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Decomposition of group-valued measures on orthoalgebras

by

Paolo D e L u c i a (Napoli) and Pedro M o r a l e s (Sherbrooke, Qué.)

Abstract. We present a general decomposition theorem for a positive inner regular
finitely additive measure on an orthoalgebra L with values in an ordered topological group
G, not necessarily commutative. In the case where L is a Boolean algebra, we establish
the uniqueness of such a decomposition. With mild extra hypotheses on G, we extend
this Boolean decomposition, preserving the uniqueness, to the case where the measure is
order bounded instead of being positive. This last result generalizes A. D. Aleksandrov’s
classical decomposition theorem.

1. Introduction. The initial impetus for the study of measures on non-
Boolean orthostructures such as orthomodular lattices and orthomodular
posets came from the logico-probabilistic foundations of quantum mechan-
ics (see [3], [6], [18] and [24]). But the non-existence of a tensor product for
orthomodular lattices or orthomodular posets (see [16, p. 264])—necessary
to describe coupled physical entities—has led to the introduction of orthoal-
gebras, a more general orthostructure a large class of which—called unital
orthoalgebras—admits a tensor product (see [11]). Orthoalgebras are appar-
ently one of the simplest and most natural orthostructures that can carry
orthogonally additive measures, and today they provide a mathematical ba-
sis for the rapidly developing field of non-commutative measure theory (see
[9], [10], [12]–[14], [20]–[22]).

In this paper we present a general decomposition theorem for a positive
inner regular measure on an orthoalgebra L with values in an ordered Haus-
dorff topological group G not necessarily commutative. The generality of the
context prevents of course the uniqueness of our decomposition. We show
that it holds when L is a Boolean algebra, getting what we call the First
Decomposition Theorem. Moreover, adding some natural hypotheses on G
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we can eliminate, in the Boolean case, the positivity restriction and give
a unique decomposition of an order bounded inner regular measure on L
with values in G. This Second Decomposition Theorem generalizes the first
classical Aleksandrov Decomposition Theorem [2, Theorem 3, pp. 618–619],
and allows us, upon imposing a mild “topological” condition, to derive a
Yosida–Hewitt decomposition of a G-valued order bounded inner regular
finitely additive set function (see [25, Theorem 1.24]).

The paper is organized as follows. In Section 2, after the introduction
of some pertinent subsets of GL, we establish our general decomposition
theorem and we deduce the First Decomposition Theorem. Section 3 defines
the notion of topological lattice group satisfying the condition (M) following
Jameson [15] and formulates the Second Decomposition Theorem. Finally, in
Section 4 we present the Yosida–Hewitt decomposition of an order bounded
inner regular finitely additive set function.

2. Decomposition of a positive measure. For the basic theory of
orthoalgebras needed in this work, the reader is referred to [12], [20] and
[22].

The terminology and notation on partially ordered sets, ordered groups
and ordered topological groups collected in Section 2 of [7] will be used
implicitly in the remainder of this paper. In order to complete the list of
ordered topological groups given there, we indicate the non-commutative
examples 4.6(4), 4.6(5) and 4.6(7) of [20].

The unexplained terminology and properties concerning lattice groups—
called also l-groups—can be found in [4] or [5].

Throughout this section, L = (L,⊥,⊕, 0, 1) is an orthoalgebra and G =
(G, ·, e,≤, τ) is an ordered Hausdorff topological group.

A subset K of L is called a δ-paving in L if the following conditions are
satisfied:

(a) 0 ∈ K.
(b) Every finite subset of K has a supremum in (L,≤) which belongs

to K.
(c) Every countable subset of K has an infimum in (L,≤) which belongs

to K.

Examples 2.1. (1) Let Ω be a non-empty set, let L = 2Ω be the Boolean
algebra of all subsets of Ω and let K be a δ-ring of subsets of Ω. Then K is
a δ-paving in L.

(2) For a non-empty set X, let (X,F) be a space in the sense of Alek-
sandrov [1, p. 314] and let L be the Boolean subalgebra of 2X generated by
F . Then F is a δ-paving in L.
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(3) Let τ be the usual topology on R, let X = [0, 1] be a subspace of
(R, τ), let L = 2X and let K be the set of all Souslin sets in X. Then K is
a δ-paving in L.

(4) Let (X, τ) be a Hausdorff topological space, let L = 2X and let K
be the set of all compact subsets of X. Then K is a δ-paving in L.

(5) Let (X, τ) be a locally compact Hausdorff space, let L = 2X and let
K be the set of all compact Gδ-sets in X. Then K is a δ-paving in L.

(6) Let H be an infinite-dimensional Hilbert space over C, let A be a
von Neumann algebra acting on H, let P (A) be the orthomodular lattice of
all projections in A, let L be the orthoalgebra determined by P (A) and let
K = {e ∈ L : e has a finite-dimensional range}. Then K is a δ-paving in L.

For every a ∈ L, let Ga = (G, ·, e) and let GL be the direct product of
the family (Ga)a∈L. Then GL ordered by the canonical order ≤ induced by
≤ is an ordered group.

An element µ of GL is said to be a measure on L (with values in G) if
a, b ∈ G and a ⊥ b imply µ(a⊕b) = µ(a)·µ(b). For example, if we denote by e
the identity element of the group GL, then e is a measure on L. Henceforth,
the set of all measures on L (with values in G) will be denoted by a(L,G).

Let µ be an element of a(L,G). Then the following properties are imme-
diate:

(i) µ(a) · µ(b) = µ(b) · µ(a) whenever a, b ∈ L and a ⊥ b.
(ii) µ(0) = e.

