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On character and chain conditions
in images of products

by

M. Bell (Winnipeg, Manit.)

Abstract. A scadic space is a Hausdorff continuous image of a product of compact
scattered spaces. We complete a theorem begun by G. Chertanov that will establish that
for each scadic space X, χ(X) = w(X). A ξ-adic space is a Hausdorff continuous image
of a product of compact ordinal spaces. We introduce an either-or chain condition called
Property R′λ which we show is satisfied by all ξ-adic spaces. Whereas Property R′λ is
productive, we show that a weaker (but more natural) Property Rλ is not productive.
Polyadic spaces are shown to satisfy a stronger chain condition called Property R′′λ. We
use Property R′λ to show that not all compact, monolithic, scattered spaces are ξ-adic,
thus answering a question of Chertanov’s.

1. Introduction. For cardinals κ and τ , (κ+1)τ is the Tikhonov product
of τ copies of the compact ordinal space κ+ 1. A space X (all of our defined
properties will assume Hausdorff henceforth) is ξ-adic (Mrówka [Mr70]) if
there exist κ and τ such that X is a continuous image of (κ + 1)τ . Ger-
lits [Ge73] has shown that χ = w for ξ-adic spaces (thus generalizing the
classical Essenin–Vol’pin result for dyadic spaces). Every ordinal space is
scattered, i.e., every subspace has an isolated point (in the subspace topol-
ogy). Chertanov [Ch88] introduced scadic spaces, i.e., continuous images of
products of compact scattered spaces, and was able to extend the Gerlits
result to continuous images of products of compact, monolithic, scattered
spaces but left open the question of whether all scadic spaces satisfy χ = w.
In Section 2 we complete this extension to all scadic spaces. It is a proper
extension as Example 1.14 in Chertanov [Ch88] is a scadic space which
is not an image of a product of compact, monolithic, scattered spaces. In
Section 4 we show that the ξ-adic spaces satisfy a strong chain condition
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called Property R′λ. Using this result, we show that the Chertanov exten-
sion was strict; we do this by producing a compact, monolithic, scattered
space which is not ξ-adic. In Section 3 we study Property R′λ and related
properties in their own right; for example, we show that Property R′λ is
preserved by products whereas a weaker (but more natural) Property Rλ is
not. An important subclass of the ξ-adic spaces is formed by the polyadic
spaces, continuous images of (ακ)τ where ακ is the Alexandrov one point
compactification of the discrete space κ. In Section 4 we show that polyadic
spaces satisfy a stronger chain condition than Property R′λ; this improves a
result in [Be96].

We denote the family of all clopen subsets of X by CO(X). A Boolean
space is a compact space such that CO(X) is a basis. For a point x ∈ X, χ(x)
is the least cardinality of a neighbourhood base at x in X. Then χ(X) =
sup{χ(x) : x ∈ X}. The least cardinality of a base for X is denoted by
w(X). Further, {xα : α < κ} ⊂ X is called a right-separated κ-sequence if
for each α < κ, xα 6∈ {xβ : β > α}. The hereditary Lindelöf number of X
is hL(X) = sup{κ : there exists a right-separated κ-sequence in X}. For a
cardinal κ, [X]κ denotes the set {A ⊂ X : |A| = κ}.

A ∆-system is a collection B of sets for which there exists a set R (called
the root of the ∆-system) such that if A and B are two distinct elements
of B, then A ∩ B = R. A standard fact (Lemma 2.4 of Hodel [Ho84]) is
the following: if λ is an uncountable regular cardinal and 〈Fα : α < λ〉 is a
λ-sequence of finite sets, then there exists A ⊂ λ with |A| = λ such that
{Fα : α ∈ A} is a ∆-system.

2. Character and weight coincide for scadic spaces. Here is Cher-
tanov’s main theorem on character versus weight for scadic spaces.

