The distributivity numbers of finite products of $\mathcal{P}(\omega)/\text{fin}$

by

Saharon Shelah (Jerusalem) and Otmar Spinas (Zürich)

Abstract. Generalizing [ShSp], for every $n < \omega$ we construct a ZFC-model where $\mathfrak{h}(n)$, the distributivity number of r.o. $(\mathcal{P}(\omega)/\mathrm{fin})^n$, is greater than $\mathfrak{h}(n+1)$. This answers an old problem of Balcar, Pelant and Simon (see [BaPeSi]). We also show that both Laver and Miller forcings collapse the continuum to $\mathfrak{h}(n)$ for every $n < \omega$, hence by the first result, consistently they collapse it below $\mathfrak{h}(n)$.

Introduction. For λ a cardinal let $\mathfrak{h}(\lambda)$ be the least cardinal κ for which r.o. $(\mathcal{P}(\omega)/\mathrm{fin})^{\lambda}$ is not κ -distributive, where by $(\mathcal{P}(\omega)/\mathrm{fin})^{\lambda}$ we mean the (full) λ -product of $\mathcal{P}(\omega)/\mathrm{fin}$ in the forcing sense; so $f \in (\mathcal{P}(\omega)/\mathrm{fin})^{\lambda}$ if and only if $f : \lambda \to \mathcal{P}(\omega)/\mathrm{fin} \setminus \{0\}$, and the ordering is coordinatewise.

In [ShSp] the consistency of $\mathfrak{h}(2) < \mathfrak{h}$ (where $\mathfrak{h} = \mathfrak{h}(1)$) with ZFC has been proved, which provided a (partial) answer to a question of Balcar, Pelant and Simon in [BaPeSi]. This inequality holds in a model obtained by forcing with a countable support iteration of length ω_2 of Mathias forcing over a model of GCH. That $\mathfrak{h} = \omega_2$ in this model is folklore, but the proof of $\mathfrak{h}(2) = \omega_1$ is long and difficult.

The two main theorems which imply this are the following:

(a) Whenever some $r \in V^{P_{\omega_2}} \cap [\omega]^{\omega}$ (where P_{ω_2} is the above iteration) induces a Ramsey ultrafilter on $V \cap [\omega]^{\omega}$ which is a *P*-filter in $V^{P_{\omega_2}}$ then this filter is induced by some $r_1 \in V^{Q_0} \cap [\omega]^{\omega}$ (where Q_0 is the first iterand of P_{ω_2}) and hence belongs to V^{Q_0} .

(b) Whenever some $r \in V^{Q_0} \cap [\omega]^{\omega}$ induces a Ramsey ultrafilter on $V \cap [\omega]^{\omega}$ then this filter is Rudin–Keisler equivalent to the canonical Ramsey filter induced by the first Mathias real, and this equivalence is witnessed by some element of $V \cap \omega^{\omega}$.

¹⁹⁹¹ Mathematics Subject Classification: 03E05, 03E10, 03E35.

The first author is supported by the Basic Research Foundation of the Israel Academy of Sciences; publication 531.

The second author is supported by the Swiss National Science Foundation.

^[81]

The following are the key properties of Mathias forcing (M.f.) which are essential to the proofs of these (see [ShSp] or below for precise definitions):

(1) M.f. factors into a σ -closed and a σ -centered forcing.

(2) M.f. is Suslin-proper, which means that, firstly, it is simply definable, and, secondly, it permits generic conditions over every countable model of ZF^- .

(3) Every infinite subset of a Mathias real is also a Mathias real.

(4) M.f. does not change the cofinality of any cardinal from above $\mathfrak h$ to below $\mathfrak h.$

(5) M.f. has the pure decision property and it has the Laver property.

In this paper we present a forcing Q^n , where $0 < n < \omega$, which is an *n*-dimensional version of M.f. which satisfies all the analogues of the five key properties of M.f. The following list indicates where the analogues of these properties will be proved:

(1) \leftrightarrow Lemma 1.5,

(2) \leftrightarrow Corollary 1.12,

- (3) \leftrightarrow Corollary 1.11,
- (4) \leftrightarrow Corollary 1.14,
- $(5) \leftrightarrow$ Lemma 1.16 and Lemma 1.18.

In this paper we only prove these. Once this has been done the proof of [ShSp] can be generalized in a straightforward way to prove (a') and (b'), analogues of (a) and (b) above, where (a') is like (a) except that M.f. is replaced by Q^n , and (b') is as follows:

(b') Whenever some $r \in V^{Q^n} \cap [\omega]^{\omega}$ induces a Ramsey ultrafilter on $V \cap [\omega]^{\omega}$ then this filter is Rudin–Keisler equivalent to one of the *n* (pairwise non-RK-equivalent) canonical Ramsey ultrafilters induced by the length-*n*-sequence of Q^n -generic reals, and the equivalence is witnessed by some function from *V*.

Then as in [ShSp] we obtain the following:

THEOREM. Suppose $V \models \text{ZFC} + \text{GCH}$. If P is a countable support iteration of Q^n of length ω_2 and G is P-generic over V, then $V[G] \models \mathfrak{h}(n+1) = \omega_1 \wedge \mathfrak{h}(n) = \omega_2$.

Besides the fact that the consistency of $\mathfrak{h}(n+1) < \mathfrak{h}(n)$ was an open problem in [BaPeSi], our motivation for working on it was that in [GoReShSp] it was shown that both Laver and Miller forcings collapse the continuum to \mathfrak{h} . Moreover, using ideas from [GoJoSp] and [GoReShSp] it can be proved that these forcings do not collapse \mathfrak{c} below $\mathfrak{h}(\omega)$. We do not know whether they do collapse it to $\mathfrak{h}(\omega)$. But in §2 we show that they collapse it to $\mathfrak{h}(n)$, for every $n < \omega$. Combining this with the first result we conclude that, for every $n < \omega$, consistently Laver and Miller forcings collapse \mathfrak{c} strictly below $\mathfrak{h}(n)$.

The reader should have a copy of [ShSp] at hand. We do not repeat all the definitions from [ShSp] here. Notions as Ramsey ultrafilter, Rudin–Keisler ordering, Suslin-proper are explained there and references are given.