(iii) If a, b ∈ G and a ≤ b, then µ(b− a) = µ(b) · µ(a)−1 = µ(a)−1 · µ(b).
(iv) If n ∈ N \ {0, 1} and (ai)0≤i≤n is a finite orthogonal sequence in

L \ {0}, then µ(
⊕n

i=0 ai) =
∏n
i=0 µ(ai).

Let µ be an element of GL such that µ(0) = e. We say that

(a) µ is positive if µ ≥ e.
(b) µ is countably additive if, for every orthogonal sequence (ai)i∈N

in L such that
⊕

i∈N ai exists in (L,≤), we have

µ
(⊕

i∈N
ai

)
= τ - lim

n→∞

n∏

i=0

µ(ai).

(c) µ is inner regular if there exists a δ-paving K in L with the following
property: For every c ∈ L and every U ∈ N (e) there exists b ∈ K such that
b ≤ c and µ(d) ∈ U whenever d ∈ L and d ≤ c − b. Sometimes, for more
precision, we say that µ is K-inner regular.

(v) Let µ be a positive element of a(L,G). If a, b ∈ L and a ≤ b, then
µ(a) ≤ µ(b).
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If K is a δ-paving in L, we denote by raK(L,G) the set of all K-inner
regular measures on L (with values in G).

Lemma 2.2. Let K be a δ-paving in L and let µ1, µ2 ∈ raK(L,G). Then

(a) µ−1
1 ∈ raK(L,G).

(b) µ1 · µ2 ∈ raK(L,G).

P r o o f. The statement (a) is trivial. It is also clear that µ = µ1 ·µ2 is an
element of a(L,G). Let c ∈ L and let U ∈ N (e). We can choose V ∈ N (e)
such that V · V ⊆ U . Then there exist b1, b2 ∈ K such that bi ≤ c and
µi(d) ∈ V whenever d ∈ L and d ≤ c−bi for i = 1, 2. Since K is a δ-paving in
L, it follows that b1∨b2 exists in (L,≤) and belongs to K. Put b = b1∨b2. Let
d ∈ L be such that d ≤ c− b. Since bi ≤ b ≤ c (i = 1, 2), it follows from [20,
property iv, p. 196] that c−b ≤ c−bi. Then µ(d) = µ1(d)·µ2(d) ∈ V ·V ⊆ U .

Examples 2.3. (1) Let A = (A,+, ·, 0) be the ring with unity 1 of all
2×2 matrices with coefficients in R and let ∗ be the involution on A given by
the transposition. Then (A, ∗) is a Baer ∗-ring such that the set P (A) of all

projections in A consists of 0, 1 and all matrices of the form
(
x y

y 1−x
)

with

x, y ∈ R and x2 + y2 = x. Since P (A) is an orthomodular lattice (see [19] or
[20]), it determines an orthoalgebra L. Let G be the usual ordered additive

topological group of real numbers. For f =
(
x y

y 1−x
)

in L, put µ(f) = x.

Then µ is a positive element of a(L,G).
(2) Let X be a Polish space, let (xn)n∈N be a sequence of elements of X,

let L = B(X) be the σ-complete Boolean subalgebra of 2X of Borel sets in X
and let G be the additive lattice topological group derived from the Banach
lattice (c0(N),≤, ‖ · ‖∞). For every B ∈ L, put µ(B) = (2−nδxn(B))n∈N
where δxn denotes the Dirac measure on L concentrated at xn. Then µ is a
positive countably additive element of raK(L,G), where K is the set of all
compact subsets of X.

(3) Let (C, V, 〈·, ·〉) be the quadratic space of [20, Example 4, p. 200] and
let LS(V ) = {M : M is a linear subspace of V and V = M + M⊥}. Then
(LS(V ),⊆,⊥, 0, V ) is an orthomodular poset (see [8] or [20]). Let L be the
orthoalgebra derived from LS(V ) and let G be the usual ordered additive
topological group of real numbers. Let f be a fixed vector of V . Then, for
every M ∈ L, there exists a unique decomposition f = fM + fM⊥ with
fM ∈ M and fM⊥ ∈ M⊥. For every M ∈ L, put µ(M) =

T
R |fM (x)|2 dx.

Then µ is a positive element of a(L,G) which is not countably additive (see
[8]).

(4) Let H be an infinite-dimensional Hilbert space over C, let A = B(H)
be the von Neumann algebra acting on H of all bounded linear operators in
H, let λ be a positive linear form on A, let L be the orthoalgebra determined
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by P (A) and let G be the usual ordered multiplicative topological group of
non-zero real numbers. For f ∈ L, put µ(f) = exp(λ(f)). Then µ is a positive
element of a(L,G). Moreover, if λ is normal, then µ is countably additive
and K-inner regular, where K = {f ∈ L : f has a finite-dimensional range}
(see [13]).

(5) Let L = 2R and let I = R+. For every i ∈ I, let Gi be the additive
group of integers ordered by P = N and endowed with the discrete topology
τi on Z, let [i] denote the integer part of i and let J(i) be the order interval
[−[i], [i]] in (Gi,≤N). Let G be the direct product of the groups Gi, let ≤ be
the canonical order on G induced by ≤N and let τ be the product topology
of the topologies τi. Then G = (ZI ,+, 0,≤, τ) is an ordered Hausdorff topo-
logical group. For every A ∈ L, put µ(A) = (card(A ∩ J(i)))i∈I . Then µ is
a positive countably additive element of a(L,G).

Let µ be a positive element of a(L,G) and let K be a δ-paving in L. We
say that

(a) µ is K-smooth if, for every subset D of K \ {0} such that D ↓ 0 in
(K \ {0},≤), we have τ -limD µ(d) = e.

(b) µ is K-singular if µ is K-inner regular and, for every positive K-
smooth element γ of raK(L,G) such that γ ≤ µ, we have γ = e.

