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The distributivity numbers of finite products of P(ω)/fin

by

Saharon S h e l a h (Jerusalem) and Otmar S p i n a s (Zürich)

Abstract. Generalizing [ShSp], for every n < ω we construct a ZFC-model where
h(n), the distributivity number of r.o.(P(ω)/fin)n, is greater than h(n+ 1). This answers
an old problem of Balcar, Pelant and Simon (see [BaPeSi]). We also show that both Laver
and Miller forcings collapse the continuum to h(n) for every n < ω, hence by the first
result, consistently they collapse it below h(n).

Introduction. For λ a cardinal let h(λ) be the least cardinal κ for
which r.o.(P(ω)/fin)λ is not κ-distributive, where by (P(ω)/fin)λ we mean
the (full) λ-product of P(ω)/fin in the forcing sense; so f ∈ (P(ω)/fin)λ if
and only if f : λ→ P(ω)/fin \ {0}, and the ordering is coordinatewise.

In [ShSp] the consistency of h(2) < h (where h = h(1)) with ZFC has
been proved, which provided a (partial) answer to a question of Balcar,
Pelant and Simon in [BaPeSi]. This inequality holds in a model obtained by
forcing with a countable support iteration of length ω2 of Mathias forcing
over a model of GCH. That h = ω2 in this model is folklore, but the proof
of h(2) = ω1 is long and difficult.

The two main theorems which imply this are the following:

(a) Whenever some r ∈ V Pω2 ∩ [ω]ω (where Pω2 is the above iteration)
induces a Ramsey ultrafilter on V ∩ [ω]ω which is a P -filter in V Pω2 then
this filter is induced by some r1 ∈ V Q0 ∩ [ω]ω (where Q0 is the first iterand
of Pω2) and hence belongs to V Q0 .

(b) Whenever some r ∈ V Q0 ∩ [ω]ω induces a Ramsey ultrafilter on
V ∩ [ω]ω then this filter is Rudin–Keisler equivalent to the canonical Ramsey
filter induced by the first Mathias real, and this equivalence is witnessed by
some element of V ∩ ωω.
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The following are the key properties of Mathias forcing (M.f.) which are
essential to the proofs of these (see [ShSp] or below for precise definitions):

(1) M.f. factors into a σ-closed and a σ-centered forcing.
(2) M.f. is Suslin-proper, which means that, firstly, it is simply defin-

able, and, secondly, it permits generic conditions over every countable model
of ZF−.

(3) Every infinite subset of a Mathias real is also a Mathias real.
(4) M.f. does not change the cofinality of any cardinal from above h to

below h.
(5) M.f. has the pure decision property and it has the Laver property.

In this paper we present a forcing Qn, where 0 < n < ω, which is an
n-dimensional version of M.f. which satisfies all the analogues of the five key
properties of M.f. The following list indicates where the analogues of these
properties will be proved:

(1) ↔ Lemma 1.5,
(2) ↔ Corollary 1.12,
(3) ↔ Corollary 1.11,
(4) ↔ Corollary 1.14,
(5) ↔ Lemma 1.16 and Lemma 1.18.

In this paper we only prove these. Once this has been done the proof of
[ShSp] can be generalized in a straightforward way to prove (a′) and (b′),
analogues of (a) and (b) above, where (a′) is like (a) except that M.f. is
replaced by Qn, and (b′) is as follows:

(b′) Whenever some r ∈ V Q
n ∩ [ω]ω induces a Ramsey ultrafilter on

V ∩ [ω]ω then this filter is Rudin–Keisler equivalent to one of the n (pairwise
non-RK-equivalent) canonical Ramsey ultrafilters induced by the length-
n-sequence of Qn-generic reals, and the equivalence is witnessed by some
function from V .

Then as in [ShSp] we obtain the following:

Theorem. Suppose V |= ZFC+GCH. If P is a countable support itera-
tion of Qn of length ω2 and G is P -generic over V , then V [G] |= h(n+1) =
ω1 ∧ h(n) = ω2.

Besides the fact that the consistency of h(n+1) < h(n) was an open prob-
lem in [BaPeSi], our motivation for working on it was that in [GoReShSp]
it was shown that both Laver and Miller forcings collapse the continuum to
h. Moreover, using ideas from [GoJoSp] and [GoReShSp] it can be proved
that these forcings do not collapse c below h(ω). We do not know whether
they do collapse it to h(ω). But in §2 we show that they collapse it to h(n),
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for every n < ω. Combining this with the first result we conclude that,
for every n < ω, consistently Laver and Miller forcings collapse c strictly
below h(n).

