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Dugundji extenders and retracts
on generalized ordered spaces
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Gary G r u e n h a g e (Auburn, Ala.),
Yasunao H a t t o r i (Shimane) and Haruto O h t a (Shizuoka)

Abstract. For a subspace A of a space X, a linear extender ϕ : C(A) → C(X) is
called an Lch-extender (resp. Lcch-extender) if ϕ(f)[X] is included in the convex hull (resp.
closed convex hull) of f [A] for each f ∈ C(A). Consider the following conditions (i)–(vii)
for a closed subset A of a GO-space X: (i) A is a retract of X; (ii) A is a retract of the union
of A and all clopen convex components of X \A; (iii) there is a continuous Lch-extender
ϕ : C(A × Y ) → C(X × Y ), with respect to both the compact-open topology and the
pointwise convergence topology, for each space Y ; (iv) A×Y is C∗-embedded in X×Y for
each space Y ; (v) there is a continuous linear extender ϕ : C∗k(A)→ Cp(X); (vi) there is an
Lch-extender ϕ : C(A)→ C(X); and (vii) there is an Lcch-extender ϕ : C(A)→ C(X). We
prove that these conditions are related as follows: (i)⇒(ii)⇔(iii)⇔(iv)⇔(v)⇒(vi)⇒(vii). If
A is paracompact and the cellularity of A is nonmeasurable, then (ii)–(vii) are equivalent.
If there is no connected subset of X which meets distinct convex components of A, then
(ii) implies (i). We show that van Douwen’s example of a separable GO-space satisfies
none of the above conditions, which answers questions of Heath–Lutzer [9], van Douwen
[1] and Hattori [8].

1. Introduction. For a topological space X, let C(X) be the linear
space of real-valued continuous functions on X and C∗(X) the subspace of
bounded functions of C(X). Let A be a subspace of X. A map ϕ : C(A)→
C(X) is called an extender if ϕ(f) is an extension of f for each f ∈ C(A). An
extender ϕ : C(A) → C(X) is called an Lch-extender (resp. Lcch-extender)
if ϕ is a linear map and ϕ(f)[X] is included in the convex hull (resp. closed
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convex hull) of f [A] for each f ∈ C(A). The notions of an Lch-extender
and an Lcch-extender from C∗(A) to C∗(X) are analogously defined. An
Lch-extender is an Lcch-extender and, by the definition, an Lcch-extender
is continuous with respect to the uniform convergence topology. We refer
to these extenders generically as Dugundji extenders. A generalized ordered
space (= GO-space) is a triple (X,≤, τ), where (X,≤) is a linearly ordered
set and where τ is a topology on X such that τ is finer than the order
topology and has a base consisting of convex sets. It is known that X is
a GO-space if and only if it is a subspace of a linearly ordered topological
space (= LOTS) (cf. [12]).

Let A be a closed subspace of a GO-space X. The purpose of this paper
is to consider the problems when there is a Dugundji extender ϕ : C(A)→
C(X) and when there is a Dugundji extender ψ : C(A × Y ) → C(X × Y )
for each space Y . In Sections 2 and 3, we prove the results stated in the
abstract. What the results say is that if either there is an Lcch-extender
ϕ : C(A) → C(X) or A × Y is C∗-embedded in X × Y , i.e., there is an
extender ψ : C∗(A× Y )→ C∗(X × Y ), for each space Y , then A is close to
being a retract of X. Heath–Lutzer [9] asked:

(a) If A is a closed subspace of a perfectly normal GO-space X, is there
an Lcch-extender ϕ : C(A)→ C(X)?

(b) What if X is assumed to be a LOTS?

Recently, Hattori [8] also asked:

(c) If A is a closed subspace of a perfectly normal GO-space X, is A×Y
C∗-embedded in X × Y for each space Y ?

By applying our results to van Douwen’s example, we answer the ques-
tions (a), (b), (c) and that of van Douwen [1, Remark IV.5.2] (cf. [14, Ques-
tion 134]) all negatively. In Section 4, we consider the monotone extension
property as well as the Dugundji extension property of perfectly normal
GO-spaces.