For example, e is the only positive element of raK(L,G) which is K-
smooth and K-singular. The positive measure of Example 2.3(2) is K-
smooth. Also, if K is any δ-ring of subsets of R, then the positive measure
of Example 2.3(5) is K-smooth.

It is clear that if K is a δ-paving in L and µ1, µ2 are two positive elements
of a(L,G) which are K-smooth, then µ1 · µ2 is also K-smooth.

Lemma 2.4. Assume that K is a δ-paving in L and G is locally order
convex. Let γ1 and γ2 be two positive elements of a(L,G) such that γ1 ≤ γ2.
If γ2 is K-inner regular , then so is γ1.

P r o o f. Let c ∈ L and let U ∈ N (e). Since G is locally order convex, it
follows from [7, Lemma 2.3] that there exists V ∈ N (e) such that e ≤ x ≤ y
and y ∈ V imply x ∈ U . By the K-inner regularity of γ2, there exists b ∈ K
such that b ≤ c and γ2(d) ∈ V whenever d ∈ L and d ≤ c − b. Since γ1 is
positive and γ1 ≤ γ2, it follows that γ1(d) ∈ U whenever d ∈ L and d ≤ c−b.

Lemma 2.5. Assume that K is a δ-paving in L and G is locally order
convex. Let γ1 and γ2 be two positive elements of a(L,G) such that γ1 ≤ γ2.
If γ2 is K-smooth, then so is γ1.

P r o o f. Let D be a subset of K \{0} such that D ↓ 0 in (K \{0},≤) and
let U ∈ N (e). Then there exists V ∈ N (e) such that e ≤ x ≤ y and y ∈ V
imply x ∈ U . Since γ2 is K-smooth, there exists d0 ∈ D such that d ∈ D



114 P. De Lucia and P. Morales

and d ≤ d0 imply γ2(d) ∈ V . Then the positivity of γ1 and the inequality
γ1 ≤ γ2 imply γ1(d) ∈ U whenever d ∈ D and d ≤ d0. So τ -limD γ1(d) = e.

Theorem 2.6. Assume that L is a Boolean algebra and G is locally order
convex. Let K be a δ-paving in L and let µ be a positive K-smooth element
of raK(L,G). Then µ is countably additive.

P r o o f. It suffices to show that τ -limn→∞ µ(cn) = e for every decreasing
sequence (cn)n∈N of elements of L such that

∧
n∈N cn = 0. Let U ∈ N (e).

Choose V ∈ N (e) such that V · V ⊆ U . Then there exists W ∈ N (e)
such that e ≤ x ≤ y and y ∈ W imply x ∈ V . Moreover, there exists a
sequence (Wi)i∈N of elements of N (e) such that W0 · W1 · . . . · Wn ⊆ W
for all n ∈ N. Using the K-inner regularity of µ and the assumption that
L is a Boolean algebra, we can construct inductively a sequence (bi)i∈N of
elements of K such that bi ≤ ci ∧ bi−1 and µ(ci ∧ bi−1 ∧ b′i) ∈ Wi for all
i ∈ N, where b−1 = 1. We may suppose that bi 6= 0 for all i ∈ N. Then
D = {bi : i ∈ N} is a downwards filtering subset of K \ {0} such that D ↓ 0
in (K \ {0},≤). By the K-smoothness of µ, we have τ -limi→∞ µ(bi) = e.
Since cn − bn = cn ∧ b′n = cn ∧ (

∨n
i=0(bi−1 ∧ b′i)) =

∨n
i=0(cn ∧ bi−1 ∧ b′i) ≤∨n

i=0(ci ∧ bi−1 ∧ b′i), (ci ∧ bi−1 ∧ b′i)i∈N is an orthogonal sequence in L and
µ is a positive element of a(L,G), it follows from properties (iii)–(v) that
e ≤ µ(bn)−1 · µ(cn) ≤∏n

i=0 µ(ai ∧ bi−1 ∧ b′i) ∈W0 ·W1 · . . . ·Wn ⊆W for all
n ∈ N, and therefore µ(bn)−1 · µ(cn) ∈ V for all n ∈ N.

Choose n0 ∈ N such that n ∈ N and n ≥ n0 imply µ(bn) ∈ V . Then
µ(cn) = µ(bn) · (µ(bn)−1 · µ(cn)) ∈ V · V ⊆ U whenever n ≥ n0.

Theorem 2.7. Assume that K is a δ-paving in L and G is quasi-order
complete, locally order convex and has the property (oc). Then, for every
positive element µ of raK(L,G), there exist two positive elements ξ and η of
raK(L,G) with the following properties:

(a) µ = ξ · η.
(b) ξ is K-smooth.
(c) η is K-singular.

P r o o f. Set Γ = {γ ∈ raK(L,G) : γ is positive, K-smooth and γ ≤ µ}.
Since e ∈ Γ , Γ is non-empty. Let Γ0 be a totally ordered subset of (Γ,≤).

Let c ∈ L. Then D(c) = {γ(c) : γ ∈ Γ0} is a majorized, upwards filter-
ing subset of G. Since G is quasi-order complete,

∨
D(c) exists in G. Write

γ0(c) =
∨
D(c) for all c ∈ L. Clearly, γ0 is a positive element of GL such

that γ0 ≤ µ and, in particular, γ0(0) = e. Since (Γ0,≥) is a directed set,
(γ(c))γ∈(Γ0,≥) is an increasing net in G such that

∨
γ∈Γ0

γ(c) = γ0(c) for all
c ∈ L. Since G has the property (oc), it follows from [7, Lemma 3.7] that

(1) γ0(c) = τ - lim
Γ0

γ(c) for all c ∈ L.
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We show that γ0 is a measure on L. Let a, b ∈ L be such that a ⊥ b. By
(1) we have

γ0(a⊕ b) = τ - lim
Γ0

γ(a⊕ b) = τ - lim
Γ0

γ(a) · γ(b)

= τ - lim
Γ0

γ(a) · τ - lim
Γ0

γ(b) = γ0(a) · γ0(b).