The reader should have a copy of [ShSp] at hand. We do not repeat all the
definitions from [ShSp] here. Notions as Ramsey ultrafilter, Rudin–Keisler
ordering, Suslin-proper are explained there and references are given.

1. The forcing

Definition 1.1. Suppose that D0, . . . , Dn−1 are ultrafilters on ω. The
game G(D0, . . . , Dn−1) is defined as follows: In his mth move player I
chooses 〈A0, . . . , An−1〉 ∈ D0 × . . . × Dn−1 and player II responds playing
km ∈ Am mod n. Finally, player II wins if and only if for every i < n, {kj :
j = i mod n} ∈ Di holds.

Lemma 1.2. Suppose D0, . . . , Dn−1 are Ramsey ultrafilters which are
pairwise not RK-equivalent. Let 〈m(l) : l < ω〉 be an increasing sequence
of integers. There exists a subsequence 〈m(lj) : j < ω〉 and sets Zi ∈ Di,
i < n, such that :

(1) lj+1 − lj ≥ 2 for all j < ω,
(2) Zi ⊆

⋃
j=i mod n[m(lj),m(lj+1)) for all i < n,

(3) Zi ∩ [m(lj),m(lj+1)) has precisely one member for every i < n and
j = i mod n.

P r o o f. For j < 3, k < ω define

Ij,k =
(2n−1)(3k+j+1)−1⋃

s=(2n−1)(3k+j)

[ms,ms+1), Jj =
⋃

k<ω

Ij,k.

As the Di are Ramsey ultrafilters, there exist Xi ∈ Di such that for every
i < n:

(a) Xi ⊆ Jj for some j < 3,
(b) if Xi ⊆ Jj , then Xi ∩ Ij,k contains precisely one member, for every

k < ω.

Next we want to find Yi ∈ Di, Yi ⊆ Xi, such that for any distinct
i, i′ < n, Zi and Zi′ do not meet any adjacent intervals Ij,k.

Define h : X0 → X1 as follows. Suppose X0 ⊆ Jj . For every k < ω, h
maps the unique element of X0 ∩ Ij,k to the unique element of X1 which
belongs either to Ij,k or to one of the two intervals of the form Ij′,k′ which
are adjacent to Ij,k (note that these are I2,k−1, I1,k if j = 0, or I0,k, I2,k if
j = 1, or I1,k, I0,k+1 if j = 2). As h does not witness that D0, D1 are RK-
equivalent, there exist X ′i ∈ Di, X ′i ⊆ Xi (i < 2) such that h[X ′0] ∩X ′1 = ∅.
Note that if n = 2, we can let Yi = X ′i. Otherwise we repeat this procedure,
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starting from X ′0 and X2, and get X ′′0 and X ′2. We repeat it again, starting
from X ′1 and X ′2, and get X ′′1 and X ′′2 . If n = 3 we are done. Otherwise we
continue similarly. After finitely many steps we obtain Yi as desired.

By the definition of Ij,k it is now easy to add more elements to each Yi in
order to get Zi as in the lemma. The “worst” case is when some Yi contains
integers s < t such that (s, t) ∩ Yu = ∅ for all u < n. By construction there
is some Ij,k ⊆ (s, t). For every u < n− 1 pick

xu ∈ [m((2n− 1)(3k + j) + 2u+ 1),m((2n− 1)(3k + j) + 2u+ 2))

and add xu to Yi+u+1 mod n. The other cases are similar.

Corollary 1.3. Suppose D0, . . . , Dn−1 are Ramsey ultrafilters which
are pairwise not RK-equivalent. Then in the game G(D0, . . . , Dn−1) player
I does not have a winning strategy.

P r o o f. Suppose σ is a strategy for player I. For every m < ω, i < n let
Ami ⊆ Di be the set of all ith coordinates of moves of player I in an initial
segment of length at most 2m+ 1 of a play in which player I follows σ and
player II plays only members of m.

As the Di are p-points and each Ami is finite, there exist Xi ∈ Di such
that ∀m∀i < n∀A ∈ Ami (Xi ⊆∗ A). Moreover, we may clearly find a strictly
increasing sequence 〈m(l) : l < ω〉 such that m(0) = 0 and, for all l < ω,

∀i < n∀A ∈ Am(l)
i (Xi ⊆ A ∪m(l + 1) ∧Xi ∩ [m(l),m(l + 1)) 6= ∅).

