length n + 1 < v(R) in D such that
Cy = C, C), has at least two different successors, and every successor of C),
is an element of D, g). Furthermore we may assume

2k(a) + 2n(a) 1
<
V(R) v(R)
for every critical point a with T#(@+n(@)g = Tk(a)g,
Now let a be an essential critical point, and let v € N with R > ~v(R).
Using (2.12) we find by induction that there exist Ly = 0 < Ly < ...

... < Ly =R} with L, — L,—1 > v(v(R)) for v = 2,...,k, and there exist
periodic points Py o, ..., P, such that

dm) _d(m)
Ly—Ly—1 =~ 7(7v(R))

for every Z € 2, and every v € {2,...,k}. Furthermore, either Cf _, has
a successor in Dy (ry), or Ly, — Ly,_1 > v(y(R)) and (2.21) hold also for

v = 1. In the first case Lemma 3 gives the existence of a periodic point P, 1
with

(2.21) \Fapy_1,0,(Z) = pp, ,(Z2)] <

2 R)+2Ni+m
Fuoa(2) = in, ()] < 220

for every Z € Z,,. Applying Lemma 2 with az := d(m)/v(y(R)) and Bz :=
24/7(R) + 2N; we get the existence of a periodic point pg ., with

(222) |Fa,O,R§j (Z) — Hpg .y (Z)| < ’Y('Y(R)) + ’)/(R) ,Y(R)

for every Z € Z,,. If we set

B d(m) : 2, 2N+ 2m
z =0z = —— ) = )
1(v(R)) my/v(R)  my(R)
L, —L,_
qv::T1 forv=1,...,k,

Lemma 1 implies that (2.22) remains also true in the second case. Finally,
(2.22) is trivial by the choice of R if a is a critical point with T*(@)+n(@)q =
T*@q. Therefore (2.22) holds for every critical point a.
Choose an [; > R such that D;, 1 has at least two different successors.
By the choice of R we see by induction that there exist Lo =0 < L < ...
. < Ly = lj such that L, — L,y > y(R) for v = 2,...,k, Dr,1
has a successor in D, gy, Dr,-1 has at least two different successors for
v=1,...,k, and Dy _,1; has only one successor in D for v =2,...,k and
i=20,1,...,L, — L,_1 — 2. Hence for every v € {2,...,k} there exists a
critical point a, and a u, € N with R}> = L, — L,_1 and D, ,4; C C}"
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fori=0,1,...,L, — L,_1 — 1. By (2.1) this gives
m
(2.23) |FoayiLo1,0,(Z) = Fa, 0.r2: (Z)] < (R
for every Z € Z,, and every v € {2,...,k}. Moreover, Lemma 3 implies the
existence of a periodic point P; with

2VR+m
(2.24) |Fey 0.0, (2) = ey (2)] < —F =
for every Z € Z,,. For Z € Z,, set
ay = + + and By := 2VR.
YV (R)  \A(R) S v(R)
Then by (2.22)—(2.24) and Lemma 2 we find out that there exists a periodic

point p; with

d(m) n 2 +2N1+3m+i+27m
Y(v(R)) v(R) v(R) VR R

for every Z € Z,,. Therefore (2.20) implies (2.19), completing the proof of
the claim.

Using (2.19) and applying Lemma 1 with az := bz := § and n := §/m
we obtain the existence of a periodic point p € [0, 1] with

‘ij,o,lj (Z) - IU/pj (Z)‘ <

'
(2.25) max | 34,00, (2) = 1p(2)] < 26.
=1

For every Z € Z,, choose an xz € Z, and for t € {1,..., K} define f;(Z) :=
fi(zz). Fixate {1,...,K}. Then

S0 | o= | fiw)

Jj=110,1] [0,1]
T 1 l]'—l
< Z(Jj S Jedp; — B Z Ji(T?z;)
Jj=1 [0,1] J =0

+qu Z D fi12(Toz)) = fil(2)12(T5x;))|

Jsozez

+ Y 1z r(qu w0, (D) = (D) + Y {1:(2) = Fil duy.