In particular, γ0(1) = γ0(c⊕ c′) = γ0(c) · γ0(c′) for all c ∈ L.
We show that

(2) γ0(c) = τ - lim
Γ0

γ(c) uniformly for c ∈ L.

Let U ∈ N (e). Since G is locally order convex, there exists a symmet-
ric order convex neighbourhood V of e contained in U . By (1), γ0(1) =
τ - limΓ0 γ(1). So there exists γ1 ∈ Γ0 such that γ ∈ Γ0 and γ ≥ γ1 im-
ply γ(1) ∈ V · γ0(1) and therefore γ0(1) · γ(1)−1 ∈ V . Let c ∈ L. Since
γ(c) ≤ γ0(c) and γ(c′) ≤ γ0(c′) for all γ ∈ Γ0, we have e ≤ γ0(c) · γ(c)−1 =
γ0(1) · γ0(c′)−1 · γ(c′) · γ(1)−1 ≤ γ0(1) · γ(1)−1 for all γ ∈ Γ0. Then γ ∈ Γ0

and γ ≥ γ1 imply γ0(c) · γ(c)−1 ∈ V and therefore γ(c) ∈ U · γ0(c) for all
c ∈ L.

We show that γ0 is K-inner regular. Let c ∈ L and let U ∈ N (e). Choose
V ∈ N (e) such that V −1 · V ⊆ U . By (2) there exists γ ∈ Γ0 such that
γ(d) ∈ V · γ0(d) for all d ∈ L. Since γ is K-inner regular, there exists
b ∈ K such that b ≤ c and γ(d) ∈ V whenever d ∈ L and d ≤ c − b. Then
γ0(d) = (γ0(d) · γ(d)−1) · γ(d) ∈ V −1 · V ⊆ U whenever d ∈ L and d ≤ c− b.

To show that γ0 is an upper bound of Γ0 in (Γ,≤), it remains to show
that γ0 is K-smooth. Let D be a downwards filtering subset of K \ {0} such
that D ↓ 0 in (K\{0},≤). Let U ∈ N (e). Choose an element V of N (e) such
that V −1 ·V ⊆ U . Then, by (2), there exists γ ∈ Γ0 such that γ(d) ∈ V ·γ0(d)
for all d ∈ L. Since γ is K-smooth, there exists d0 ∈ D such that d ∈ D and
d ≤ d0 imply γ(d) ∈ V . Then γ0(d) = (γ0(d) · γ(d)−1) · γ(d) ∈ V −1 · V ⊆ U
whenever d ∈ L and d ≤ d0.

By the Zorn Lemma, the partially ordered set (Γ,≤) contains a maximal
element ξ. Then ξ is a positive K-smooth element of raK(L,G) such that
ξ ≤ µ. Let η = ξ−1 · µ. Clearly, η is a positive element of GL and µ = ξ · η.
By Lemma 2.2, η is an element of raK(L,G). It remains to show that η is
K-singular. Let γ be a positive K-smooth element of raK(L,G) such that
γ ≤ η. Then ξ · γ ≤ µ and, by Lemma 2.2, ξ · γ is a positive element of
raK(L,G) which is K-smooth. Then ξ · γ ∈ Γ , and the maximality of ξ
implies that ξ · γ = ξ, and therefore γ = e.

Remark 2.8. In the same way we can show that η1 = µ ·ξ−1 is a positive
element of raK(L,G) which is K-singular. Since µ = η1 · ξ, we get a “right”
decomposition of µ.
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Assume that H = (H, ·, e,≤) is a lattice group. The following properties
will be used in proving the subsequent decomposition theorems:

(vi) Let z ∈ H be such that z = x · y−1 where x and y are positive
elements of H. Then z+ ≤ x and z− ≤ y.

(vii) Let x, y ∈ H. Then (x · y−1)+ ≤ |x| · |y| and (x · y−1)− ≤ |y| · |x|.
We denote by ba(L,G) the set of all order bounded elements of a(L,G).

For example, if µ is a positive element of a(L,G), then µ ∈ ba(L,G). Clearly,
ba(L,G) is an ordered subgroup of (a(L,G),≤) and, moreover, if G is order
complete, then

∨
a∈L µ(a) and

∧
a∈L µ(a) exist in G for all µ ∈ ba(L,G) (see

[17, Theorem 9, p. 14]).

Lemma 2.9. Assume that L is a Boolean algebra and G is order complete.
Then (ba(L,G), ·, e,≤) is a lattice group.

P r o o f. Using [5, Lemma 1, p. 292] it suffices to show that, for every
µ ∈ ba(L,G), there exists µ ∨ e in ba(L,G).

Define ν(a) =
∨{µ(b) : b ∈ L and b ≤ a} for all a ∈ L. Then ν is a

positive element of GL. We shall show that ν is an element of a(L,G). Let
c, d ∈ L be such that c ⊥ d. Using the assumption that L is a Boolean
algebra, we can deduce the following property:

b ∈ L and b ≤ c ⊕ d ⇔ there exist c1, d1 ∈ L such that c1 ≤ c, d1 ≤ d
and b = c1 ⊕ d1.

From this and the fact that µ ∈ a(L,G), we get

ν(c⊕ d) =
∨
{µ(b) : b ∈ L and b ≤ c⊕ d}

=
∨
{µ(c1 ⊕ d1) : c1, d1 ∈ L, c1 ≤ c and d1 ≤ d}

=
∨
{µ(c1) · µ(d1) : c1, d1 ∈ L, c1 ≤ c and d1 ≤ d}

=
∨
{µ(c1) : c1 ∈ L and c1 ≤ c} ·

∨
{µ(d1) : d1 ∈ L and d1 ≤ d}

= ν(c) · ν(d).