Theorem 2.1 (Chertanov [Ch88]). Let S =
∏
α∈A Sα be a product of

compact scattered spaces and let X be an image of S with χ(X) = κ. Then
there exists B ⊂ A with |B| ≤ κ and for each α ∈ B, an Fα ⊂ Sα with
|Fα| ≤ κ such that X is an image of

∏
α∈B Fα. Consequently , a scadic

space X with χ(X) = κ is an image of a product of at most κ compact
scattered spaces, each of density at most κ.

If κ is an infinite cardinal, A ⊂ X, x ∈ X, and for every neighbourhood
V of x, |A\V | < κ, then we say that x is a κ-limit point of A. Further, X is
κ-sequentially compact if for every A ⊂ X with |A| = κ there exists B ⊂ A
with |B| = κ and there exists x ∈ X such that x is a κ-limit point of B.

Lemma 2.2. A compact scattered space X is κ-sequentially compact for
all infinite cardinals κ.
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P r o o f. We assume the reader is familiar with the scattering height of a
compact scattered space ([HBA89], page 275). Supppose that our lemma is
true for all compact scattered spaces Y with ht(Y ) < α. Let ht(X) = α =
β + 1 where the βth level Xβ is a finite non-empty set F and let A ∈ [X]κ.
Assuming that each x ∈ F is not a κ-limit point of any subset of A of
cardinality κ, by a finite recursion, we can get an open set U ⊃ F such that
|A \ U | = κ. As ht(X \ U) < α, our inductive hypothesis implies that there
exists B ∈ [A \U ]κ and there exists x ∈ X \U such that x is a κ-limit point
of B in X \ U but then x is a κ-limit point of B in X.

If X ⊂ S =
∏
α∈A Sα and F ⊂ A, then F is called a support of X if

X = π−1
F (πF (X)) where πF is the projection map of S onto

∏
α∈F Sα. The

open subsets of S with a finite support form a basis for S, which is closed
under finite unions. This implies that whenever K ⊂ U , with K compact
and U open in S, then there exists an open O with a finite support such
that K ⊂ O ⊂ U .

Lemma 2.3. Let S =
∏
α<κ Sα be a product of κ+-sequentially compact

compact spaces and let X be an image of S with χ(X) = κ. Then w(X) = κ.

P r o o f. Let f map S continuously onto X. We first show that hL(X)≤κ.
Assume that hL(X) ≥ κ+. It then follows, upon using regularity twice, that
we can choose open sets Uα, Vα, Wα in X and points sα in X, for α < κ+,
with Uα ⊂ Vα, Vα ⊂ Wα and sα ∈ Uα \

⋃
β<αWβ . Get open sets Oα

and O′α in S with finite supports Fα such that f−1(Uα) ⊂ Oα ⊂ f−1(Vα)
and f−1(Vα) ⊂ O′α ⊂ f−1(Wα). Since there are only κ finite subsets of
κ, get a finite F ⊂ κ and an A ∈ [κ+]κ

+
such that each Oα and O′α, for

α ∈ A, has F as a support. For each α ∈ A, choose pα ∈ f−1(sα). As∏
α∈F Sα is κ+-sequentially compact (this property is finitely productive)

and |{pα¹F : α ∈ A}| = κ+, get B ∈ [A]κ
+

and y ∈ ∏α∈F Sα such that
y is a κ+-limit point of {pα¹F : α ∈ B}. Extend y to y′ in

∏
α<κ Sα. For

each β ∈ B, put qβ = pβ¹F ∪ y′¹(κ \ F ). Then y′ is a κ+-limit point of
{qα : α ∈ B}. As χ(X) = κ, choose open sets Gα in S, for α ∈ κ, such that
f−1(f(y′)) =

⋂
α<κGα. Choose γ ∈ B such that qγ ∈ f−1(f(y′)). Since

qγ¹F = pγ¹F and F is a support of Oγ and pγ ∈ Oγ , we have qγ ∈ Oγ .
Therefore, qγ ∈ f−1(Vγ). Since f(qγ) = f(y′), we have y′ ∈ f−1(Vγ). Now,
choose δ > γ with δ ∈ B such that qδ ∈ f−1(Vγ). Since pδ¹F = qδ¹F and F
is a support of O′γ and qδ ∈ O′γ , we have pδ ∈ O′γ . Therefore, pδ ∈ f−1(Wγ),
whence sδ ∈Wγ yet γ < δ, a contradiction. Hence, hL(X) ≤ κ.