ZEZy, VASY-ANA

By (2.18) the first sum on the right hand side is smaller than /5 and by
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(2.16) the fourth sum is smaller than £/5 as well. Again using (2.16) we get
£
D fila(Toy) = [(2)14(Tx;)| < <,

Z€Zm g
and therefore also the second sum is smaller than /5. We deduce by (2.14)
and (2.25) that

Z |ft(Z)" Z%’sz,o,zj (Z) - ,up(Z)‘ < 2¢é card Z,,.
ZEZ,, j=1

Hence (2.15) and (2.17) give \X[O o Jeduy — S[O yy fedul < g, and therefore
(2.13) implies pp, € U. m

3. Transformations with two monotonic pieces. In this section
we investigate transformations with two monotonic pieces. We show that
the periodic orbit measures are dense in M ([0,1],7") if T : [0,1] — [0, 1] is
a topologically transitive transformation with two monotonic pieces which
has positive topological entropy. By Theorem 1 it suffices to prove that T
satisfies the assumptions of that theorem.

Let T : [0,1] — [0,1] be a transformation with two monotonic pieces.
Observe that T has exactly two critical points and every D € D has at most
two successors, where (D, —) denotes the Markov diagram of T. Now we
describe some more details of the Markov diagram of T'. The proof of these
details is by easy calculations.

Suppose that x is a critical point, that v € N with v > 1 and that R,
7 00. Let b be the critical point with C.  , C Chfork € {0,1,...,7% — 1}

and b # TRi-12, and assume 7% > R%. Then there exists aw € N with w > 1
and R? = r%. Assume that y is the critical point with C;’{b e € C} for
w—1

ke {0,1,...,7% — 1} and y # TRu-1b. Therefore there exists a v € N
with RY = 7, and we have Cf%, C Cf, and RY < Rj. Hence R}, # o0
and there exists a critical point a with a ¢ {TFuz, TRy}, C%H_l —
Cf.  and C?ngﬂq — Oﬁffﬂ' Furthermore, (1}, )n>1 < (1%, )n>1 in the

lexicographical order, where we set r := oo if Rf := oo for an | < k.

THEOREM 2. Let T : [0,1] — [0,1] be a transformation with two mono-
tonic pieces which is topologically transitive and satisfies hiop(T') > 0. Then
the periodic orbit measures are dense in M([0,1],T).

Proof. As T is topologically transitive and hiop (1) > 0 there exists a
maximal irreducible D’ C D such that every = € [0,1] is represented by an
infinite path in D’. Now choose an ng € N with ng > Rj and Cj; € D’
for every critical point x. Let a be an essential critical point, and let 7 € N
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with 7§ > ng. Then j > 2. For n € Ng set A, := C§, B, := Ch, R, := R,
S, = RY, and for n € N set r,, := 7% and s,, := 7%, where b is the critical
point with b # a. By Theorem 1 it suffices to show that there exists an
1 €{0,1,...,j — 1} and a periodic point p such that

m
3.1 F, (Z) = pp (D) < =—=
(3.1) Forn,(2) = m(2)] <
for every m € N and every Z € Z,,. In order to prove (3.1) we consider
different cases.

CASE 1: There exists a u < j with Ag, 1 — Ag,. Consider the periodic

path
Q= ARH — ARu-‘rl — ... — AR],_l,

and let p be the periodic point represented by a. Since T*p € Ag, i1 for
ke{0,1,...,R; — R, — 1} we obtain (3.1) with [ := .

From now on we assume that Case 1 does not hold. Therefore there exists
au €N with u > 2 and
(32) AR].,1 — Bgu.

CASE 2: There is a v < j with Ag, ., 1 — Ag,. In this case consider the
periodic path

o = ARj — ARj+1 — ... AR].+1,1 — ARU — ARU+1 — ... Aijl,

and let p be the periodic point represented by «. Since Ag, 1 C Ay, for k €
{0,1,...,rj41—1}and rj1; = R, we get T*p € Ay fork € {0,1,...,R;—1}.
Hence (3.1) holds with [ := 0.

In the rest of this proof we assume that Case 2 does not hold. Therefore
AR], C By and there exists a v; € N with

(3.3) Ap,..—1 — Bs,,.
Using (3.2) we obtain Bg, C Ag and hence there exists a vo € N with
(34) Bsu+1_1 — ARUQ'

In order to continue the proof we need the following lemma.
LEMMA 4. Assume that (3.2)—(3.4) hold. If
(rj,rj,rj,...) < (rj41,7j42,7j+3,...) and
(Rj,Rj,Rj,...) < (Sut1,Su+2, Su+3s---)

in the lexicographical order, then the set C := {A,,By :n > R;, k> S,}
has no successors in D\ C.