1. The forcing

DEFINITION 1.1. Suppose that D_0, \ldots, D_{n-1} are ultrafilters on ω . The game $G(D_0, \ldots, D_{n-1})$ is defined as follows: In his *m*th move player I chooses $\langle A_0, \ldots, A_{n-1} \rangle \in D_0 \times \ldots \times D_{n-1}$ and player II responds playing $k_m \in A_{m \mod n}$. Finally, player II wins if and only if for every i < n, $\{k_j : j = i \mod n\} \in D_i$ holds.

LEMMA 1.2. Suppose D_0, \ldots, D_{n-1} are Ramsey ultrafilters which are pairwise not RK-equivalent. Let $\langle m(l) : l < \omega \rangle$ be an increasing sequence of integers. There exists a subsequence $\langle m(l_j) : j < \omega \rangle$ and sets $Z_i \in D_i$, i < n, such that:

(1) $l_{j+1} - l_j \geq 2$ for all $j < \omega$,

(2) $Z_i \subseteq \bigcup_{j=i \mod n} [m(l_j), m(l_{j+1}))$ for all i < n,

(3) $Z_i \cap [m(l_j), m(l_{j+1}))$ has precisely one member for every i < n and $j = i \mod n$.

Proof. For $j < 3, k < \omega$ define

$$I_{j,k} = \bigcup_{s=(2n-1)(3k+j)}^{(2n-1)(3k+j+1)-1} [m_s, m_{s+1}), \quad J_j = \bigcup_{k < \omega} I_{j,k}$$

As the D_i are Ramsey ultrafilters, there exist $X_i \in D_i$ such that for every i < n:

(a) $X_i \subseteq J_j$ for some j < 3,

(b) if $X_i \subseteq J_j$, then $X_i \cap I_{j,k}$ contains precisely one member, for every $k < \omega$.

Next we want to find $Y_i \in D_i$, $Y_i \subseteq X_i$, such that for any distinct $i, i' < n, Z_i$ and $Z_{i'}$ do not meet any adjacent intervals $I_{j,k}$.

Define $h: X_0 \to X_1$ as follows. Suppose $X_0 \subseteq J_j$. For every $k < \omega$, h maps the unique element of $X_0 \cap I_{j,k}$ to the unique element of X_1 which belongs either to $I_{j,k}$ or to one of the two intervals of the form $I_{j',k'}$ which are adjacent to $I_{j,k}$ (note that these are $I_{2,k-1}, I_{1,k}$ if j = 0, or $I_{0,k}, I_{2,k}$ if j = 1, or $I_{1,k}, I_{0,k+1}$ if j = 2). As h does not witness that D_0, D_1 are RK-equivalent, there exist $X'_i \in D_i, X'_i \subseteq X_i$ (i < 2) such that $h[X'_0] \cap X'_1 = \emptyset$. Note that if n = 2, we can let $Y_i = X'_i$. Otherwise we repeat this procedure,

starting from X'_0 and X_2 , and get X''_0 and X'_2 . We repeat it again, starting from X'_1 and X'_2 , and get X''_1 and X''_2 . If n = 3 we are done. Otherwise we continue similarly. After finitely many steps we obtain Y_i as desired.

By the definition of $I_{j,k}$ it is now easy to add more elements to each Y_i in order to get Z_i as in the lemma. The "worst" case is when some Y_i contains integers s < t such that $(s,t) \cap Y_u = \emptyset$ for all u < n. By construction there is some $I_{j,k} \subseteq (s,t)$. For every u < n-1 pick

$$x_u \in [m((2n-1)(3k+j)+2u+1), m((2n-1)(3k+j)+2u+2))$$

and add x_u to $Y_{i+u+1 \mod n}$. The other cases are similar.

COROLLARY 1.3. Suppose D_0, \ldots, D_{n-1} are Ramsey ultrafilters which are pairwise not RK-equivalent. Then in the game $G(D_0, \ldots, D_{n-1})$ player I does not have a winning strategy.

Proof. Suppose σ is a strategy for player I. For every $m < \omega$, i < n let $\mathcal{A}_i^m \subseteq D_i$ be the set of all *i*th coordinates of moves of player I in an initial segment of length at most 2m + 1 of a play in which player I follows σ and player II plays only members of m.

As the D_i are *p*-points and each \mathcal{A}_i^m is finite, there exist $X_i \in D_i$ such that $\forall m \forall i < n \forall A \in \mathcal{A}_i^m(X_i \subseteq^* A)$. Moreover, we may clearly find a strictly increasing sequence $\langle m(l) : l < \omega \rangle$ such that m(0) = 0 and, for all $l < \omega$,

$$\forall i < n \forall A \in \mathcal{A}_i^{m(l)} (X_i \subseteq A \cup m(l+1) \land X_i \cap [m(l), m(l+1)) \neq \emptyset).$$

Applying Lemma 1.2, we obtain a subsequence $\langle m(l_j) : j < \omega \rangle$ and sets $Z_i \in D_i$.

Now let player II in his *j*th move play k_j , where k_j is the unique member of $[m(l_j), m(l_{j+1})) \cap X_{j \mod n} \cap Z_{j \mod n}$ if it exists, or otherwise is any member of $[m(l_j), m(l_{j+1})) \cap X_{j \mod n}$ (note that this intersection is nonempty by the definition of $m(l_{j+1})$). Then this play is consistent with σ , moreover $X_i \cap Z_i \subseteq \{k_j : j = i \mod n\}$ for every i < n, and hence it is won by player II. Consequently, σ could not have been a winning strategy for player I.

REMARK. It is easy to see that in 1.2 and 1.3 the assumption that the D_i are pairwise not RK-equivalent is necessary.

DEFINITION 1.4. Let $n < \omega$ be fixed. The forcing Q (really Q^n) is defined as follows: Its members are $(w, \overline{A}) \in [\omega]^{<\omega} \times [\omega]^{\omega}$. If $\langle k_j : j < \omega \rangle$ is the increasing enumeration of \overline{A} we let $\overline{A}_i = \{k_j : j = i \mod n\}$ for i < n, and if $\langle l_j : j < m \rangle$ is the increasing enumeration of w then let $w_i = \{l_j : j = i \mod n\}$, for i < n.