Since χ(X ×X) = κ and X ×X is an image of S × S, we can apply the
preceding to deduce that hL(X × X) ≤ κ. It is a basic result for compact
spaces (Corollary 7.6 of Hodel [Ho84]) that this implies w(X) ≤ κ. The
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author would like to thank Paul Gartside for showing this quick way to end
the proof of the lemma.

Thus, Theorem 2.1 followed by Lemmas 2.2 and 2.3 yields

Theorem 2.4. If X is a scadic space, then χ(X) = w(X).

3. Either-or chain conditions. This section expands upon the results
about Property Rλ in [Be96]. For clarity of thought and ease of presentation,
we are going to present the clopen version of our either-or chain conditions;
see the remarks after Theorem 4.3 for the non-Boolean version. Let λ be an
infinite cardinal. We say that a Boolean space has Property R′λ if whenever
〈Uα, Vα〉α<λ is a sequence of pairs of clopen sets, then there exists a K ⊂ λ
with |K| = λ such that either for every α < β in K, Uα∩Vβ = ∅, or for every
α < β in K, Uα∩Vβ 6= ∅. If, in the if-clause of the definition of Property R′λ,
we require that Uα = Vα for all α < λ, then this is the weaker Property Rλ
of [Be96]. If, in the then-clause of the definition of Property R′λ, we replace
both occurrences of α < β by α 6= β, then this is the stronger Property R′′λ.
We say that a Boolean space has Property Tλ if whenever 〈Uα〉α<λ is a
sequence of clopen sets, then there exists a K ⊂ λ with |K| = λ such that
either for every α < β in K, Uα ∩ Uβ = ∅, or for every finite F ⊂ K,⋂
α∈F Uα 6= ∅. Properties R′′, R′, R and T denote Properties R′′ω1

, R′ω1
, Rω1

and Tω1 respectively. For brevity, in all the above properties, we will refer to
a K with the attributes in the corresponding either-or clauses as a correct
K. By taking inverse images, it is easily seen that Properties R′′λ, R′λ, Rλ
and Tλ are preserved by continuous images.

The classical Ramsey theorem for ω shows us that every Boolean space
has Property R′ω and an easy example shows that no infinite Boolean space
can have Property R′′ω. No crowded (i.e. without isolated points) Boolean
space can have Property Tω whereas for every κ, ακ has Property Tω. Our
interest is in these properties when λ is uncountable and regular.

Let B ⊂ CO(X). We say that X has Property R′λ(B) if whenever
〈Uα, Vα〉α<λ is a sequence of pairs of clopen sets of B, then there exists
a correct K ∈ [λ]λ.

Lemma 3.1. Let B ⊂ CO(X) be a fixed base for the open sets of a
Boolean space X and let λ be a cardinal of uncountable cofinality. If X has
Property R′λ(B), then X has Property R′λ.

P r o o f. Let 〈Uα, Vα〉α<λ be a sequence of pairs of clopen sets of X. As λ
has uncountable cofinality and B is a base, by thinning to a subsequence of
cardinality λ, we will assume that there exist m,n < ω such that for each
α < λ, Uα =

⋃
i<mA

i
α and Vα =

⋃
i<nB

i
α where Aiα, B

j
α ∈ B for all i < m,

j < n and α < λ. We now assume that there does not exist a K ∈ [λ]λ such
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that α < β in K implies Uα ∩ Vβ 6= ∅. For each i < m, j < n and H ∈ [λ]λ

we can apply Property R′λ(B) to the sequence 〈Aiα, Bjα〉α∈H to get K ∈ [H]λ

such that α < β in K implies Aiα ∩ Bjβ = ∅. Thus, after m × n successive
applications, we get K ∈ [λ]λ such that α < β in K implies Uα ∩ Vβ = ∅.