Proof. Set

On = (rn+larn+27rn+37 .. .), O = (3k+173k+278k+37- : ')7
o :=(rj,rj,rj,...) and o :=(Rj,R;,R;,...).
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To prove the result it suffices to show that Ag, C By and ¢’ < g, in the
lexicographical order for all n > j, and Bg, C Ay and o’ < oj in the
lexicographical order for all £ > u. We prove this by induction. Assume that
g € N A C By and ¢’ < g, in the lexicographical order for all n > j
with R,, < ¢, and Bg, C Ag and ¢’ < o0y, in the lexicographical order for
all £ > u with S, < ¢q. For ¢ = R; + 1 this is an easy consequence of
our assumption. Suppose therefore ¢ > R; + 1. First assume R, = ¢. If
Ty =1j, then Ap 1 — Bg, and Ar, C By. As ¢/ < 0,1 we get ¢’ < g,
in the lexicographical order. Otherwise r,, > 7;, and hence there exists a
k > u with Sy, < ¢ and Ag,_1 — Bg,. As S < q we get Bs, C Ay and
0w < 0n in the lexicographical order for aw € {j,7+1,...,n—1}. Therefore
Apg, C By. Since ¢’ < g, we get ¢’ < g, in the lexicographical order. An
analogous proof shows Bg, C Aj and ¢’ < oy, in the lexicographical order
if Sk =q. m

We continue with the proof of Theorem 2. As R; > ng, the set C in
Lemma 4 does not contain A,,,. But since A,, € D’ and D’ is irreducible,
the assumption of Lemma 4 cannot hold. Hence (7jy1,7j42,7j43,---)
< (rj,75,75,...) in the lexicographical order or (Syii,Su+2,Sut3,-..) <
(Rj,Rj,R;,...) in the lexicographical order.

CASE 3: There exists an n > 1 with s,44 = R;j for ¢ € {1,...,n — 1}
and s,4+p, < R;. Consider the periodic path

_1—>A

—Asyipt1— ...~ Ar, = Bs, = Bs,y1 — ... — Bg,,,_, 1,

Q= BSu«l»nfl - BSu+n71+1 e T Bsu+n Su+n

and let p be the periodic point represented by «. Then Bg, , ,+x € Ag

for k € {0,1,...,5y4n — 1}. Furthermore, Bs,,, ,+r € Ag and s,4q = R;
for k € {0,1,...,R; — 1} and ¢ € {1,...,n — 1}. Therefore T%% "% p and
Ay, are contained in the same element of Z for ¢ € {0,1,...,n — 1} and

ke {0,1,...,R; — 1}. Hence (3.1) holds with { := 0.

From now on we suppose that Case 3 does not hold. Therefore Lemma 4
implies that there exists an n > 1 with rj;, =1, for ¢ € {1,...,n — 1} and
Titn < Tj.

CASE 4: There exists a t € N with Bg,_1 — Ag,. Obviously, t < j.
By (3.4) we get Ag, C By and Ag, ,—1 — B As Ag,,, ., € Ar, we
have 7,41 < 7rjqy, <7j;. Then

Tt41"

a:=Ar, - Ap,y1— ... > Ag,,1— B — By, 41— ...~ Bg, 1

Tt+1

is a periodic path. Let p be the periodic point represented by «. We
have ARH—k C By, for k € {0,1,...,7"t+1 — 1}, ARj_l—i-k: C By, for k €
{0,1,...,r; — 1} and r; = S,. Hence T"p and Ag,_, 4 are contained in
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the same element of Z for k € {0,1,...,r; — 1}. Therefore (3.1) holds with
l:=j5—1.

CASE 5: Finally, we suppose that Case 4 does not hold either. Then there
exists a t < u with Bg,_; — Bg,. Using (3.4) we get Bg,,,—1 — Bs,,, and
St+1 < S;. In this case consider the periodic path

a:=Bs, - Bs,41— ...~ Bs,,,_1— B — B 1—...— Bg, _1,

St+1 St4+1—

and let p be the periodic point represented by a. Since Bg,yr C By for
ke{0,1,...,8041—1}, Ap, 41 € B for k€ {0,1,...,7;—1} and r; = S,
we deduce that T kp and A R;_,+k are contained in the same element of Z
for k € {0,1,...,r; — 1}. Hence (3.1) holds with [ :=j — 1. m
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