As usual, R denotes the set of reals, Q the set of rationals, Z the set of
integers and N = {n ∈ Z : n > 0}. For a space X, Ck(X) (resp. Cp(X))
denotes the space C(X) with the compact open topology (resp. pointwise
convergence topology) and C∗k(X) (resp. C∗p(X)) the subspace of bounded
functions. Let (X,≤) be a linearly ordered set. For a, b ∈ X with a < b,
we write (a, b] = {x ∈ X : a < x ≤ b}, (−∞, b] = {x ∈ X : x ≤ b}, and
define [a, b), [a,+∞), (a, b) and [a, b] analogously. For A,B ⊆ X we also
write A < x to mean that a < x for each a ∈ A; and correspondingly,
x < A and A < B for brevity. A subset A of X is called convex if [a, b] ⊆ A
for each a, b ∈ A with a < b. For maps f : A → Y and g : B → Y with
f |A∩B = g|A∩B , the combination h = f 5 g is the map from A ∪ B to Y



Dugundji extenders and retracts 149

defined by h|A = f and hB = g. Other terms and symbols will be used
as in [4].

2. Dugundji extenders and retracts. In this section, we state without
proof our main theorem, which shows the relationship between the existence
of Dugundji extenders and the existence of a retraction. The theorem will
be proved in the next section. We use the following notation throughout the
paper.

Notation. Let A be a closed subspace of a GO-space X. Let UA denote the
family of all convex components of X\A. For S ⊆ X, let l(S) = max{x ∈ X :
x < S} and r(S) = min{x ∈ X : x > S} if they exist. Note that if x = l(U)
or x = r(U) for U ∈ UA, then x ∈ A. Let UA,1 = {U ∈ UA : U has exactly
one of l(U) and r(U)}, UA,2 = {U ∈ UA : U has both l(U) and r(U)} and
UA,0 = UA \ (UA,1 ∪UA,2). For i = 0, 1, 2, we define UA,i =

⋃{U : U ∈ UA,i}
and consider the subspace XA,i = A ∪ UA,i of X. Then each XA,i is closed
in X and XA,i ∩XA,j = A for i 6= j. For example, if M is the Michael line,
i.e., the space obtained from the LOTS R by making each point of R \ Q
isolated, then MQ,0 = M and MQ,1 = MQ,2 = Q.

Note that each U ∈ UA,0 is clopen in X, so XA,0 is the union of A and
some of the clopen convex components of X \ A. It is easy to check that
A is a retract of XA,0 if and only if A is a retract of the union of A and
all clopen convex components of X \ A (a retraction f : XA,0 → A can be
extended by declaring f(x) to be l(U) or r(U) whenever x is in a clopen
convex component U of X \A which is not in UA,0).

For a closed subset A of a GO-space X, we say that A separates X if the
closed interval [l(U), r(U)] is disconnected for each U ∈ UA,2. If X is totally
disconnected, then every closed subset separates X.

Theorem 1. Let A be a closed subspace of a GO-space X. Consider the
following conditions (1)–(10):

(1) A is a retract of X.
(2) A is a retract of XA,0.

(2′) A is a retract of the union of A and all clopen convex components
of X \A.

(3) There is a continuous Lch-extender ϕ : C(A × Y ) → C(X × Y ),
with respect to both the compact-open topology and the pointwise convergence
topology , for each space Y .

(4) A× Y is C∗-embedded in X × Y for each space Y .
(5) There is a continuous linear extender ϕ : Ck(A)→ Ck(X).
(6) There is a continuous linear extender ϕ : Cp(A)→ Cp(X).
(7) There is a continuous linear extender ϕ : C∗k(A)→ C∗k(X).
(8) There is a continuous linear extender ϕ : C∗p(A)→ C∗p(X).
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(9) There is an Lch-extender ϕ : C(A)→ C(X).
(10) There is an Lcch-extender ϕ : C(A)→ C(X).

These conditions are related as follows: (1)⇒(2)⇔(i)⇒(9)⇒(10) for each
i ∈ {2′, 3, 4, . . . , 8}. If A is paracompact and the cellularity of A is nonmea-
surable, then (2)–(10) are equivalent. If A separates X, then (2) implies (1).