Lemma 3.2. For each uncountable, regular cardinal λ, Property R′λ is
productive.

P r o o f. Let κ be a cardinal and let {Xα : α < κ} be a family of Boolean
spaces with Property R′λ. PutX =

∏
α<κXα. Let 〈Uα, Vα〉α<λ be a sequence

of pairs of clopen sets of X. For each α < λ, let Fα ⊂ κ be a finite support of
Uα and of Vα. Choose A ∈ [λ]λ such that {Fα : α ∈ A} is a ∆-system with
root R. Then, for each α < β in A, Uα ∩ Vβ = ∅ ⇔ πR(Uα) ∩ πR(Vβ) = ∅.
So, it suffices to show that Property R′λ is finitely productive, i.e., that
Property R′λ is 2-productive. To this end, let X and Y be Boolean spaces
with Property R′λ. Invoking Lemma 3.1, we start with a sequence of pairs
of standard basic clopen sets 〈Aα × Bα, Cα × Dα〉α<λ in X × Y . Now we
apply Property R′λ to 〈Aα, Cα〉α<λ to get a correct H ∈ [λ]λ and then
we apply Property R′λ to 〈Bα, Dα〉α∈H to get a correct K ∈ [H]λ. Then
〈Aα ×Bα, Cα ×Dα〉α∈K is our required correct subsequence.

It was shown in [Be96] that αω1 has Property T but (αω1)2 does not (al-
though (αω1)2 does have Property R) and the question was raised whether
Property R is productive. We will show that there is a Boolean space with
Property T whose square does not have Property R. The following graph
spaces will be used again in the next section. G is a graph on a set X if
G ⊂ [X]2. For {x, y} ∈ G, we will write x −G y or just x − y if the graph is
understood. A subset C of X such that x − y for all x 6= y in C is said to
be complete. A subset I of X such that x 6− y for all x 6= y in I is said to be
independent . For x ∈ X, define x+ = {C ⊂ X : C is complete and x ∈ C}
and define x− = {C ⊂ X : C is complete and x 6∈ C}. Use {x+, x− : x ∈ X}
as a closed (also open) subbase for a topology on G∗ = {C ⊂ X : C is
complete}. G∗ with this topology is a Boolean space. Every clopen subset
b of G∗ has a finite support, i.e., there is a finite F ⊂ X such that for each
C ∈ G∗ one has C ∈ b iff C ∩ F ∈ b. A graph G on a set X is said to be
twofold if X = C ∪ I where C is complete and I is independent.

Theorem 3.3. If G is a twofold graph and λ is an uncountable, regular
cardinal , then G∗ has Property Tλ.

P r o o f. Let G be a graph on X = C ∪ I where C is complete and I
is independent. Let 〈bα : α < λ〉 be a sequence of clopen sets of G∗. For
each α < λ, let Fα ⊂ X be a finite support of bα. We may assume that
{Fα : α < λ} forms a ∆-system with root R.
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Case 1: There exist λ α’s for which there exists Xα ⊂ Fα ∩ C with
Xα ∈ bα. Choose A ∈ [λ]λ, S ⊂ R and for each α ∈ A, an Xα ⊂ Fα ∩ C
with Xα ∈ bα and Xα ∩R = S. Then {bα : α ∈ A} is centered. To see this,
take a finite H ⊂ A. Since Z =

⋃
α∈H Xα ⊂ C, we have Z ∈ G∗. If β, α ∈ H

and β 6= α, then Xβ ∩ Fα = Xβ ∩ Fβ ∩ Fα = Xβ ∩R = S = Xα ∩R ⊂ Xα;
hence, for α ∈ H, Z ∩ Fα = Xα ∩ Fα; so Z ∈ bα.