It remains to show that ν = µ∨ e in ba(L,G). Clearly, ν is an upper bound
of the set {µ, e} in (ba(L,G), ·, e,≤). Let λ be an upper bound of the set
{µ, e} in (ba(L,G), ·, e,≤). Then λ ≥ e and λ ≥ µ. Let a ∈ L. Then, for all
b ∈ L such that b ≤ a, we have, by property (v), λ(a) ≥ λ(b) ≥ µ(b), and
therefore λ(a) ≥ ν(a).

Corollary 2.10. Assume that L is a Boolean algebra and G is order
complete. If µ ∈ ba(L,G), then µ+ and µ− are given respectively by the
formulae:

(a) µ+(a) =
∨{µ(b) : b ∈ L and b ≤ a}

(b) µ−(a) = (
∧{µ(b) : b ∈ L and b ≤ a})−1 for all a ∈ L.
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P r o o f. (a) follows from the proof of Lemma 2.9 and (b) follows from
(a), [4, formula 1.3.2] and [5, formula (11), p. 292].

First Decomposition Theorem. Assume that L is a Boolean algebra,
K is a δ-paving in L and G is order complete, locally order convex and has
the property (oc). Then, for every positive element µ of raK(L,G), there
exist exactly two positive elements ξ and η of raK(L,G) with the following
properties:

(a) µ = ξ · η.
(b) ξ is K-smooth.
(c) η is K-singular.

P r o o f. The existence of the decomposition of µ follows from Theo-
rem 2.7.

To show the uniqueness, suppose that there exist four positive elements
ξ1, ξ2, η1 and η2 of raK(L,G) such that ξ1 and ξ2 areK-smooth, η1 and η2 are
K-singular, µ = ξ1 ·η1 and µ = ξ2 ·η2. Then ξ−1

2 ·ξ1 = η2 ·η−1
1 . From Lemma

2.9 it follows that (ba(L,G), ·, e,≤) is a lattice group. Then ξ−1
2 · ξ1 belongs

to ba(L,G) and from (vi) it follows that (ξ−1
2 · ξ1)+ = (η2 · η−1

1 )+ ≤ η2 and
(ξ−1

2 · ξ1)− = (η2 · η−1
1 )− ≤ η1. Hence, Lemma 2.4 implies that (ξ−1

2 · ξ1)+

and (ξ−1
2 · ξ1)− are K-inner regular. Moreover, from (vii) it follows that

(ξ−1
2 · ξ1)+ ≤ |ξ−1

2 | · |ξ−1
1 | = ξ2 · ξ1 and (ξ−1

2 · ξ1)− ≤ |ξ−1
1 | · |ξ−1

2 | = ξ1 · ξ2.
Then, by Lemma 2.5, (ξ−1

2 · ξ1)+ and (ξ−1
2 · ξ1)− are K-smooth. Since η2

and η1 are K-singular, it follows that (ξ−1
2 · ξ1)+ = e = (ξ−1

2 · ξ1)−. Then [4,
formula 1.3.3] implies that ξ−1

2 ·ξ1 = e. Hence ξ1 = ξ2 and therefore η1 = η2.

The following result will be used in Section 3:

Lemma 2.11. Assume that L is a Boolean algebra and G is order complete
and locally order convex. Let K be a δ-paving in L. If η1 and η2 are two
positive elements of raK(L,G) which are K-singular , then η1 · η2 is also
K-singular.

P r o o f. Let γ be a positive K-smooth element of raK(L,G) such that
γ ≤ η1 ·η2. By Lemma 2.9 it follows that (ba(L,G), ·, e,≤) is a lattice group.
Applying [4, Corollary 1.2.17] to this group, we can write γ = γ1 · γ2 where
γi is a positive element of a(L,G) such that γi ≤ ηi for i = 1, 2. Since G is
locally order convex, it follows from Lemma 2.4 that γi is K-inner regular
(i = 1, 2). But γi ≤ γ. Then Lemma 2.5 implies that γi is K-smooth for
i = 1, 2. Since η1 and η2 are K-singular,we conclude that γ1 = γ2 = e, and
therefore γ = e.

3. A general Boolean decomposition. In this section we assume that
L is a Boolean algebra and K is a δ-paving in L.
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If G = (G, ·, e,≤, τ) is an ordered Hausdorff topological group, we write
rbaK(L,G) = ba(L,G) ∩ raK(L,G).

Before we formulate the following result appearing in [13], we recall that,
by the Iwasawa Theorem (see [5]), every order complete lattice group is
commutative:

Lemma 3.1. Let G = (G,+, 0,≤, τ) be a Hausdorff commutative topo-
logical lattice group which is order complete and has the property (oc). If V
is a sublattice of (G,≤) and D is a non-empty majorized subset of V , then
x =

∨
D exists in G and x ∈ V .

P r o o f. The existence of
∨
D in G follows from the order completeness

of G. Let F(D) denote the set of all finite subsets of D. Since x =
∨
D =∨{∨F : F ∈ F(D)} and (

∨
F )F∈(F(D),⊇) is an increasing net in G, the

property (oc) implies that x = τ -limF(D)
∨
F. But V is a sublattice of

(G,≤) and D ⊆ V. Then
∨
F ∈ V for all F ∈ F(D). Hence x ∈ V .

Following Jameson [15], a topological lattice group (G, ·, e,≤, τ) satisfies
the condition (M) if there exists a base for the neighbourhood system N (e)
consisting of sublattices of (G,≤). For example, let (V,≤) be a Riesz space
with an Archimedean order unit u and let τ denote the metric topology on
V induced by (x, y)→ %u(x−y). Then the additive topological lattice group
(V,+, 0,≤, τ) satisfies the condition (M).