Let $(w, \overline{A}) \leq (v, \overline{B})$ if and only if $w \cap (\max(v) + 1) = v, w_i \setminus v_i \subseteq \overline{B}_i$ and $\overline{A}_i \subseteq \overline{B}_i$, for every i < n.

If $p \in Q$, then $w^p, w^p_i, \overline{A}^p, \overline{A}^p_i$ have the obvious meaning. We write $p \leq^0 q$ and say "p is a pure extension of q" if $p \leq q$ and $w^p = w^q$.

If D_0, \ldots, D_{n-1} are ultrafilters on ω , let $Q(D_0, \ldots, D_{n-1})$ denote the subordering of Q containing only those $(w, \overline{A}) \in Q$ with the property $\overline{A}_i \in D_i$, for every i < n.

LEMMA 1.5. The forcing Q is equivalent to $(\mathcal{P}(\omega)/\operatorname{fin})^n * Q(G_0, \ldots, G_{n-1})$, where $(\dot{G}_0, \ldots, \dot{G}_{n-1})$ is the canonical name for the generic object added by $(\mathcal{P}(\omega)/\operatorname{fin})^n$, which consists of n pairwise not RK-equivalent Ramsey ultrafilters.

Proof. Clearly, $(\mathcal{P}(\omega)/\text{fin})^n$ is σ -closed and hence does not add reals. Moreover, members $\langle x_0, \ldots, x_{n-1} \rangle \in (\mathcal{P}(\omega)/\text{fin})^n$ with the property that if $\overline{A} = \bigcup \{x_i : i < n\}$, then $x_i = \overline{A}_i$ for every i < n, are dense. Hence the map $(w, \overline{A}) \mapsto (\langle \overline{A}_0, \ldots, \overline{A}_{n-1} \rangle, (w, \overline{A}))$ is a dense embedding of the respective forcings.

That $\dot{G}_0, \ldots, \dot{G}_{n-1}$ are $((\mathcal{P}(\omega)/\text{fin})^n$ -forced to be) pairwise not RK-equivalent Ramsey ultrafilters follows by an easy genericity argument and again the fact that no new reals are added.

NOTATION. We will usually abbreviate the decomposition of Q from Lemma 1.5 by writing Q = Q' * Q''. So members of Q' are $\overline{A}, \overline{B} \in [\omega]^{\omega}$ ordered by $\overline{A}_i \subseteq \overline{B}_i$ for all i < n; Q'' is $Q(\dot{G}_0, \ldots, \dot{G}_{n-1})$. It is easy to see that Q'' is σ -centered. If G is a Q-generic filter, we denote by $G' * \dot{G}''$ its decomposition according to $Q = Q' * \dot{Q}''$, and we write $G' = (G'_0, \ldots, G'_{n-1})$.

DEFINITION 1.6. Let $I \subseteq Q(D_0, \ldots, D_{n-1})$ be open dense. We define a rank function rk_I on $[\omega]^{<\omega}$ as follows. Let $\operatorname{rk}_I(w) = 0$ if and only if $(w, \overline{A}) \in I$ for some \overline{A} . Let $\operatorname{rk}_I(w) = \alpha$ if and only if α is minimal such that there exists $A \in D_{|w| \mod n}$ with the property that for every $k \in A$, $\operatorname{rk}_I(w \cup \{k\}) = \beta$ for some $\beta < \alpha$. Let $\operatorname{rk}_I(w) = \infty$ if for no ordinal α , $\operatorname{rk}_I(w) = \alpha$.

LEMMA 1.7. If D_0, \ldots, D_{n-1} are Ramsey ultrafilters which are pairwise not RK-equivalent and $I \subseteq Q(D_0, \ldots, D_{n-1})$ is open dense, then for every $w \in [\omega]^{<\omega}$, $\operatorname{rk}_I(w) \neq \infty$.

Proof. Suppose we had $\operatorname{rk}_{I}(w) = \infty$ for some w. We define a strategy σ for player I in $G(D_{0}, \ldots, D_{n-1})$ as follows: $\sigma(\emptyset) = \langle A_{0}, \ldots, A_{n-1} \rangle \in D_{0} \times \ldots \times D_{n-1}$ such that for every $k \in A_{|w| \mod n}$, $\operatorname{rk}_{I}(w \cup \{k\}) = \infty$. This choice is possible by assumption and by the fact that the D_{i} are ultrafilters. In general, suppose that σ has been defined for plays of length 2m such that whenever k_{0}, \ldots, k_{m-1} are moves of player II which are consistent with σ , then $k_{0} < k_{1} < \ldots < k_{m-1}$ and for every $\{k_{i_{0}} < \ldots < k_{i_{l-1}}\} \subseteq \{k_{0}, \ldots, k_{m-1}\}$ with $i_{j} = j \mod n, j < l$, we have $\operatorname{rk}_{I}(w \cup \{k_{i_{0}}, \ldots, k_{i_{l-1}}\}) = \infty$. Let S be the set of all $\{k_{i_{0}} < \ldots < k_{i_{l-1}}\} \subseteq \{k_{0}, \ldots, k_{m-1}\}$ with $i_{j} = j \mod n$,

j < l, and $l = m \mod n$. As $D_{|w|+m \mod n}$ is an ultrafilter, by induction hypothesis, if we let

$$A_{|w|+m \bmod n} = \{k > k_{m-1} : \forall s \in S(\operatorname{rk}_I(w \cup s \cup \{k\}) = \infty)\}$$

we have $A_{|w|+m \mod n} \in D_{|w|+m \mod n}$. For $i \neq |w|+m \mod n$, choose $A_i \in D_i$ arbitrarily, and define

$$\sigma\langle k_0, \dots, k_{m-1} \rangle = \langle A_0, \dots, A_{n-1} \rangle$$

Since by Lemma 1.2, σ is not a winning strategy for player I, there exist $k_0 < \ldots < k_m < \ldots$ which are moves of player II consistent with σ , such that, letting $\overline{A} = \{k_m : m < \omega\}$, we have $(w, \overline{A}) \in Q(D_0, \ldots, D_{n-1})$. By construction we see that for every $(v, \overline{B}) \leq (w, \overline{A})$, $\operatorname{rk}_I(v) = \infty$. This contradicts the assumption that I is dense.