Case 2: There exists x ∈ R ∩ I and there exist λ α’s for which there
exists Xα ∈ x+ ∩ bα. Choose A ∈ [λ]λ, x ∈ R ∩ I and S ⊂ R such that
for each α ∈ A, Xα ∈ x+ ∩ bα and Xα ∩ R = S. Then {bα : α ∈ A} is
centered. To see this, take a finite H ⊂ A. Put Z =

⋃
α∈H(Xα ∩ Fα). Since

I is independent, Z ∩ I = {x} and so Z ∈ G∗. If β, α ∈ H and β 6= α,
then Xβ ∩ Fβ ∩ Fα = Xβ ∩ R = S = Xα ∩ R ⊂ Xα; hence, for α ∈ H,
Z ∩ Fα = Xα ∩ Fα; so Z ∈ bα.

Case 3: There exist λ α’s such that for each Z ⊂ Fα with Z ∈ bα we
have Z∩I 6= ∅ and for each x ∈ R∩I we have x+∩bα = ∅. Let A be the set
of all such α’s. Then A ∈ [λ]λ and we claim that for α 6= β in A, bα∩bβ = ∅.
Striving for a contradiction, take Z ∈ bα ∩ bβ where α 6= β in A. Then
Z∩Fα ∈ bα, so Z∩Fα∩I 6= ∅. Similarly, Z∩Fβ∩I 6= ∅. As I is independent,
this means we can choose x ∈ I such that x ∈ Z ∩ Fα ∩ Fβ = Z ∩ R; but
then x ∈ R ∩ I and Z ∈ x+ ∩ bα, a contradiction.

We will use the Sierpiński graph S on ω1 (cf. [EHMR84], page 123). The
key property of S that we use is that there does not exist an uncountable
complete subset nor an uncountable independent subset of ω1.

Example 3.4. Property R is not productive.

P r o o f. Let A = {aα : α < ω1} and B = {bα : α < ω1} be two disjoint
sets of cardinality ω1. We define a twofold graph G on X = A∪B as follows:
A is complete and B is independent. Let S be the Sierpiński graph on the
set ω1. We put aα − bβ ⇔ (α −S β or α = β). Theorem 3.3 implies that
G∗ has Property T and therefore Property R. In G∗ ×G∗, for α < ω1, put
Uα = (a+

α×b+α )∪(b+α×a+
α ). We claim that for α 6= β, α −S β ⇔ Uα∩Uβ 6= ∅.

Hence, G∗×G∗ does not have Property R. To see this, take α 6= β. If α −S β,
then ({aα, bβ}, {bα, aβ}) ∈ Uα ∩ Uβ . If α 6−S β, then

• (a+
α × b+α ) ∩ (a+

β × b+β ) = ∅ because bα 6− bβ .
• (a+

α × b+α ) ∩ (b+β × a+
β ) = ∅ because aα 6− bβ .

• (b+α × a+
α ) ∩ (a+

β × b+β ) = ∅ because aα 6− bβ .
• (b+α × a+

α ) ∩ (b+β × a+
β ) = ∅ because bα 6− bβ .

4. ξ-adic spaces. A compact space X is monolithic (Arkhangel’skĭı
[Ar76]) if for every A ⊂ X we have w(A) ≤ |A|. It is mentioned in [Ch88]
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that if all factor spaces Sα are monolithic, then Theorem 2.1 implies χ(X) =
w(X). Thus, as compact ordinal spaces are monolithic, this generalizes the
result of J. Gerlits [Ge73] that χ = w for ξ-adic spaces. In [Ch88] the question
is asked whether there exists a compact, monolithic, scattered space which is
not ξ-adic. We will use Property R′λ to show that there is such an example.