The following result appears also in [13]:

Proposition 3.2. Let G = (G,+, 0,≤, τ) be a Hausdorff commutative
topological lattice group which is order complete, has the property (oc) and
satisfies the condition (M). If µ ∈ rbaK(L,G), then µ+ and µ− are K-inner
regular.

P r o o f. Let c ∈ L and let U ∈ N (0). Since G satisfies the condition (M),
there exists V ∈ N (0) such that V ⊆ U and V is a sublattice of (G,≤).
From the K-inner regularity of µ, it follows that there exists b ∈ K such
that b ≤ c and µ(d) ∈ V whenever d ∈ L and d ≤ c − b. In particular,
{µ(a) : a ∈ L and a ≤ d} ⊆ V for all d ∈ D and d ≤ c− b.

Since µ ∈ ba(L,G), it follows from Corollary 2.10 and Lemma 3.1 that
µ+(d) =

∨{µ(a) : a ∈ L and a ≤ d} ∈ V ⊆ U whenever d ∈ L and d ≤ c−b.
The K-inner regularity of µ− follows from the above result, Lemma 2.2

and [4, formula 1.3.2].

Let G = (G, ·, e,≤, τ) be an ordered Hausdorff topological group which
is order complete and let µ ∈ ba(L,G). We say that

(a) µ is K-smooth if µ+ and µ− are K-smooth.
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(b) µ is K-singular if µ is K-inner regular and, for every pair γ1 and γ2 of
positive K-smooth elements of raK(L,G) such that γ1 ≤ µ+ and γ2 ≤ µ−,
we have γ1 = γ2 = e.

Clearly, if µ is K-smooth, then so is |µ|.
Lemma 3.3. Let G = (G,+, 0,≤, τ) be a Hausdorff commutative topolog-

ical lattice group which is order complete, has the property (oc) and satisfies
the condition (M). If µ ∈ rbaK(L,G) is K-smooth and K-singular , then
µ = 0.

P r o o f. This follows immediately from the definitions and Proposi-
tion 3.2.

The following result generalizes [2, Theorem 6, p. 591]:

Theorem 3.4. Let G = (G,+, 0,≤, τ) be a Hausdorff commutative topo-
logical lattice group which is order complete, locally order convex , has the
property (oc) and satisfies the condition (M), and let µ be an element of
rbaK(L,G). If µ is K-smooth, then µ is countably additive.

P r o o f. By Lemma 2.9 and [4, formula 1.3.3] we can write µ = µ+−µ−,
where µ+ and µ− are positive elements of a(L,G). Moreover, Proposition 3.2
implies that µ+ and µ− are K-inner regular. Since µ is K-smooth, it follows
that so are µ+ and µ−. Then, by Theorem 2.6, µ+ and µ− are countably
additive. Therefore µ is countably additive.

Second Decomposition Theorem. Let G = (G,+, 0,≤, τ) be a Haus-
dorff commutative topological lattice group which is order complete, locally
order convex , has the property (oc) and satisfies the condition (M). Then,
for every element µ of rbaK(L,G), there exist exactly two elements ξ and
η of rbaK(L,G) with the following properties:

(a) µ = ξ + η.
(b) ξ is K-smooth.
(c) η is K-singular.

P r o o f. We first show the existence of the decomposition.
From Lemma 2.9, [4, formula 1.3.3] and Proposition 3.2, we can write

µ = µ+ − µ−, where µ+ and µ− are positive elements of raK(L,G). By the
First Decomposition Theorem there exist four positive elements ξ1, ξ2, η1

and η2 of raK(L,G) such that ξ1 and ξ2 are K-smooth, η1 and η2 are K-
singular, µ+ = ξ1 + η1 and µ− = ξ2 + η2. Since G is commutative, we
have µ = (ξ1 − ξ2) + (η1 − η2). Clearly, ξ1 − ξ2, η1 − η2 ∈ ba(L,G), and
it follows from Lemma 2.2 that ξ1 − ξ2 and η1 − η2 are K-inner regular.
So ξ1 − ξ2, η1 − η2 ∈ rbaK(L,G). On the other hand, from property (vi)
and Lemma 2.5 it follows that ξ1 − ξ2 is K-smooth. Finally, to show that
η1 − η2 is K-singular, let γ1 and γ2 be two positive K-smooth elements of
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raK(L,G) such that γ1 ≤ (η1 − η2)+ and γ2 ≤ (η1 − η2)−. By (vii) we have
(η1− η2)+ ≤ η1 and (η1− η2)− ≤ η2. Since η1 and η2 are K-singular, we get
γ1 = 0 and γ2 = 0.

Now we show the uniqueness of the decomposition.
Suppose that there exist ξ1, ξ2, η1, η2 ∈ rbaK(L,G) such that ξ1 and

ξ2 are K-smooth, η1 and η2 are K-singular and µ = ξ1 + η1 = ξ2 + η2.
Then ξ1− ξ2 = η2− η1, and for i = 1, 2, |ξi| and |ηi| are positive elements of
raK(L,G) such that |ξi| is K-smooth. Since, by (vii), (ξ1−ξ2)+, (ξ1−ξ2)− ≤
|ξ1|+ |ξ2|, it follows from Lemma 2.5 that ξ1−ξ2 is K-smooth. On the other
hand, since ηi is K-singular, Proposition 3.2 implies that η+

i and η−i are
K-singular, and therefore, by Lemma 2.11, it follows that |ηi| is K-singular
for i = 1, 2. Again, by Lemma 2.11, |η1|+ |η2| is K-singular. We show that
η2 − η1 is K-singular. Let γ1 and γ2 be two positive K-smooth elements
of raK(L,G) such that γ1 ≤ (η2 − η1)+ and γ2 ≤ (η2 − η1)−. Then, by
formula (vii), we have γ1, γ2 ≤ |η1|+ |η2| and therefore γ1 = 0 and γ2 = 0.
So ξ1− ξ2 is a K-smooth and K-singular element of rbaK(L,G). By Lemma
3.3, ξ1 − ξ2 = 0 and therefore ξ1 = ξ2. This implies that η1 = η2.