Applying Lemma 1.2, we obtain a subsequence 〈m(lj) : j < ω〉 and sets
Zi ∈ Di.

Now let player II in his jth move play kj , where kj is the unique member
of [m(lj),m(lj+1))∩Xj mod n∩Zj mod n if it exists, or otherwise is any mem-
ber of [m(lj),m(lj+1)) ∩ Xj mod n (note that this intersection is nonempty
by the definition of m(lj+1)). Then this play is consistent with σ, moreover
Xi ∩ Zi ⊆ {kj : j = i mod n} for every i < n, and hence it is won by player
II. Consequently, σ could not have been a winning strategy for player I.

Remark. It is easy to see that in 1.2 and 1.3 the assumption that the
Di are pairwise not RK-equivalent is necessary.

Definition 1.4. Let n < ω be fixed. The forcing Q (really Qn) is defined
as follows: Its members are (w,A) ∈ [ω]<ω × [ω]ω. If 〈kj : j < ω〉 is the
increasing enumeration of A we let Ai = {kj : j = i mod n} for i < n, and
if 〈lj : j < m〉 is the increasing enumeration of w then let wi = {lj : j =
i mod n}, for i < n.

Let (w,A) ≤ (v,B) if and only if w∩ (max(v) + 1) = v, wi \ vi ⊆ Bi and
Ai ⊆ Bi, for every i < n.
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If p ∈ Q, then wp, wpi , A
p, Api have the obvious meaning. We write p ≤0 q

and say “p is a pure extension of q” if p ≤ q and wp = wq.
If D0, . . . , Dn−1 are ultrafilters on ω, let Q(D0, . . . , Dn−1) denote the

subordering of Q containing only those (w,A) ∈ Q with the property Ai ∈
Di, for every i < n.

Lemma 1.5. The forcing Q is equivalent to (P(ω)/fin)n∗Q(Ġ0, . . . Ġn−1),
where (Ġ0, . . . , Ġn−1) is the canonical name for the generic object added by
(P(ω)/fin)n, which consists of n pairwise not RK-equivalent Ramsey ultra-
filters.

P r o o f. Clearly, (P(ω)/fin)n is σ-closed and hence does not add reals.
Moreover, members 〈x0, . . . , xn−1〉 ∈ (P(ω)/fin)n with the property that if
A =

⋃{xi : i < n}, then xi = Ai for every i < n, are dense. Hence the map
(w,A) 7→ (〈A0, . . . , An−1〉, (w,A)) is a dense embedding of the respective
forcings.

That Ġ0, . . . , Ġn−1 are ((P(ω)/fin)n-forced to be) pairwise not RK-
equivalent Ramsey ultrafilters follows by an easy genericity argument and
again the fact that no new reals are added.

Notation. We will usually abbreviate the decomposition of Q from
Lemma 1.5 by writing Q = Q′ ∗ Q′′. So members of Q′ are A,B ∈ [ω]ω

ordered by Ai ⊆ Bi for all i < n; Q′′ is Q(Ġ0, . . . , Ġn−1). It is easy to see
that Q′′ is σ-centered. If G is a Q-generic filter, we denote by G′ ∗ Ġ′′ its
decomposition according to Q = Q′∗Q̇′′, and we write G′ = (G′0, . . . , G

′
n−1).

Definition 1.6. Let I ⊆ Q(D0, . . . , Dn−1) be open dense. We define a
rank function rkI on [ω]<ω as follows. Let rkI(w) = 0 if and only if (w,A) ∈ I
for some A. Let rkI(w) = α if and only if α is minimal such that there exists
A ∈ D|w| mod n with the property that for every k ∈ A, rkI(w ∪ {k}) = β
for some β < α. Let rkI(w) =∞ if for no ordinal α, rkI(w) = α.

Lemma 1.7. If D0, . . . , Dn−1 are Ramsey ultrafilters which are pairwise
not RK-equivalent and I ⊆ Q(D0, . . . , Dn−1) is open dense, then for every
w ∈ [ω]<ω, rkI(w) 6=∞.