If A,B ⊂ λ and α < β whenever α ∈ A and β ∈ B, then we write
A < B. In our theorem we will need two basic facts about clopen intervals
in a compact ordinal space.

Fact 4.1. Let κ and λ be infinite cardinals with λ regular. For every
sequence of clopen intervals 〈Iα = [lα, rα]〉α<λ in κ+1, there exists A ∈ [λ]λ

such that one of the following is true:

O1. α < β in A implies Iα ⊂ Iβ.
O2. α < β in A implies Iβ ⊂ Iα.
O3. α < β in A implies Iα < Iβ.
O4. {lα : α ∈ A} < {rα : α ∈ A} and α < β in A imply lα < lβ and

rα < rβ.

P r o o f. Use the partition relation λ→ (λ, ω)2 (cf. [EHMR84], page 70)
to get B ∈ [λ]λ such that α < β in B implies that lα ≤ lβ and rα ≤ rβ . If
there exists α ∈ B such that for λ β’s in B, lα = lβ , then we achieve O1. If
there exists α ∈ B such that for λ β’s in B, rα = rβ , then we achieve O2.
Otherwise, by regularity of λ, we can extract C ∈ [B]λ such that for α < β
in C, we have lα < lβ and rα < rβ . Put l = sup{lα : α ∈ C} and r =
sup{rα : α ∈ C} (l or r may equal κ). If l = r, then we achieve O3, by
recursion, for some D ∈ [C]λ. If l < r, then we achieve O4 for some tail
of C.

Fact 4.2. Let κ and λ be infinite cardinals. Let U be a clopen interval in
κ+ 1. Let 〈Vα = [lα, rα]〉α<λ be a sequence of clopen intervals in κ+ 1 that
satisfies O1, O2, O3 or O4 with A = λ. Then either |{α < λ : U ∩ Vα = ∅}|
< λ or |{α < λ : U ∩ Vα 6= ∅}| < λ.

P r o o f. Assume not, i.e., there are λ α’s such that U ∩ Vα = ∅ and
there are λ α’s such that U ∩ Vα 6= ∅. Clearly, the Vα’s cannot satisfy O1,
O2, or O3. So, the Vα’s must satisfy O4. Let l = sup{lα : α < λ} and let
r=sup{rα : α < λ}. Then l < r. If U ∩ [l, r) 6= ∅, then |{α < λ : U ∩Vα=∅}|
< λ. If U ∩ [l, r) = ∅, then |{α < λ : U ∩ Vα 6= ∅}| < λ. In either case, we
get a contradiction.

Theorem 4.3. Every ξ-adic space has Property R′λ, for all uncountable
regular cardinals λ.

P r o o f. By Lemma 3.2 and the fact that Property R′λ is preserved by
continuous images it will suffice to show that κ+ 1 has Property R′λ. Using
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Lemma 3.1 we start with 〈Uα, Vα〉α<λ, a sequence of pairs of clopen intervals
of κ+1. Apply Fact 4.1 to the sequence 〈Vα = [lα, rα]〉α<λ to get an A ∈ [λ]λ

such that one of O1, O2, O3 or O4 holds.
Now we use Fact 4.2 for each Uα, α ∈ A, to deduce that either there

exist λ α’s in A such that |{β ∈ A : Uα∩Vβ = ∅}| < λ or there exist λ α’s in
A such that |{β ∈ A : Uα ∩ Vβ 6= ∅}| < λ. Now, a straightforward recursion,
using the regularity of λ, will extract a correct K ∈ [A]λ.