DEFINITION 1.8. Let $p \in Q$. A set of the form $w^p \cup \{k_{|w|} < k_{|w|+1} < \ldots\} \in [\omega]^{\omega}$ is called a *branch* of p if and only if $\max(w^p) < k_{|w|}$ and $\{k_j : j = i \mod n\} \subseteq \overline{A}_i^p$ for every i < n. A set $F \subseteq [\omega]^{<\omega}$ is called a *front* in p if for every $w \in F$, $(w, \overline{A}^p) \leq p$ and for every branch B of $p, B \cap m \in F$ for some $m < \omega$.

LEMMA 1.9. Suppose D_0, \ldots, D_{n-1} are pairwise not RK-equivalent Ramsey ultrafilters. Suppose $p \in Q(D_0, \ldots, D_{n-1})$ and $\langle I_m : m < \omega \rangle$ is a family of open dense sets in $Q(D_0, \ldots, D_{n-1})$. There exists $q \in Q(D_0, \ldots, D_{n-1})$, $q \leq^0 p$, such that for every m, $\{w \in [\omega]^{<\omega} : (w, \overline{A}^q) \in I_m \land (w, \overline{A}^q) \leq q\}$ is a front in q.

Proof. First we prove this in the case $I_m = I$ for all $m < \omega$, by induction on $\operatorname{rk}_I(w^p)$. We define a strategy σ for player I in $G(D_0, \ldots, D_{n-1})$ as follows. Generally we require that

$$\sigma\langle k_0,\ldots,k_r\rangle_i \subseteq \sigma\langle k_0,\ldots,k_s\rangle_i$$

for every s < r and i < n, where $\sigma \langle k_0, \ldots, k_r \rangle_i$ is the *i*th coordinate of $\sigma \langle k_0, \ldots, k_r \rangle$. We also require that σ ensures that the moves of II are increasing. Define $\sigma(\emptyset) = \langle A_0, \ldots, A_{n-1} \rangle$ such that for every $k \in A_{|w^p| \mod n}$, $\operatorname{rk}_I(w^p \cup \{k\}) < \operatorname{rk}_I(w^p)$.

Suppose now that σ has been defined for plays of length 2m, and let $\langle k_0, \ldots, k_{m-1} \rangle$ be moves of II, consistent with σ . The interesting case is that of $m-1=0 \mod n$. Let us assume this first. By the definition of $\sigma(\emptyset)$ and the general requirement on σ we conclude $\operatorname{rk}_I(w^p \cup \{k_{m-1}\}) < \operatorname{rk}_I(w^p)$. By induction hypothesis there exists $\langle A_0, \ldots, A_{n-1} \rangle \in D_0 \times \ldots \times D_{n-1}$ such that, letting $\overline{A} = \bigcup_{i < n} A_i$, we have $(w^p, \overline{A}) \leq p$ and

$$\{v \in [\omega]^{<\omega} : (v,\overline{A}) \in I \land (v,\overline{A}) \le (w^p \cup \{k_{m-1}\},\overline{A})\}$$

is a front in $(w^p \cup \{k_{m-1}\}, \overline{A})$. We shrink \overline{A} so that, letting

$$\sigma\langle k_0,\ldots,k_{m-1}\rangle = \langle A_0,\ldots,A_{n-1}\rangle,$$

the general requirements on σ above are satisfied.

In the case of $m-1 \neq 0 \mod n$, define $\sigma(k_0, \ldots, k_{m-1})$ arbitrarily, but consistently with the rules and the general requirements above.

Let $\overline{A} = \{k_i : i < \omega\}$ be moves of player II witnessing that σ is not a winning strategy. Let $q = (w^p, \overline{A})$. Let $B = w^p \cup \{l_{|w^p|} < l_{|w^p|+1} < \ldots\}$ be a branch of q. Hence $l_{|w^p|} = k_j$ for some $j = 0 \mod n$. Then $w^p \cup \{k_j\} \cup \{l_{|w^p|+1}, l_{|w^p|+2}, \ldots\}$ is a branch of $(w^p \cup \{k_j\}, \sigma \langle k_0, \ldots, k_j \rangle)$. By the definition of σ there exists m such that $(B \cap m, \sigma \langle k_0, \ldots, k_j \rangle) \in I$. As $(B \cap m, \overline{A}) \leq (B \cap m, \sigma \langle k_0, \ldots, k_j \rangle)$ and I is open we are done.

For the general case where we have infinitely many I_m , we make a diagonalization, using the first part of the present proof. Define a strategy σ for player I satisfying the same general requirements as in the first part as follows. Let $\sigma(\emptyset) = \langle A_0, \ldots, A_{n-1} \rangle$ be such that, letting $\overline{A} = \bigcup \{A_i : i < n\}$, $(w^p, \overline{A}) \leq^0 p$ and it satisfies the conclusion of the lemma for I_0 . In general, let $\sigma\langle k_0, \ldots, k_{m-1} \rangle = \langle A_0, \ldots, A_{n-1} \rangle$ be such that, letting $\overline{A} = \bigcup \{A_i : i < n\}$, for every $v \subseteq \{k_i : i < m\}$ and $j \leq m$, $(w^p \cup v, \overline{A}) \leq^0 (w^p \cup v, \overline{A}^p)$ and it satisfies the conclusion of the lemma for I_j (in fact we do not have to consider all such v here, but it does not hurt doing it). Then if $\overline{A} = \{k_i : i < \omega\}$ are moves of player II witnessing that σ is not a winning strategy for I, similarly to the first part it can be verified that $q = (w^p, \overline{A})$ is as desired.

COROLLARY 1.10. Let D_0, \ldots, D_{n-1} be pairwise not RK-equivalent Ramsey ultrafilters. Suppose $\overline{A} \in [\omega]^{\omega}$ is such that for every i < n and $X \in D_i$, $\overline{A}_i \subseteq^* X$. Then \overline{A} is $Q(D_0, \ldots, D_{n-1})$ -generic over V.