P r o o f. Suppose we had rkI(w) = ∞ for some w. We define a strategy
σ for player I in G(D0, . . . , Dn−1) as follows: σ(∅) = 〈A0, . . . , An−1〉 ∈ D0×
. . .×Dn−1 such that for every k ∈ A|w| mod n, rkI(w∪{k}) =∞. This choice
is possible by assumption and by the fact that the Di are ultrafilters. In gen-
eral, suppose that σ has been defined for plays of length 2m such that when-
ever k0, . . . , km−1 are moves of player II which are consistent with σ, then
k0 < k1 < . . . < km−1 and for every {ki0 < . . . < kil−1} ⊆ {k0, . . . , km−1}
with ij = j mod n, j < l, we have rkI(w ∪ {ki0 , . . . , kil−1}) = ∞. Let S
be the set of all {ki0 < . . . < kil−1} ⊆ {k0, . . . , km−1} with ij = j mod n,
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j < l, and l = m mod n. As D|w|+m mod n is an ultrafilter, by induction
hypothesis, if we let

A|w|+m mod n = {k > km−1 : ∀s ∈ S(rkI(w ∪ s ∪ {k}) =∞)},
we have A|w|+m mod n ∈ D|w|+m mod n. For i 6= |w|+m mod n, choose Ai ∈
Di arbitrarily, and define

σ〈k0, . . . km−1〉 = 〈A0, . . . , An−1〉.
Since by Lemma 1.2, σ is not a winning strategy for player I, there

exist k0 < . . . < km < . . . which are moves of player II consistent with σ,
such that, letting A = {km : m < ω}, we have (w,A) ∈ Q(D0, . . . , Dn−1).
By construction we see that for every (v,B) ≤ (w,A), rkI(v) = ∞. This
contradicts the assumption that I is dense.

Definition 1.8. Let p ∈ Q. A set of the form wp ∪ {k|w| < k|w|+1
< . . .} ∈ [ω]ω is called a branch of p if and only if max(wp) < k|w| and
{kj : j = i mod n} ⊆ Api for every i < n. A set F ⊆ [ω]<ω is called a front
in p if for every w ∈ F , (w,Ap) ≤ p and for every branch B of p, B ∩m ∈ F
for some m < ω.

Lemma 1.9. Suppose D0, . . . , Dn−1 are pairwise not RK-equivalent Ram-
sey ultrafilters. Suppose p ∈ Q(D0, . . . , Dn−1) and 〈Im : m < ω〉 is a family
of open dense sets in Q(D0, . . . , Dn−1). There exists q ∈ Q(D0, . . . , Dn−1),
q ≤0 p, such that for every m, {w ∈ [ω]<ω : (w,Aq) ∈ Im ∧ (w,Aq) ≤ q} is
a front in q.

P r o o f. First we prove this in the case Im = I for all m < ω, by induction
on rkI(wp). We define a strategy σ for player I inG(D0, . . . , Dn−1) as follows.
Generally we require that

σ〈k0, . . . , kr〉i ⊆ σ〈k0, . . . , ks〉i
for every s < r and i < n, where σ〈k0, . . . , kr〉i is the ith coordinate of
σ〈k0, . . . , kr〉. We also require that σ ensures that the moves of II are in-
creasing. Define σ(∅) = 〈A0, . . . , An−1〉 such that for every k ∈ A|wp| mod n,
rkI(wp ∪ {k}) < rkI(wp).

Suppose now that σ has been defined for plays of length 2m, and let
〈k0, . . . , km−1〉 be moves of II, consistent with σ. The interesting case is
that of m− 1 = 0 mod n. Let us assume this first. By the definition of σ(∅)
and the general requirement on σ we conclude rkI(wp∪{km−1}) < rkI(wp).
By induction hypothesis there exists 〈A0, . . . , An−1〉 ∈ D0× . . .×Dn−1 such
that, letting A =

⋃
i<nAi, we have (wp, A) ≤ p and

{v ∈ [ω]<ω : (v,A) ∈ I ∧ (v,A) ≤ (wp ∪ {km−1}, A)}
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is a front in (wp ∪ {km−1}, A). We shrink A so that, letting

σ〈k0, . . . , km−1〉 = 〈A0, . . . , An−1〉,
the general requirements on σ above are satisfied.

In the case of m − 1 6= 0 mod n, define σ〈k0, . . . , km−1〉 arbitrarily, but
consistently with the rules and the general requirements above.