Remark 3.5. Using the results established in [7] it is easy to verify that
the Second Decomposition Theorem generalizes the classical first Aleksan-
drov Decomposition Theorem [2, Theorem 3, pp. 618–619].

4. Yosida–Hewitt decomposition of an inner regular measure.
Let X be a non-empty set, let 2X be the Boolean algebra of all subsets of X
and let F be a δ-paving in 2X containing X. Then the pair (X,F) is called,
following Aleksandrov [1], a space. The elements of F are called closed sets
in X and their complements are called open sets in X. For example, if (X, τ)
is a topological space and F = {F ⊆ X : F = f−1(0) for some continuous
function f from X into R}, then (X,F) is a space.

A space (X,F) is said to be Lindelöf if every covering of X by open sets
in X contains a countable subcovering. For example, if (X, τ) is a Souslin
space and F = {F ⊆ X : X \ F ∈ τ}, then (X,F) is a Lindelöf space.

We note that in [2, Theorem 9, p. 592] it is shown that in every normal
and non-bicompact space (X,F) there exists an element µ ∈ rbaF (L,R)
which is not F-smooth, where L is the Boolean subalgebra of 2X generated
by F . Then, considering this element µ, the Second Decomposition Theorem
gives a non-trivial decomposition for µ.

Let L be an orthoalgebra, let G = (G, ·, e, τ) be a Hausdorff topological
group and let µ be an element of GL such that µ(0) = e. We say that
µ is s-bounded if, for every orthogonal sequence (ai)i∈N of elements of L,
we have τ -limi→∞ µ(ai) = e. For example, the measure given by Example
2.3(3) is s-bounded. We will denote by sa(L,G) (resp. ca(L,G)) the set of
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all s-bounded (resp. countably additive) measures on L (with values in G).
Clearly, if µ1, µ2 ∈ sa(L,G), then µ−1

1 , µ1 · µ2 ∈ sa(L,G).

Lemma 4.1. Let L be an orthoalgebra and let G = (G, ·, e,≤, τ) be an
ordered Hausdorff topological group which is quasi-order complete and has
the property (oc). If µ is a positive element of a(L,G), then µ is s-bounded.

P r o o f. Let (ai)i∈N be an orthogonal sequence in L. For every n ∈ N, put
xn =

∏n
i=0 µ(ai). Since µ is positive, it follows that (xn)n∈N is an increasing

sequence in G. Moreover, the set {xn : n ∈ N} is an upwards filtering subset
of G majorized by µ(1). Since G is quasi-order complete, x =

∨
n∈N xn

exists in G. Then, by the property (oc), we get x = τ -limn→∞ xn. Since
µ(an) = xn·x−1

n−1 with x−1 = e, it follows that τ -limn→∞ µ(an) = x·x−1 = e.

Corollary 4.2. Let L be a Boolean algebra and let G = (G, ·, e,≤, τ)
be an ordered Hausdorff topological group which is order complete and has
the property (oc). Then every element µ of ba(L,G) is s-bounded.

P r o o f. This follows immediately from Lemmas 2.9 and 4.1 and [4, for-
mula 1.3.3].

Lemma 4.3. Let L be a Boolean algebra and let G = (G,+, 0,≤, τ) be a
Hausdorff commutative topological lattice group which is order complete, has
the property (oc) and satisfies the condition (M). If µ ∈ ba(L,G)∩ca(L,G),
then µ+ and µ− are countably additive.

P r o o f. It suffices to show the countable additivity of µ+. Let (cn)n∈N
be a decreasing sequence of elements of L such that

∧
n∈N cn = 0. It remains

to show that τ -limn→∞ µ+(cn) = 0. Let U ∈ N (0). Since G satisfies the
condition (M), there exists V ∈ N (0) such that V ⊆ U and V is a sublattice
of (G,≤). By [23, Lemma 1], there exists n0 ∈ N such that a ∈ L and a ≤ cn0

imply µ(a) ∈ V. So {µ(a) : a ∈ L and a ≤ cn0} ⊆ V. Let n ∈ N be such that
n ≥ n0. Since {µ(a) : a ∈ L and a ≤ cn} ⊆ {µ(a) : a ∈ L and a ≤ cn0} and
µ ∈ ba(L,G), it follows from Lemma 3.1 that µ+(cn) =

∨{µ(a) : a ∈ L and
a ≤ cn} ∈ V ⊆ U , and therefore τ -limn→∞ µ+(cn) = 0.

Lemma 4.4. Let L be a Boolean algebra, let G = (G, ·, e,≤, τ) be an
ordered Hausdorff topological group which is locally order convex and let µ
be a positive element of ca(L,G). If γ is a positive element of a(L,G) such
that γ ≤ µ, then γ is countably additive.