Proof. Let $I \subseteq Q(D_0, \ldots, D_{n-1})$ be open dense. Let $w \in [\omega]^{<\omega}$. It is easy to see that the set

$$I_w = \{ (v, \overline{B}) \in Q(D_0, \dots, D_{n-1}) :$$
$$(w \cup [v \setminus \min\{k \in v_{|w| \mod n} : \max(w)\}], \overline{B}) \in I \}$$

is open dense. If we apply Lemma 1.9 to $p = (\emptyset, \omega, \ldots, \omega)$ and the countably many open dense sets I_w where $w \in [\omega]^{<\omega}$, we obtain $q = (\emptyset, \overline{B})$. Let $\langle a_i : i < \omega \rangle$ be the increasing enumeration of \overline{A} . Choose m large enough so that for each i < n, $\overline{A}_i \setminus \{a_j : j < mn\} \subseteq \overline{B}_i$. Let $w = \{a_j : j < mn\}$. By construction, there exists $v \subseteq \overline{A} \cap \overline{B} \setminus (a_{mn-1}+1)$ such that $(v, \overline{B}) \in I_w$ and $w \cup v = \overline{A} \cap k$ for some $k < \omega$. Hence $(w \cup v, \overline{B}) \in I$, and so the filter on $Q(D_0, \ldots, D_{n-1})$ determined by \overline{A} intersects I. As I was arbitrary, we are done. An immediate consequence of Lemma 1.5 and Corollary 1.10 is the following.

COROLLARY 1.11. Suppose $\overline{A} \in [\omega]^{\omega}$ is Q-generic over V, and $\overline{B} \in [\omega]^{\omega}$ is such that $\overline{B}_i \subseteq \overline{A}_i$ for every i < n. Then \overline{B} is Q-generic over V as well.

Recall that a forcing is called *Suslin* if its underlying set is an analytic set of reals and its order and incompatibility relations are analytic subsets of the plane. A forcing P is called *Suslin-proper* if it is Suslin and for every countable transitive model (N, \in) of ZF⁻ which contains the real coding P and for every $p \in P \cap N$, there exists an (N, P)-generic condition extending p. See [JuSh] for the theory of Suslin-proper forcing and [ShSp] for its properties which are relevant here.

COROLLARY 1.12. The forcing Q is Suslin-proper.

Proof. It is trivial to note that Q is Suslin, without parameter in its definition. Let (N, \in) be a countable model of ZFC⁻, and let $p \in Q \cap N$. Without loss of generality, $|w^p| = 0 \mod n$. Let $\overline{A} \in [\omega]^{\omega} \cap V$ be Q-generic over N such that p belongs to its generic filter. Hence $w_i^p \subseteq \overline{A}_i \subseteq w_i^p \cup (\overline{A}_i^p \setminus (\max(w^p) + 1))$ for all i < n. But if $q = (w^p, \overline{A})$, then clearly $q \leq^0 p$ and q is (N, Q)-generic, as every $\overline{B} \in [\omega]^{\omega}$ which is Q-generic over V and contains q in its generic filter is a subset of \overline{A} and hence $Q \cap N$ -generic over N by Corollary 1.11 applied in N.

The following is an immediate consequence of Corollary 1.12.

COROLLARY 1.13. If $p \in Q$ and $\langle \tau_n : n < \omega \rangle$ are *Q*-names for members of *V*, there exist $q \in Q$, $q \leq^0 p$ and $\langle X_n : n < \omega \rangle$ such that $X_n \in V \cap [V]^{\omega}$ and $q \parallel_{-Q} \forall n(\tau_n \in X_n)$.

COROLLARY 1.14. Forcing with Q does not change the cofinality of any cardinal λ with $cf(\lambda) \geq \mathfrak{h}(n)$ to a cardinal below $\mathfrak{h}(n)$.

Proof. Suppose there were a cardinal $\kappa < \mathfrak{h}(n)$ and a Q-name \dot{f} for a cofinal function from κ to λ . Working in V and using Corollary 1.13, for every $\alpha < \kappa$ we may construct a maximal antichain $\langle p_{\beta}^{\alpha} : \beta < \mathfrak{c} \rangle$ in Q and $\langle X_{\beta}^{\alpha} : \beta < \mathfrak{c} \rangle$ such that for all $\beta < \mathfrak{c}, w^{p_{\beta}^{\alpha}} = \emptyset, X_{\beta}^{\alpha} \in [V]^{\omega} \cap V$ and $p_{\beta}^{\alpha} \models_{Q} \dot{f}(\alpha) \in X_{\beta}^{\alpha}$.

Then clearly $\mathcal{A}_{\alpha} = \langle \langle \overline{A}_{i}^{p_{\beta}^{\alpha}} : i < n \rangle : \beta < \mathfrak{c} \rangle$ is a maximal antichain in $(\mathcal{P}(\omega)/\mathrm{fin})^{n}$. By $\kappa < \mathfrak{h}(n), \langle \mathcal{A}_{\alpha} : \alpha < \kappa \rangle$ has a refinement, say \mathcal{A} . Choose $\langle \overline{A}_{i} : i < n \rangle \in \mathcal{A}$. Let $\overline{A} = \bigcup \{ \overline{A}_{i} : i < n \}$. We may assume that the \overline{A}_{i} also have the meaning from Definition 1.4 with respect to \overline{A} . For each $\alpha < \kappa$ there exists $\beta(\alpha)$ such that $\langle \overline{A}_{i} : i < n \rangle \leq_{(\mathcal{P}(\omega)/\mathrm{fin})^{n}} \langle \overline{A}_{i}^{p_{\beta(\alpha)}^{\alpha}} : i < n \rangle$. Then

clearly

$$(\emptyset, \overline{A}) \Vdash_Q \operatorname{range}(\dot{f}) \subseteq \bigcup \{ X^{\alpha}_{\beta(\alpha)} : \alpha < \kappa \}$$

But as $cf(\lambda) \ge \mathfrak{h}(n)$ and $\kappa < \mathfrak{h}(n)$, we have a contradiction.

LEMMA 1.15. Suppose D_0, \ldots, D_{n-1} are pairwise not RK-equivalent Ramsey ultrafilters. Then $Q(D_0, \ldots, D_{n-1})$ has the pure decision property (for finite disjunctions), i.e. given a $Q(D_0, \ldots, D_{n-1})$ -name τ for a member of $\{0,1\}$ and $p \in Q(D_0, \ldots, D_{n-1})$, there exist $q \in Q(D_0, \ldots, D_{n-1})$ and $i \in \{0,1\}$ such that $q \leq p$ and $q \models_{Q(D_0, \ldots, D_{n-1})} \tau = i$.