Let A = {ki : i < ω} be moves of player II witnessing that σ is not
a winning strategy. Let q = (wp, A). Let B = wp ∪ {l|wp| < l|wp|+1 < . . .}
be a branch of q. Hence l|wp| = kj for some j = 0 mod n. Then
wp∪{kj}∪{l|wp|+1, l|wp|+2, . . .} is a branch of (wp∪{kj}, σ〈k0, . . . , kj〉). By
the definition of σ there exists m such that (B ∩m,σ〈k0, . . . , kj〉) ∈ I. As
(B ∩m,A) ≤ (B ∩m,σ〈k0, . . . , kj〉) and I is open we are done.

For the general case where we have infinitely many Im, we make a diag-
onalization, using the first part of the present proof. Define a strategy σ
for player I satisfying the same general requirements as in the first part as
follows. Let σ(∅) = 〈A0, . . . , An−1〉 be such that, letting A =

⋃{Ai : i < n},
(wp, A) ≤0 p and it satisfies the conclusion of the lemma for I0. In general, let
σ〈k0, . . . , km−1〉 = 〈A0, . . . , An−1〉 be such that, letting A =

⋃{Ai : i < n},
for every v ⊆ {ki : i < m} and j ≤ m, (wp ∪ v,A) ≤0 (wp ∪ v,Ap) and it
satisfies the conclusion of the lemma for Ij (in fact we do not have to consider
all such v here, but it does not hurt doing it). Then if A = {ki : i < ω} are
moves of player II witnessing that σ is not a winning strategy for I, similarly
to the first part it can be verified that q = (wp, A) is as desired.

Corollary 1.10. Let D0, . . . , Dn−1 be pairwise not RK-equivalent Ram-
sey ultrafilters. Suppose A ∈ [ω]ω is such that for every i < n and X ∈ Di,
Ai ⊆∗ X. Then A is Q(D0, . . . , Dn−1)-generic over V .

P r o o f. Let I ⊆ Q(D0, . . . , Dn−1) be open dense. Let w ∈ [ω]<ω. It is
easy to see that the set

Iw = {(v,B) ∈ Q(D0, . . . , Dn−1) :

(w ∪ [v \min{k ∈ v|w| mod n : max(w)}], B) ∈ I}
is open dense. If we apply Lemma 1.9 to p = (∅, ω, . . . , ω) and the countably
many open dense sets Iw where w ∈ [ω]<ω, we obtain q = (∅, B). Let
〈ai : i < ω〉 be the increasing enumeration of A. Choose m large enough so
that for each i < n, Ai \ {aj : j < mn} ⊆ Bi. Let w = {aj : j < mn}. By
construction, there exists v ⊆ A∩B \ (amn−1 +1) such that (v,B) ∈ Iw and
w ∪ v = A ∩ k for some k < ω. Hence (w ∪ v,B) ∈ I, and so the filter on
Q(D0, . . . , Dn−1) determined by A intersects I. As I was arbitrary, we are
done.
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An immediate consequence of Lemma 1.5 and Corollary 1.10 is the fol-
lowing.

Corollary 1.11. Suppose A ∈ [ω]ω is Q-generic over V , and B ∈ [ω]ω

is such that Bi ⊆ Ai for every i < n. Then B is Q-generic over V as well.

Recall that a forcing is called Suslin if its underlying set is an analytic
set of reals and its order and incompatibility relations are analytic subsets
of the plane. A forcing P is called Suslin-proper if it is Suslin and for every
countable transitive model (N,∈) of ZF− which contains the real coding P
and for every p ∈ P ∩ N , there exists an (N,P )-generic condition extend-
ing p. See [JuSh] for the theory of Suslin-proper forcing and [ShSp] for its
properties which are relevant here.

Corollary 1.12. The forcing Q is Suslin-proper.

P r o o f. It is trivial to note that Q is Suslin, without parameter in its
definition. Let (N,∈) be a countable model of ZFC−, and let p ∈ Q ∩ N .
Without loss of generality, |wp| = 0 mod n. Let A ∈ [ω]ω ∩ V be Q-generic
over N such that p belongs to its generic filter. Hence wpi ⊆ Ai ⊆ wpi ∪
(Api \ (max(wp) + 1)) for all i < n. But if q = (wp, A), then clearly q ≤0 p
and q is (N,Q)-generic, as every B ∈ [ω]ω which is Q-generic over V and
contains q in its generic filter is a subset of A and hence Q∩N -generic over
N by Corollary 1.11 applied in N .

The following is an immediate consequence of Corollary 1.12.