P r o o f. Let (cn)n∈N be a decreasing sequence of elements of L such
that

∧
n∈N cn = 0. It suffices to show that τ -limn→∞ γ(cn) = e. Let U ∈

N (e). Since G is locally order convex, there exists V ∈ N (e) such that
e ≤ x ≤ y and y ∈ V imply x ∈ U. But µ is countably additive. Then
τ -limn→∞ µ(cn) = e. So there exists n0 ∈ N such that n ∈ N and n ≥ n0

imply µ(cn) ∈ V. Hence γ(cn) ∈ U whenever n ≥ n0.
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Let L be an orthoalgebra, let G = (G, ·, e,≤, τ) be an ordered Hausdorff
topological group and let µ be a positive element of a(L,G). We say that µ is
purely finitely additive if, for every positive element γ of ca(L,G) such that
γ ≤ µ, we have γ = e. For example, let H be a separable infinite-dimensional
Hilbert space over C, let (ϕn)n∈N be an orthonormal base of H, let L be
the orthoalgebra determined by P (B(H)) and let LIM denote the Banach
limit on `∞(N). For every f ∈ L, put µ(f) = LIM((‖fϕn‖)n∈N). Then it is
easy to see that µ is a positive element of a(L,R) which is purely finitely
additive.

Now assume that L is a Boolean algebra and G is order complete. Then
an element µ of ba(L,G) is said to be purely finitely additive if µ+ and
µ− are purely finitely additive. For example, let L = 2Z, let M+(Z) =
{µ ∈ a(L,R) : µ takes only the values 0 and 1} and let M(Z) = {µ =
µ1 − µ2 : µ1, µ2 ∈ M+(Z)}. We note that an element µ ∈ M+(Z) \ {0} is
countably additive if and only if there exists k ∈ Z such that µ({k}) = 1.
Let µ = µ1 − µ2 be an element of M(Z) such that µ1({k}) = µ2({k}) = 0
for all k ∈ Z. Then µ is purely finitely additive.

Lemma 4.5. Let L be a Boolean algebra, let G = (G, ·, e,≤, τ) be an
ordered Hausdorff topological group which is order complete and locally order
convex and let µ1 and µ2 be two positive elements of a(L,G). If µ1 and µ2

are purely finitely additive, then so is µ1 · µ2.

P r o o f. Let γ be a positive element of ca(L,G) such that γ ≤ µ1 · µ2.
Consider the lattice group (ba(L,G), ·, e,≤). Then, by [4, Corollary 1.2.17]
we can write γ = γ1 · γ2 where γ1 and γ2 are positive elements of a(L,G)
such that γ1 ≤ µ1 and γ2 ≤ µ2. Since γ1, γ2 ≤ γ, it follows from Lemma
4.4 that γ1 and γ2 are countably additive. But µ1 and µ2 are purely finitely
additive. Then γ1 = e and γ2 = e, and therefore γ = e.

Corollary 4.6. Let L be a Boolean algebra, let G = (G, ·, e,≤, τ) be an
ordered Hausdorff topological group which is order complete and locally order
convex and let µ be an element of ba(L,G). If µ is purely finitely additive,
then so is |µ|.

P r o o f. This follows immediately from the definition, [4, formula 1.3.13]
and Lemma 4.5.

We also need the following corrected version of [7, Lemma 4.11]:

Lemma 4.7. Let (X,F) be a Lindelöf space, let L be a Boolean subalgebra
of 2X containing F and let G = (G, ·, e, τ) be a Hausdorff topological group.
If µ ∈ sa(L,G) ∩ ca(L,G) then µ is F-smooth.

We are in a position to establish a Yosida–Hewitt decomposition for an
inner regular measure:
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Theorem 4.8. Let (X,F) be a Lindelöf space, let L be a Boolean subal-
gebra of 2X containing F , and let G = (G,+, 0,≤, τ) be a Hausdorff com-
mutative topological lattice group which is order complete, locally order con-
vex , has the property (oc) and satisfies the condition (M). Then for every
µ ∈ rbaF (L,G), there exist exactly two elements ξ and η of rbaF (L,G) with
the following properties:

(a) µ = ξ + η.
(b) ξ is countably additive.
(c) η is purely finitely additive.

P r o o f. We first show the existence of the decomposition.
By the Second Decomposition Theorem there exist ξ, η ∈ rbaF (L,G)

such that ξ is F-smooth, η is F-singular and µ = ξ + η. By Theorem 3.4, ξ
is countably additive. It remains to show that η is purely finitely additive.
Let γ1 and γ2 be two positive elements of ca(L,G) such that γ1 ≤ η+ and
γ2 ≤ η−. Since η ∈ rbaF (L,G), Proposition 3.2 shows that η+ and η− are
F-inner regular. Then, by Lemma 2.4, γ1 and γ2 are F-inner regular. On the
other hand, Lemma 4.1 implies that γ1 and γ2 are s-bounded. Since (X,F)
is a Lindelöf space and L is a Boolean subalgebra of 2X containing F , it
follows from Lemma 4.7 that γ1 and γ2 are F-smooth. But η is F-singular.
Hence γ1 = 0 and γ2 = 0. This implies that η is purely finitely additive.

Now we show the uniqueness of the decomposition.
Suppose that there exist ξ1, ξ2, η1, η2 ∈ rbaF (L,G) such that ξ1 and

ξ2 are countably additive, η1 and η2 are purely finitely additive and µ =
ξ1 +η1 = ξ2 +η2. Then ξ1−ξ2 = η2−η1. Since ξ1−ξ2 ∈ ba(L,G)∩ca(L,G),
Lemma 4.3 implies that (ξ1 − ξ2)+ and (ξ1 − ξ2)− are countably additive.
By (vii) we have (ξ1 − ξ2)+ = (η2 − η1)+ ≤ |η1| + |η2| and (ξ1 − ξ2)− =
(η2−η1)− ≤ |η1|+|η2|. Since η1 and η2 are purely finitely additive, Corollary
4.6 and Lemma 4.5 imply that |η1|+ |η2| is purely finitely additive as well.
Then (ξ1−ξ2)+ = 0 and (ξ1−ξ2)− = 0 and therefore ξ1 = ξ2. Hence η1 = η2.
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et d’informatique
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