Proof. The set $I = \{r \in Q(D_0, \ldots, D_{n-1}) : r \text{ decides } \tau\}$ is open dense. By a similar induction on rk_I as in the proof of Lemma 1.9 we may find $q \in Q(D_0, \ldots, D_{n-1}), q \leq^0 p$, such that for every $q' \leq q$, if q' decides τ then $(w^{q'}, \overline{A}^q)$ decides τ . Now again by induction on rk_I we may assume that for every $k \in \overline{A}^q_{|w^q| \mod n}, (w^q \cup \{k\}, \overline{A}^q)$ satisfies the conclusion of the lemma, and hence by the construction of q, $(w^q \cup \{k\}, \overline{A}^q)$ decides τ . But then clearly a pure extension of q decides τ , and hence q does.

LEMMA 1.16. Lemma 1.15 holds if $Q(D_0, \ldots, D_{n-1})$ is replaced by Q.

Proof. Suppose $p \in Q$, τ is a Q-name and $p \parallel_Q \tau \in \{0,1\}$. As $\overline{A}^p \parallel_{Q'} \quad p \in Q(\dot{G}_0, \ldots, \dot{G}_{n-1})$, by Lemma 1.15 there exists a Q'-name $\dot{\overline{A}}$ such that

$$\bar{A}^p \models_{Q'} "(w^p, \dot{\bar{A}}) \in Q'' \land (w^p, \dot{\bar{A}}) \le p \land (w^p, \dot{\bar{A}}) \text{ decides } \tau".$$

As Q' does not add reals there exist $\overline{A}_1, \overline{A}_2 \in [\omega]^{\omega} \cap V$ such that $\overline{A}_1 \subseteq \overline{A}^p$ and $\overline{A}_1 \parallel_{-Q'} \dot{\overline{A}} = \overline{A}_2$. Letting $\overline{B} = \overline{A}_1 \cap \overline{A}_2$ we conclude $(w^p, \overline{B}) \in Q$, $(w^p, \overline{B}) \leq^0 p$ and (w^p, \overline{B}) decides τ .

The rest of this section is devoted to the proof that if the forcing Q is iterated with countable supports, then in the resulting model $\operatorname{cov}(\mathcal{M}) = \omega_1$, where \mathcal{M} is the ideal of meagre subsets of the real line, and $\operatorname{cov}(\mathcal{M})$ is the least number of meagre sets needed to cover the real line. Hence for every $n < \omega$, we obtain the consistency of $\operatorname{cov}(\mathcal{M}) < \mathfrak{h}(n)$.

DEFINITION 1.17. A forcing P is said to have the Laver property if for every P-name \dot{f} for a member of ${}^{\omega}\omega$, $g \in {}^{\omega}\omega \cap V$ and $p \in P$, if

$$p \Vdash_P \forall n < \omega(f(n) < g(n)),$$

then there exist $H: \omega \to [\omega]^{<\omega}$ and $q \in P$ such that $H \in V, \forall n < \omega$ $(|H(n)| \le 2^n), q \le p$ and

$$q \parallel_{-P} \forall n < \omega(\dot{f}(n) \in H(n)).$$

It is not difficult to see that a forcing with the Laver property does not add Cohen reals. Moreover, by [Shb, 2.12, p. 207] the Laver property is preserved by a countable support iteration of proper forcings. See also [Go, 6.33, p. 349] for a more accessible proof.

LEMMA 1.18. The forcing Q has the Laver property.

Proof. Suppose \dot{f} is a Q-name for a member of ${}^{\omega}\omega$ and $g \in {}^{\omega}\omega \cap V$ such that $p \Vdash_Q \forall n < \omega(\dot{f}(n) < g(n))$. We shall define $q \leq {}^0 p$ and $\langle H(i) : i < \omega \rangle$ such that $|H(i)| \leq 2^i$ and $q \Vdash_Q \forall i(\dot{f}(i) \in H(i))$. We may assume $|w^p| = 0 \mod n$ and $\min(\overline{A}^p) > \max(w^p)$.

By Lemma 1.15 choose $q_0 \leq^0 p$ and K^0 such that $q_0 \Vdash_Q \dot{f}(0) = K^0$, and let $H(0) = \{K^0\}$.

Suppose $q_i \leq^0 p$, $\langle H(j) : j \leq i \rangle$ have been constructed and let a^i be the set of the first i + 1 members of \overline{A}^{q_i} . Let $\langle v^k : k < k^* \rangle$ list all subsets v of a^i such that $v_l \subseteq (a^i)_l$ for every l < n (see Definition 1.4). Then clearly $k^* \leq 2^{i+1}$. By Lemma 1.15 we may shrink $\overline{A}^{q_i} k^*$ times so as to obtain \overline{A} and $\langle K_k^{i+1} : k < k^* \rangle$ such that for every $k < k^*$, $(w^{q_i} \cup v^k, \overline{A}) \models_Q \dot{f}(i+1) = K_k^{i+1}$. Without loss of generality, $\min(\overline{A}) > \max(a^i)$. Let q_{i+1} be defined by $w^{q_{i+1}} = w^p$ and $\overline{A}^{q_{i+1}} = a^i \cup \overline{A}'$, where \overline{A}' is \overline{A} without its first $(i+1) \mod n$ members. Let $H(i+1) = \{K_k^{i+1} : k < k^*\}$. Then $q^{i+1} \models_Q \dot{f}(i+1) \in H(i+1)$. Finally, let q be defined by $w^q = w^p$ and $\overline{A}^q = \bigcup \{a^i : i < \omega\}$. Then q and $\langle H(i) : i < \omega \rangle$ are as desired.

As explained above, from Lemma 1.18 and Shelah's preservation theorem it follows that if P is a countable support iteration of Q and G is P-generic over V, then in V[G] no real is Cohen over V; equivalently, the meagre sets in V cover all the reals of V[G]. Now starting with V satisfying CH we obtain the following theorem.

THEOREM 1.19. For every $n < \omega$, the inequality $\operatorname{cov}(\mathcal{M}) < \mathfrak{h}(n)$ is consistent with ZFC.