Corollary 1.13. If p ∈ Q and 〈τn : n < ω〉 are Q-names for members
of V , there exist q ∈ Q, q ≤0 p and 〈Xn : n < ω〉 such that Xn ∈ V ∩ [V ]ω

and q ‖−Q ∀n(τn ∈ Xn).

Corollary 1.14. Forcing with Q does not change the cofinality of any
cardinal λ with cf(λ) ≥ h(n) to a cardinal below h(n).

P r o o f. Suppose there were a cardinal κ < h(n) and a Q-name ḟ for a
cofinal function from κ to λ. Working in V and using Corollary 1.13, for
every α < κ we may construct a maximal antichain 〈pαβ : β < c〉 in Q

and 〈Xα
β : β < c〉 such that for all β < c, wp

α
β = ∅, Xα

β ∈ [V ]ω ∩ V and
pαβ ‖−Q ḟ(α) ∈ Xα

β .

Then clearly Aα = 〈〈Ap
α
β

i : i < n〉 : β < c〉 is a maximal antichain in
(P(ω)/fin)n. By κ < h(n), 〈Aα : α < κ〉 has a refinement, say A. Choose
〈Ai : i < n〉 ∈ A. Let A =

⋃{Ai : i < n}. We may assume that the Ai also
have the meaning from Definition 1.4 with respect to A. For each α < κ

there exists β(α) such that 〈Ai : i < n〉 ≤(P(ω)/fin)n 〈A
pαβ(α)

i : i < n〉. Then
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clearly

(∅, A) ‖−Q range(ḟ) ⊆
⋃
{Xα

β(α) : α < κ}.
But as cf(λ) ≥ h(n) and κ < h(n), we have a contradiction.

Lemma 1.15. Suppose D0, . . . , Dn−1 are pairwise not RK-equivalent
Ramsey ultrafilters. Then Q(D0, . . . , Dn−1) has the pure decision property
(for finite disjunctions), i.e. given a Q(D0, . . . , Dn−1)-name τ for a member
of {0, 1} and p ∈ Q(D0, . . . , Dn−1), there exist q ∈ Q(D0, . . . , Dn−1) and
i ∈ {0, 1} such that q ≤0 p and q ‖−Q(D0,...,Dn−1) τ = i.

P r o o f. The set I = {r ∈ Q(D0, . . . , Dn−1) : r decides τ} is open dense.
By a similar induction on rkI as in the proof of Lemma 1.9 we may find
q ∈ Q(D0, . . . , Dn−1), q ≤0 p, such that for every q′ ≤ q, if q′ decides τ
then (wq

′
, Aq) decides τ . Now again by induction on rkI we may assume

that for every k ∈ Aq|wq| mod n, (wq ∪ {k}, Aq) satisfies the conclusion of the

lemma, and hence by the construction of q, (wq ∪ {k}, Aq) decides τ . But
then clearly a pure extension of q decides τ , and hence q does.

Lemma 1.16. Lemma 1.15 holds if Q(D0, . . . , Dn−1) is replaced by Q.

P r o o f. Suppose p ∈ Q, τ is a Q-name and p ‖−Q τ ∈ {0, 1}. As

Ap ‖−Q′ “p ∈ Q(Ġ0, . . . , Ġn−1)”, by Lemma 1.15 there exists a Q′-name Ȧ
such that

Ap ‖−Q′ “(wp, Ȧ) ∈ Q′′ ∧ (wp, Ȧ) ≤ p ∧ (wp, Ȧ) decides τ”.

As Q′ does not add reals there exist A1, A2 ∈ [ω]ω ∩ V such that A1 ⊆ Ap

and A1 ‖−Q′ Ȧ = A2. Letting B = A1 ∩ A2 we conclude (wp, B) ∈ Q,
(wp, B) ≤0 p and (wp, B) decides τ .

The rest of this section is devoted to the proof that if the forcing Q is
iterated with countable supports, then in the resulting model cov(M) = ω1,
where M is the ideal of meagre subsets of the real line, and cov(M) is the
least number of meagre sets needed to cover the real line. Hence for every
n < ω, we obtain the consistency of cov(M) < h(n).

Definition 1.17. A forcing P is said to have the Laver property if for
every P -name ḟ for a member of ωω, g ∈ ωω ∩ V and p ∈ P , if

p ‖−P ∀n < ω(ḟ(n) < g(n)),

then there exist H : ω → [ω]<ω and q ∈ P such that H ∈ V , ∀n < ω
(|H(n)| ≤ 2n), q ≤ p and

q ‖−P ∀n < ω(ḟ(n) ∈ H(n)).