Theorem 4.3 cannot be improved to Property R′′λ as the sequence Uα =
[0, α] and Vα = {α + 1} in the ordinal space ω1 + 1 will testify. To make
Property R′λ meaningful for arbitrary compact spaces, we employ the stan-
dard device of replacing a clopen set by a pair of open sets (U, V ) with
U ⊂ V . Property R′λ becomes Property Q′λ: whenever 〈Aα, Bα, Cα, Dα〉α<λ
is a sequence of quadruples of open sets such that Aα ⊂ Bα and Cα ⊂ Dα,
then there exists K ⊂ λ with |K| = λ such that either for every α < β in
K, Aα ∩ Cβ = ∅, or for every α < β in K, Bα ∩Dβ 6= ∅. All of our results
on Property R′λ for Boolean spaces are true for Property Q′λ for compact
spaces.

Example 4.4. There exists a compact , monolithic, scattered space X
which is not ξ-adic.

P r o o f. Let S be the Sierpiński graph on the set ω1. As all complete
subsets are countable, S∗ is a Corson compact space, hence S∗ is mono-
lithic. Let X = {C ∈ S∗ : |C| ≤ 2}. Then X is closed in S∗, so X is a
compact monolithic space. Since X is the union of 3 discrete subspaces, it
is scattered. For each α < ω1, put Uα = α+ ∩ X. As all complete and all
independent subsets of ω1 are countable, the sequence 〈Uα〉α<ω1 witnesses
the fact that X does not have Property R. Theorem 4.3 implies that X is
not ξ-adic.

Theorem 4.5. Every polyadic space has Property R′′λ, for all uncountable
regular cardinals λ.

P r o o f. Lemmas 3.1 and 3.2 are true if R′λ is replaced by R′′λ. Just replace
all occurrences of α < β in the proofs by α 6= β. So, just as in Theorem 4.3,
we need only show that ακ has Property R′′λ. We employ Lemma 3.1 with
the base B = {{α} : α < κ} ∪ {ακ \ F : F is a finite subset of κ}. Start
with 〈Uα, Vα〉α<λ where Uα, Vα ∈ B. We may assume that all the Uα’s are
singletons or all the Uα’s are cofinite. Similarly for the Vα’s. If all the Uα’s
and all the Vα’s are cofinite, then the sequence is correct. Let us assume
that all the Uα’s are singletons and all the Vα’s are cofinite. If there exists
H ∈ [λ]λ and γ < κ such that for every α 6= β in H, Uα = Uβ = {γ}, then
choose K ∈ [H]λ such that either for every α ∈ K, γ ∈ Vα, or for every
α ∈ K, γ 6∈ Vα. Then K is correct. Otherwise, if no such H exists, then as λ
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is regular, we may assume that for α < β, Uα 6= Uβ . As λ is uncountable and
regular, we can choose H ∈ [λ]λ such that {ακ \ Vα : α ∈ H} is a ∆-system
with root R. Discarding a finite set of α’s we may assume that for every
α ∈ H, Uα ∩R = ∅. Let us assume that uα is the unique element of Uα. We
recursively extract a correct K ∈ [H]λ such that α 6= β in K implies that
uα ∈ Vβ . If A ∈ [H]<λ has already been chosen such that for α 6= β in A we
have uα ∈ Vβ , then we proceed as follows. For each α ∈ A, there exists at
most one β in H such that uα ∈ ακ \ Vβ ; otherwise we would have uα ∈ R.
Thus, B = {β ∈ H : there exists α ∈ A with uα 6∈ Vβ} has cardinality
≤ |A| < λ. Also, C =

⋃
α∈A ακ \ Vα has cardinality ≤ |A|+ω < λ. So, if we

choose β ∈ H \(A∪B∪C), then for every α ∈ A, uα ∈ Vβ and uβ ∈ Vα, and
we can continue the recursion. In an analogous manner, we can deal with
the case where all the Uα’s are cofinite and all the Vα’s are singletons. The
remaining case where all the Uα’s and all the Vα’s are singletons is easily
disposed of.

References

[Ar76] A. Arhange l ’ sk i ı̆ [A. Arkhangel’skĭı], On some topological spaces that oc-
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