2. Both Laver and Miller forcings collapse the continuum below each $\mathfrak{h}(n)$

DEFINITION 2.1. Let $p \subseteq {}^{<\omega}\omega$ be a tree. For any $\eta \in p$ let $\operatorname{succ}_{\eta}(p) = \{n < \omega : \eta^{\wedge} \langle n \rangle \in p\}$. We say that p has a stem, and denote it $\operatorname{stem}(p)$, if there is $\eta \in p$ such that $|\operatorname{succ}_{\eta}(p)| \geq 2$ and for every $\nu \subset \eta$, $|\operatorname{succ}_{\nu}(p)| = 1$. Clearly, $\operatorname{stem}(p)$ is uniquely determined, if it exists. If p has a stem, by p^{-} we denote the set $\{\eta \in p : \operatorname{stem}(p) \subseteq \eta\}$. We say that p is a Laver tree if p has a stem and for every $\eta \in p^{-}$, $\operatorname{succ}_{\eta}(p)$ is infinite. We say that p is superperfect if for every $\eta \in p$ there exists $\nu \in p$ with $\eta \subseteq \nu$ and $|\operatorname{succ}_{\nu}(p)| = \omega$. We denote by \mathbb{L} the set of all Laver trees, ordered by reverse inclusion, and by \mathbb{M} the set of all superperfect trees, ordered by reverse inclusion. \mathbb{L} , \mathbb{M} is usually called Laver, Miller forcing, respectively. THEOREM 2.2. Suppose that G is \mathbb{L} -generic or \mathbb{M} -generic over V. Then in $V[G], |\mathfrak{c}^V| = |\mathfrak{h}(n)|^V$.

Proof. Completely similarly to [BaPeSi] for the case n = 1, a base tree T for $(\mathcal{P}(\omega)/\text{fin})^n$ of height $\mathfrak{h}(n)$ can be constructed, i.e.

(1) $T \subseteq (\mathcal{P}(\omega)/\text{fin})^n$ is dense;

(2) (T, \supseteq^*) is a tree of height $\mathfrak{h}(n)$;

(3) each level T_{α} , $\alpha < \mathfrak{h}(n)$, is a maximal antichain in $(\mathcal{P}(\omega)/\mathrm{fin})^n$;

(4) every member of T has 2^{ω} immediate successors.

It follows easily that, firstly, every chain in T of length of countable cofinality has an upper bound, and secondly, every member of T has an extension in T_{α} for arbitrarily large $\alpha < \mathfrak{h}(n)$.

Using T, we will define an L-name for a map from $\mathfrak{h}(n)$ onto \mathfrak{c} . For $p \in \mathbb{L}$ and $\{\eta_0, \ldots, \eta_{n-1}\} \in [p^-]^n$, let $\overline{A}^p_{\{\eta_i: i < n\}} = \langle \operatorname{succ}_{\eta_i}(p) : i < n \rangle$.

By induction on $\alpha < \mathfrak{c}$ we will construct $(p_{\alpha}, \delta_{\alpha}, \gamma_{\alpha}) \in \mathbb{L} \times \mathfrak{h}(n) \times \mathfrak{c}$ such that the following clauses hold:

(5) if $\{\eta_0, \ldots, \eta_{n-1}\} \in [p_\alpha]^n$, then $\overline{A}^{p_\alpha}_{\{\eta_i: i < \omega\}} \in T_{\delta_\alpha};$

(6) if $\beta < \alpha$, $\delta_{\beta} = \delta_{\alpha}$, $\{\eta_0, \dots, \eta_{n-1}\} \in [p_{\alpha}^-]^n \cap [p_{\beta}^-]^n$, then $\overline{A}^{p_{\alpha}}_{\{\eta_i:i < n\}}$, $\overline{A}^{p_{\beta}}_{\{\eta_i:i < n\}}$ are incompatible in $(\mathcal{P}(\omega)/\operatorname{fin})^n$;

(7) if $p \in \mathbb{L}$, $\gamma < \mathfrak{c}$, then for some $\alpha < \mathfrak{c}$, every extension of p_{α} is compatible with p and $\gamma_{\alpha} = \gamma$.

At stage α , by a suitable bookkeeping we are given $\gamma < \mathfrak{c}$, $p \in \mathbb{L}$, and have to find δ_{α} , p_{α} such that (5)–(7) hold. For $\eta \in p^{-}$ let $B_{\eta} = \operatorname{succ}_{\eta}(p)$; for $\eta \in {}^{<\omega}\omega \setminus p^{-}$, $B_{\eta} = \omega$. Let $\langle \{\eta_{0}^{i}, \ldots, \eta_{n-1}^{i}\} : i < \omega \rangle$ list $[{}^{<\omega}\omega]^{n}$ so that every member is listed \aleph_{0} times.

Inductively we define $\langle \xi_i : i < \omega \rangle$ and $\langle B_{\eta}^{\varrho} : \eta \in {}^{<\omega}\omega, \ \varrho \in {}^{<\omega}2 \rangle$ such that

(8) $B_{\eta}^{\varrho} \in [\omega]^{\omega}$ and $\langle \xi_i : i < \omega \rangle$ is a strictly increasing sequence of ordinals below $\mathfrak{h}(n)$;

(9) $B_{\eta}^{\emptyset} = B_{\eta};$

(10) for every $i < \omega$, the map $\rho \mapsto \langle B^{\rho}_{\eta^{i}_{0}}, \ldots, B^{\rho}_{\eta^{i}_{n-1}} \rangle$ is one-to-one from i+12 into $T_{\xi_{i}}$;

(11) for every i < k and $\varrho \in {}^{k+1}2, \ B_{\eta}^{\varrho} \subseteq {}^{*} B_{\eta}^{\varrho \restriction i+1} \subseteq {}^{*} B_{\eta}^{\emptyset}$.