It is not difficult to see that a forcing with the Laver property does not
add Cohen reals. Moreover, by [Shb, 2.12, p. 207] the Laver property is
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preserved by a countable support iteration of proper forcings. See also [Go,
6.33, p. 349] for a more accessible proof.

Lemma 1.18. The forcing Q has the Laver property.

P r o o f. Suppose ḟ is a Q-name for a member of ωω and g ∈ ωω∩V such
that p ‖−Q ∀n < ω(ḟ(n) < g(n)). We shall define q ≤0 p and 〈H(i) : i < ω〉
such that |H(i)| ≤ 2i and q ‖−Q ∀i(ḟ(i) ∈ H(i)). We may assume |wp| =
0 mod n and min(Ap) > max(wp).

By Lemma 1.15 choose q0 ≤0 p and K0 such that q0 ‖−Q ḟ(0) = K0,
and let H(0) = {K0}.

Suppose qi ≤0 p, 〈H(j) : j ≤ i〉 have been constructed and let ai be the
set of the first i + 1 members of Aqi . Let 〈vk : k < k∗〉 list all subsets v
of ai such that vl ⊆ (ai)l for every l < n (see Definition 1.4). Then clearly
k∗ ≤ 2i+1. By Lemma 1.15 we may shrink Aqi k∗ times so as to obtain
A and 〈Ki+1

k : k < k∗〉 such that for every k < k∗, (wqi ∪ vk, A) ‖−Q
ḟ(i + 1) = Ki+1

k . Without loss of generality, min(A) > max(ai). Let qi+1

be defined by wqi+1 = wp and Aqi+1 = ai ∪ A′, where A′ is A without
its first (i + 1) mod n members. Let H(i + 1) = {Ki+1

k : k < k∗}. Then
qi+1 ‖−Q ḟ(i + 1) ∈ H(i + 1). Finally, let q be defined by wq = wp and
Aq =

⋃{ai : i < ω}. Then q and 〈H(i) : i < ω〉 are as desired.

As explained above, from Lemma 1.18 and Shelah’s preservation theorem
it follows that if P is a countable support iteration of Q and G is P -generic
over V , then in V [G] no real is Cohen over V ; equivalently, the meagre sets
in V cover all the reals of V [G]. Now starting with V satisfying CH we
obtain the following theorem.

Theorem 1.19. For every n < ω, the inequality cov(M) < h(n) is con-
sistent with ZFC.

2. Both Laver and Miller forcings collapse the continuum
below each h(n)

Definition 2.1. Let p ⊆ <ωω be a tree. For any η ∈ p let succη(p) =
{n < ω : η∧〈n〉 ∈ p}. We say that p has a stem, and denote it stem(p), if
there is η ∈ p such that |succη(p)| ≥ 2 and for every ν ⊂ η, |succν(p)| = 1.
Clearly, stem(p) is uniquely determined, if it exists. If p has a stem, by p− we
denote the set {η ∈ p : stem(p) ⊆ η}. We say that p is a Laver tree if p has a
stem and for every η ∈ p−, succη(p) is infinite. We say that p is superperfect
if for every η ∈ p there exists ν ∈ p with η ⊆ ν and |succν(p)| = ω. We
denote by L the set of all Laver trees, ordered by reverse inclusion, and by
M the set of all superperfect trees, ordered by reverse inclusion. L, M is
usually called Laver , Miller forcing , respectively.
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Theorem 2.2. Suppose that G is L-generic or M-generic over V . Then
in V [G], |cV | = |h(n)|V .

P r o o f. Completely similarly to [BaPeSi] for the case n = 1, a base tree
T for (P(ω)/fin)n of height h(n) can be constructed, i.e.

(1) T ⊆ (P(ω)/fin)n is dense;
(2) (T,⊇∗) is a tree of height h(n);
(3) each level Tα, α < h(n), is a maximal antichain in (P(ω)/fin)n;
(4) every member of T has 2ω immediate successors.

It follows easily that, firstly, every chain in T of length of countable
cofinality has an upper bound, and secondly, every member of T has an
extension in Tα for arbitrarily large α < h(n).

Using T , we will define an L-name for a map from h(n) onto c. For p ∈ L
and {η0, . . . , ηn−1} ∈ [p−]n, let Ap{ηi:i<n} = 〈succηi(p) : i < n〉.