In Section 3, we give examples showing that (9) does not imply (2)
without the assumption on A. We do not know if (10) implies (9) in general
(see Section 4).

Remark 1. Since the closed subspace Q of the Michael line M is not
a retract, the pair (Q,M) satisfies none of the conditions of Theorem 1.
(Morita [15] proved that (Q,M) does not satisfy (4), Heath–Lutzer–Zenor
[11] proved that (Q,M) does not satisfy (7) and (8), and Heath–Lutzer [9]
proved that (Q,M) does not satisfy (10).)

Now, we consider the following additional conditions (9∗) and (10∗):

(9∗) There is an Lch-extender ϕ : C∗(A)→ C∗(X).
(10∗) There is an Lcch-extender ϕ : C∗(A)→ C∗(X).

Clearly, (9∗) implies (10∗) and, since an Lcch-extender ϕ : C(A)→ C(X)
carries a bounded function to a bounded function, (i) implies (i∗) for each
i = 9, 10. In [1] van Douwen proved that the pair (Q,M) does not satisfy
(9∗) for the Michael line M , while Heath–Lutzer [9] proved that a closed
subspace A of a GO-space X always satisfies (10∗). We refer to the latter
statement as Heath–Lutzer’s extension theorem. We now show that (10∗)
implies the following condition:

(11) There is a continuous linear extender ϕ : Cu(A)→ Cu(X),

where Cu(E) denotes the space C(E) with the uniform convergence topol-
ogy. Let ϕ : C∗(A) → C∗(X) be an Lcch-extender. Since C∗(A) is a linear
subspace of C(A), there is a Hamel base B of C(A) such that B∩C∗(A) is a
Hamel base of C∗(A). For each h ∈ B \ C∗(A), h extends to h ∈ C(X), be-
cause X is normal. For each f ∈ C(A), f can be written as a linear combina-
tion f =

∑
h∈F α(h)h, where F is a finite subset of B and α(h) ∈ R for each

h ∈ F . Define ψ(f) =
∑
h∈F∩C∗(A) α(h)ϕ(h) +

∑
h∈F\C∗(A) α(h)h. Then

ψ : C(A)→ C(X) is a linear extender. For each f, g ∈ C(A), if ‖f − g‖ < ε,
then f − g ∈ C∗(A) so that linearity of ψ and the fact that ψ extends ϕ
yields ‖ψ(f) − ψ(g)‖ = ‖ψ(f − g)‖ = ‖ϕ(f − g)‖ = ‖ϕ(f) − ϕ(g)‖ ≤ ε.
Hence, ψ is continuous with respect to the uniform convergence topology.

In [1], van Douwen gave an example of a 0-dimensional, separable, GO-
space S with a closed subspace F which is not a retract (Example IV.5.1)
and asked whether for each closed subspace A of S there is an Lcch-extender
ϕ : C(A) → C(S). It is known that a separable GO-space is perfectly
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normal and Lindelöf. Hence, it follows from Theorem 1 that the space S
gives a negative answer to van Douwen’s question and questions (a) and (c)
stated in the introduction. Moreover, since S embeds as a closed subspace
in a separable LOTS, S also answers question (b) negatively. Below we give
an example which is essentially the same as S but is easier to describe.

Example 1. There exists a 0-dimensional , separable, GO-space X with
a closed subspace A which is not a retract of X, and hence satifies none of
the conditions (1)–(10) of Theorem 1.

P r o o f. Let L = (P×{0, 1})∪ (Q×{0}), where P = R \Q, and consider
the lexicographic order on L. Let X be the space obtained from the LOTS
L by making each point of Q × {0} isolated and let A = P × {0, 1}. Then
X is a 0-dimensional, separable, GO-space and A is closed. We show that
A is not a retract of X. Suppose that there is a retraction r : X → A.
Let π : X → R be the projection. Let Q1 = {q ∈ Q : π(r(〈q, 0〉)) > q}
and Q2 = {q ∈ Q : π(r(〈q, 0〉)) < q}. Then Q1 or Q2 is dense in some
open interval I of the LOTS R. Now, we assume that Q1 is dense in I.
Then we can find a sequence {qk : k ∈ N} ⊆ Q1 and p ∈ P such that
qk < p < π(r(〈qk, 0〉)) for each k ∈ N and supk∈N qk = p in R. Indeed,
let q1 ∈ Q1 ∩ I be arbitrary. Given qk, let mk = 1