Suppose that at stage *i* of the construction, $\langle \xi_j : j < i \rangle$ and $\langle B_{\eta}^{\varrho} : \eta \in \{\eta_0^j, \ldots, \eta_{n-1}^j : j < i\}, \ \varrho \in {}^{\leq i}2 \rangle$ have been constructed. For $\eta \in \{\eta_0^i, \ldots, \eta_{n-1}^i\}$ and $\varrho \in {}^{\leq i}2$, if B_{η}^{ϱ} is not yet defined, there is no problem to choose it so that (8) and (11) hold. Next by the properties of *T* it is easy to find ξ_i and B_{η}^{ϱ} , for every $\varrho \in {}^{i+1}2$ and $\eta \in \{\eta_0^i, \ldots, \eta_{n-1}^i\}$, so that (8)–(11) hold up to *i*.

By the remark following the properties of T, letting $\delta_{\alpha} = \sup\{\xi_i : i < \omega\},\$ for every $\eta \in {}^{<\omega}\omega$ and $\varrho \in {}^{\omega}2$, there exists $B_{\eta}^{\varrho} \in [\omega]^{\omega}$ such that

- (12) for all $i < \omega$, $B_{\eta}^{\varrho} \subseteq^* B_{\eta}^{\varrho \uparrow i}$; (13) for all $\{\eta_0, \ldots, \eta_{n-1}\} \in [{}^{<\omega}\omega]^n, \langle B_{\eta_0}^{\varrho}, \ldots, B_{\eta_{n-1}}^{\varrho} \rangle \in T_{\delta_{\alpha}}.$

For $\rho \in {}^{\omega}2$ let $p^{\varrho} \in \mathbb{L}$ be defined by

$$\operatorname{stem}(p^{\varrho}) = \operatorname{stem}(p_{\alpha}), \quad \forall \eta \in (p^{\varrho})^{-}(\operatorname{succ}_{\eta}(p^{\varrho}) = B_{\eta}^{\varrho}).$$

It is easy to see that every extension of p^{ϱ} is compatible with p_{α} . Moreover, if $\{\eta_0, \ldots, \eta_{n-1}\} \in [(p^{\varrho})^{-}]$, then $\overline{A}_{\{\eta_i: i < n\}}^{p^{\varrho}} \in T_{\delta_{\alpha}}$ by construction. Hence we have to find $\rho \in {}^{\omega}2$ such that, letting $p_{\alpha} = p^{\rho}$, (6) holds. Note that for every $\{\eta_0, \ldots, \eta_{n-1}\} \in [{}^{<\omega}\omega]^n$ and $\beta < \alpha$ with $\delta_{\beta} = \delta_{\alpha}$ and $\{\eta_0, \ldots, \eta_{n-1}\} \in [p_{\beta}^-]^n$ there exists at most one $\varrho \in {}^{\omega}2$ such that $\{\eta_0, \ldots, \eta_{n-1}\} \in [(p^{\varrho})^{-}]^n$ and $\overline{A}_{\{\eta_i:i < n\}}^{p^{\varrho}}, \overline{A}_{\{\eta_i:i < n\}}^{p_{\beta}}$ are compatible in $(\mathcal{P}(\omega)/\text{fin})^n$. In fact, by construction and by the fact that $T_{\delta_{\alpha}}$ is an antichain, either $\overline{A}_{\{\eta_{i}:i < n\}}^{p^{\varrho}} = \overline{A}_{\{\eta_{i}:i < n\}}^{p_{\beta}}$ or they are incompatible; and moreover, for $\varrho \neq \sigma$, $\overline{A}_{\{\eta_{i}:i < n\}}^{p^{\varrho}}$, $\overline{A}_{\{\eta_{i}:i < n\}}^{p^{\sigma}}$ are incompatible. Hence, as $\aleph_0 \cdot |\alpha| < \mathfrak{c}$ we may certainly find ϱ such that, letting $p_{\alpha} = p^{\varrho}$ and $\gamma_{\alpha} = \gamma$, (5)–(7) hold.

But now it is easy to define an L-name \dot{f} for a function from $\mathfrak{h}(n)$ to \mathfrak{c} such that for every $\alpha < \mathfrak{c}, p_{\alpha} \parallel_{\mathbb{L}} \dot{f}(\delta_{\alpha}) = \gamma_{\alpha}$. By (7) we conclude $\Vdash_{\mathbb{L}} "\dot{f} : \mathfrak{h}(n)^V \to \mathfrak{c}^V \text{ is onto".}$

A similar argument works for Miller forcing. \blacksquare

Combining Theorem 2.2 with $Con(\mathfrak{h}(n+1) < \mathfrak{h}(n))$ from §1 we obtain the following:

COROLLARY 2.3. For every $n < \omega$, it is consistent that both Laver and Miller forcings collapse the continuum (strictly) below $\mathfrak{h}(n)$.

References

- [Ba] J. E. Baumgartner, Iterated forcing, in: Surveys in Set Theory, A. R. D. Mathias (ed.), London Math. Soc. Lecture Note Ser. 8, Cambridge Univ. Press, Cambridge, 1983, 1–59.
- [BaPeSi] B. Balcar, J. Pelant and P. Simon, The space of ultrafilters on N covered by nowhere dense sets, Fund. Math. 110 (1980), 11-24.
 - [Go] M. Goldstern, Tools for your forcing construction, in: Israel Math. Conf. Proc. 6, H. Judah (ed.), Bar-Han Univ., Ramat Gan, 1993, 305-360.
- [GoJoSp] M. Goldstern, M. Johnson and O. Spinas, Towers on trees, Proc. Amer. Math. Soc. 122 (1994), 557-564.
- [GoReShSp] M. Goldstern, M. Repický, S. Shelah and O. Spinas, On tree ideals, ibid. 123 (1995), 1573-1581.
 - [JuSh] H. Judah and S. Shelah, Souslin forcing, J. Symbolic Logic 53 (1988), 1188-1207.

- [Mt] A. R. D. Mathias, *Happy families*, Ann. Math. Logic 12 (1977), 59–111.
- [Shb] S. Shelah, *Proper Forcing*, Lecture Notes in Math. 940, Springer, 1982.
- [ShSp] S. Shelah and O. Spinas, The distributivity number of $\mathcal{P}(\omega)$ /fin and its square, Trans. Amer. Math. Soc., to appear.

Department of Mathematics Hebrew University Givat Ram 91904 Jerusalem, Israel E-mail: shelah@math.huji.ac.il Mathematik ETH-Zentrum 8092 Zürich, Switzerland E-mail: spinas@math.ethz.ch

Received 5 February 1998