By induction on α < c we will construct (pα, δα, γα) ∈ L× h(n)× c such
that the following clauses hold:

(5) if {η0, . . . , ηn−1} ∈ [pα]n, then Apα{ηi:i<ω} ∈ Tδα ;

(6) if β < α, δβ = δα, {η0, . . . , ηn−1} ∈ [p−α ]n ∩ [p−β ]n, then Apα{ηi:i<n},

A
pβ
{ηi:i<n} are incompatible in (P(ω)/fin)n;

(7) if p ∈ L, γ < c, then for some α < c, every extension of pα is
compatible with p and γα = γ.

At stage α, by a suitable bookkeeping we are given γ < c, p ∈ L, and
have to find δα, pα such that (5)–(7) hold. For η ∈ p− let Bη = succη(p); for
η ∈ <ωω \ p−, Bη = ω. Let 〈{ηi0, . . . , ηin−1} : i < ω〉 list [<ωω]n so that every
member is listed ℵ0 times.

Inductively we define 〈ξi : i < ω〉 and 〈B%η : η ∈ <ωω, % ∈ <ω2〉 such that

(8) B%η ∈ [ω]ω and 〈ξi : i < ω〉 is a strictly increasing sequence of
ordinals below h(n);

(9) B∅η = Bη;
(10) for every i < ω, the map % 7→ 〈B%

ηi0
, . . . , B%

ηin−1
〉 is one-to-one from

i+12 into Tξi ;
(11) for every i < k and % ∈ k+12, B%η ⊆∗ B%¹i+1

η ⊆∗ B∅η .

Suppose that at stage i of the construction, 〈ξj : j < i〉 and 〈B%η :
η ∈ {ηj0, . . . , ηjn−1 : j < i}, % ∈ ≤i2〉 have been constructed. For η ∈
{ηi0, . . . , ηin−1} and % ∈ ≤i2, if B%η is not yet defined, there is no problem
to choose it so that (8) and (11) hold. Next by the properties of T it is
easy to find ξi and B%η , for every % ∈ i+12 and η ∈ {ηi0, . . . , ηin−1}, so that
(8)–(11) hold up to i.
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By the remark following the properties of T , letting δα = sup{ξi : i < ω},
for every η ∈ <ωω and % ∈ ω2, there exists B%η ∈ [ω]ω such that

(12) for all i < ω, B%η ⊆∗ B%¹iη ;
(13) for all {η0, . . . , ηn−1} ∈ [<ωω]n, 〈B%η0

, . . . , B%ηn−1
〉 ∈ Tδα .

For % ∈ ω2 let p% ∈ L be defined by

stem(p%) = stem(pα), ∀η ∈ (p%)−(succη(p%) = B%η).

It is easy to see that every extension of p% is compatible with pα. Moreover,
if {η0, . . . , ηn−1} ∈ [(p%)−], then Ap

%

{ηi:i<n} ∈ Tδα by construction. Hence we
have to find % ∈ ω2 such that, letting pα = p%, (6) holds. Note that for every
{η0, . . . , ηn−1} ∈ [<ωω]n and β < α with δβ = δα and {η0, . . . , ηn−1} ∈ [p−β ]n

there exists at most one % ∈ ω2 such that {η0, . . . , ηn−1} ∈ [(p%)−]n and
Ap

%

{ηi:i<n}, A
pβ
{ηi:i<n} are compatible in (P(ω)/fin)n. In fact, by construction

and by the fact that Tδα is an antichain, either Ap
%

{ηi:i<n} = A
pβ
{ηi:i<n} or

they are incompatible; and moreover, for % 6= σ, Ap
%

{ηi:i<n}, A
pσ

{ηi:i<n} are
incompatible. Hence, as ℵ0 · |α| < c we may certainly find % such that,
letting pα = p% and γα = γ, (5)–(7) hold.

But now it is easy to define an L-name ḟ for a function from h(n) to
c such that for every α < c, pα ‖−L ḟ(δα) = γα. By (7) we conclude
‖−L “ḟ : h(n)V → cV is onto”.

A similar argument works for Miller forcing.

Combining Theorem 2.2 with Con(h(n + 1) < h(n)) from §1 we obtain
the following:

Corollary 2.3. For every n < ω, it is consistent that both Laver and
Miller forcings collapse the continuum (strictly) below h(n).
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