2 (qk + π(r(〈qk, 0〉))) and
choose qk+1 ∈ I ∩Q1 in such a way that qk < qk+1 < min{mj : 1 ≤ j ≤ k}.
Because qk is bounded, p = sup{qk : k ≥ 1} exists in R. Choose irrational
numbers yk ∈ (qk, qk+1). Then π(r(〈yk, 0〉)) = yk so that continuity yields
p = lim yk = limπ(r(〈yk, 0〉)) = π(r(〈p, 0〉)). Thus p ∈ P. Observe that
qk < p ≤ mk < π(r(〈qk, 0〉)) for each k. The sequence {〈qk, 0〉 : k ∈ N}
converges to 〈p, 0〉 in X, but r(〈qk, 0〉) > 〈p, 1〉 > 〈p, 0〉 = r(〈p, 0〉) for each
k ∈ N. This contradicts the continuity of r. Hence, A is not a retract of X.

For the benefit of the reader who may be particularly interested in our so-
lution to Heath and Lutzer’s questions (a) and (b), we give here a short direct
proof (i.e., without appealing to Theorem 1) that there is no Lcch-extender
ϕ : C(A)→ C(X). Suppose such a ϕ exists. Note that if g ∈ C(A) and g ≥ h
pointwise in A, then ϕ(g) ≥ ϕ(h) pointwise in X. For each rational q and
n ∈ ω, let Aq,n = {〈x, i〉 ∈ P×{0, 1} : |x−q| < 1/2n}. Each Aq,n is clopen in
A so that the characteristic function χq,n of Aq,n belongs to C(A). We claim
that, for each q, there must be some kq ∈ ω such that ϕ(χq,kq )(〈q, 0〉) =
0. If not, we can choose kn ∈ ω such that ϕ(knχq,n)(〈q, 0〉) ≥ n. Then
f =

∑
n∈ω knχq,n ∈ C(A) and yet ϕ(f)(〈q, 0〉) ≥ ϕ(knχq,n)(〈q, 0〉) ≥ n for

each n, a contradiction.
Now let χ−(q, nq) be the characteristic function of {x ∈ P × {0, 1} :

π(x) < q − 1/2nq} and define χ+(q, nq) similarly. Then χ−(q, nq) +
χ(q, nq) + χ+(q, nq) is the constant 1, and ϕ(χ(q, nq))(〈q, 0〉) = 0, so either
ϕ(χ−(q, nq))(〈q, 0〉) ≥ 1/2 or ϕ(χ+(q, nq))(〈q, 0〉) ≥ 1/2. We may assume
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without loss of generality that the set Q+ = {q ∈ Q : ϕ(χ+(q, nq))(〈q, 0〉) ≥
1/2} is dense in some interval. Then there exists q(i) ∈ Q+ and an irrational
α such that q(i)→ α and q(i) < α < q(i)+1/2nq(i) . Let χ+(α) be the charac-
teristic function of {x ∈ P×{0, 1} : x = 〈α, 1〉 or π(x) > α}. Then χ+(α) ≥
χ+(q(i), nq(i)) for each i, so ϕ(χ+(α))(〈q(i), 0〉) ≥ ϕ(χ+(q(i), nq(i))(〈q(i), 0〉)
≥ 1/2 for all i. But 〈q(i), 0〉 → 〈α, 0〉 and χ+(α)(〈α, 0〉) = 0, contradicting
the continuity of ϕ(χ+(α)).

Remark 2. The space X in Example 1 embeds as a retract in the sepa-
rable LOTS L0 = (P × {0, 1}) ∪ (Q × Z) with the lexicographic order. The
pair (A,L0) also satisfies none of the conditions (1)–(10) in Theorem 1.

