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On the countable generator theorem

by

Michael S. K e a n e (Amsterdam) and Jacek S e r a f i n (Wrocław)

Abstract. Let T be a finite entropy, aperiodic automorphism of a nonatomic prob-
ability space. We give an elementary proof of the existence of a finite entropy, countable
generating partition for T .

In this short article we give a simple proof of Rokhlin’s countable genera-
tor theorem [Ro], originating from considerations in [Se] which use standard
techniques in ergodic theory. We hope that these considerations will be useful
for elementary expositions in the future. For other proofs see [Pa].

Let (X,A, µ) be a nonatomic probability space whose σ-algebra A is
generated modulo µ by a countable collection {A1, A2, . . .} of elements of
A. Let T be an aperiodic automorphism of (X,A, µ) with finite entropy. For
the definitions and properties of entropy and generators used in the sequel,
we refer the reader to Billingsley [Bill] and Walters [Wa].

Theorem. (X,A, µ, T ) has a countable generating partition of finite en-
tropy.

Our proof is based on the following lemma.

Lemma. Let P be a finite partition of (X,A, µ, T ), A an element of A,
and ε > 0. Set

P̃ := P ∨ {A,Ac} and g := h̃− h,
where

h := h(T,P) and h̃ := h(T, P̃)

denote the respective mean entropies of the partitions P and P̃. Then there
exists a finite partition Q of (X,A, µ, T ) such that

(1) P � Q,
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(2) A ∈
∞∨

n=−∞
TnQ,

(3) H(Q) ≤ H(P) + g + ε.

Assuming the validity of this lemma, here is the proof of the theorem:
Using the lemma, we produce inductively a sequence Q0 � Q1 � . . . of finite
partitions as follows. First, set Q0 = {X}. If Qk has been defined, then take

ε =
1

2k+1 , P = Qk, A = Ak+1

in the lemma to obtain Qk+1 := Q. By (1) and (2), for each k ≥ 0,

A1, . . . , Ak ∈
∞∨

n=−∞
TnQk.

Moreover, property (3) yields

H(Qk+1)−H(Qk) ≤ h(T,Qk+1)− h(T,Qk) +
1

2k+1

for each k ≥ 0; summing from zero to k results in

H(Qk) ≤ h(T,Qk) +
k+1∑

j=1

1
2j
≤ (Entropy of T ) + 1.

In particular, supkH(Qk) <∞. Now set

Q :=
∞∨

k=0

Qk;

then H(Q) = supkH(Qk) is finite, and Ak ∈
∨∞
n=−∞ TnQ for each k, so

that Q is a countable generating partition of finite entropy.

Next, we give a proof of the lemma in the case where T is ergodic. It is
clear that we may replace the condition (2) by the condition

(4) there exists an A′ ∈
∞∨

n=−∞
TnQ with µ(A4A′) < ε.

To see this, suppose that the lemma holds in this modified form, and for
ε > 0 choose δ > 0 such that

δ + {−δ log δ − (1− δ) log(1− δ)} ≤ ε.
Apply the modified lemma using δ in place of ε to get a partition Q′ satis-
fying (1), (4), and (3). Then

Q := Q′ ∨ {A4A′, X \ (A4A′)}
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satisfies (1) and (2), and

H(Q) ≤ H(Q′) +H({A4A′, X \ (A4A′)})
≤ H(P) + g + δ + {−δ log δ − (1− δ) log(1− δ)}
≤ H(P) + g + ε

as required.

For a fixed positive integer m, which we shall choose in a moment, let

{Aij : 1 ≤ i ≤ pm, 1 ≤ j ≤ 2m}
be a list of the (possibly empty) atoms of

∨m−1
n=0 T

nP̃ such that the sets

Ai :=
2m⋃

j=1

Aij

are the atoms (possibly empty) of
∨m−1
n=0 T

nP; here we have assumed that
P has p elements.

By the Shannon–McMillan–Breiman theorem (what we need here is con-
vergence in probability, see [Bill], Thm. 13.2), if δ > 0 and m is large enough,
“most” of the Aij have measures in

[e−(h̃+δ)m, e−(h̃−δ)m]

and “most” of the Ai have measures in

[e−(h+δ)m, e−(h−δ)m],

“most” meaning, of course, a set with total measure close to 1. For a δ > 0
also to be determined shortly, we now choose m so large that the total
measure of the atoms Ai for which

(5) µ(Ai) > e−(h−δ)m

is smaller than δ, and also so that the total measure of the atoms Aij for
which

(6) µ(Aij) < e−(h̃+δ)m

is smaller than δ.
Next, we reorganize the array {Aij} as follows. First, delete all the rows i

for which (5) holds. Then, in the remaining rows, delete all the Aij for which
(6) holds. Finally, renumber the remaining elements to obtain the array

{A′ij : 1 ≤ i ≤ I, 1 ≤ j ≤ Ji},
each row of which is a subcollection of a row of the original array. Since now
still

Ji∑

j=1

µ(A′ij) ≤ e−(h−δ)m
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for each row i, and since µ(A′ij) ≥ e−(h̃+δ)m for each of the remaining
elements of a row, it follows that for each 1 ≤ i ≤ I,

Ji ≤ e−(h−δ)m

e−(h̃+δ)m
= e(g+2δ)m.

If J := max1≤i≤I Ji, and 1 ≤ j ≤ J , then we set

Q′j :=
⋃

{i:j≤Ji}
A′ij .

Now use Rokhlin’s lemma to get a set M ∈ A such that M,TM, . . .
. . . , Tm−1M are pairwise disjoint and

µ
(
X \

m−1⋃
n=0

Tn
)
< δ,

and define the partitions

Q′ :=
{
M ∩Q′1, . . . ,M ∩Q′̄J , X \

J̄⋃

j=1

M ∩Q′j
}

and Q := P∨Q′. Without loss of generality, by choosing m sufficiently large
and by replacement of M by one of the TnM with n small with respect to
m (n < m

√
3δ will do), we may assume that

µ(M ∩⋃J̄j=1Q
′
j)

µ(M)
> 1−

√
3δ.

Then, by construction,
∨m
n=−m T

−nQ contains a set A′ with µ(A4 A′) ≤√
3δ, namely the union of all its atoms contained in A.

As µ(M) ≤ 1/m and J ≤ e(g+2δ)m, we have

H(Q′) ≤ −J · 1

mJ
· log

(
1

mJ

)
− m− 1

m
log

m− 1
m

≤ g + 2δ +
logm
m

+
1
m
,

and hence

H(Q) ≤ H(P) + g + 2δ +
logm
m

+
1
m
.

Thus choosing δ such that

max
{√

3δ,
logm
m

+ 2δ +
1
m

}
< ε

finishes the proof.

Finally, we give a sketch of how this proof can be modified for the non-
ergodic case. Suppose, for instance, that µ has two ergodic components, say
µ1 and µ2, with

µ = αµ1 + (1− α)µ2.
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Each µi corresponds to entropies h̃i, hi and gi = h̃i−hi as above, i = 1 or 2.
If we produced Q′1 and Q′2 as above and joined them to P, the entropy would
be too large, and we need to merge the atoms of Q′1 and Q′2. For this, the
numbers m1 and m2 need to be chosen such that m1g1 ≈ m2g2; all other
considerations remain the same. A similar argument applies for arbitrary
nonergodic µ by approximation by a finite number of unions of ergodic
components with approximately the same h̃ and h values. The details are
left to the reader.
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