Recall from [16] that a subspace B of a space E is π-embedded in E if
B×Y is C∗-embedded in E×Y for each space Y . By Theorem 1, the closed
subspace A of the space X in Example 1 is not π-embedded in X. Let T be
the space obtained from the LOTS R by making each point of Q isolated.
Then T is a separable metrizable space and the projection π : X → T
is a perfect map. Hence, X is a perfectly normal, Lindelöf, M -space and
A is Čech-complete but not π-embedded. This gives a simple answer to
[16, Problems 14 and 17], which have been solved by Waśko [18]. The Michael
line M witnesses that A is not π-embedded in X. In fact, the function
f ∈ C∗(A×M) defined by

f(〈〈x, i〉, y〉) =
{

1 if x > y or (x = y and i = 1),
0 if x < y or (x = y and i = 0)

does not extend continuously to X ×M .

We conclude this section with some corollaries of Theorem 1.

Corollary 1. Let A be a closed subspace of a locally compact GO-
space X. Then the pair (A,X) satisfies conditions (2)–(10) in Theorem 1.
Moreover , A is a retract of X if and only if A separates X.

P r o o f. Since X is locally compact, UA,0 is discrete in X. Thus, UA,0 is
open and closed in X, which implies that A is a retract of XA,0. Hence, the
statements follow from Theorem 1.

Corollary 2. Every closed subspace A of a GO-space X whose under-
lying set is well ordered is a retract of X.

P r o o f. Since the underlying set of X is well ordered, UA,0 = ∅ and X
is totally disconnected. Hence, this follows from Theorem 1.

Remark 3. In [1] van Douwen proved that every closed subspace of a
totally disconnected, locally compact, GO-space is a retract. Heath–Lutzer–
Zenor [11] proved that every closed subspace of a GO-space whose underlying
set is well ordered satisfies conditions (7) and (8) in Theorem 1.
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3. Proof of Theorem 1 and examples. First, we prove Theorem 1.
Let X be a GO-space and A a closed subspace of X. Then the implications
(1)⇒(2), (3)⇒(j) for j ∈ {4, 5, . . . , 9} and (9)⇒(10) are obviously true. As
stated before Theorem 2, (2) is equivalent to (2′). We temporarily say that
A is πL-embedded in S, where A ⊆ S ⊆ X, if there is an Lch-extender
ϕ : C(A × Y ) → C(S × Y ) which is continuous with respect to both the
compact-open topology and the pointwise convergence topology, for each
space Y . The following lemma sharpens Heath–Lutzer [9, Lemma 3.7], which
says that there is an Lcch-extender ϕ : C(A)→ C(X) in case UA,0 = ∅.

Lemma 1. The subspace A is a retract of XA,1 and is πL-embedded in
XA,2. If A separates X, then A is a retract of XA,1 ∪XA,2.

P r o o f. For each U ∈ UA,1, there is exactly one of l(U) and r(U). We
denote it by xU . Then we get a retraction r : XA,1 → A by letting r(a) = a
for each a ∈ A and r(u) = xU for each u ∈ U with U ∈ UA,1.

We show that A is πL-embedded in XA,2. Let U ∈ UA,2. If U is a
singleton, let kU be the constant function on U with the value 0. If |U | ≥ 2,
then we choose s(U), t(U) ∈ U such that s(U) < t(U). Then there exists a
continuous function kU : U → [0, 1] such that kU (x) = 0 for each x ≤ s(U)
and kU (x) = 1 for each x ≥ t(U). Let Y be a space and let T = XA,2×Y . For
each f ∈ C(A × Y ), define a function ϕ(f) : T → R by ϕ(f)|A×Y = f and
ϕ(f)(〈u, y〉) = (1−kU (u))·f(〈l(U), y〉)+kU (u)·f(〈r(U), y〉) for 〈u, y〉 ∈ U×Y
with U ∈ UA,2. Then

min{f(〈l(U), y〉), f(〈r(U), y〉)} ≤ ϕ(f)(〈u, y〉)(3.1)

≤ max{f(〈l(U), y〉), f(〈r(U), y〉)}
for each 〈u, y〉 ∈ U ×Y with U ∈ UA,2. This implies that ϕ(f) is continuous
and ϕ : C(A×Y )→ C(T ) is an Lch-extender. Since the continuity of ϕ with
respect to the pointwise convergence topology is obvious, we show that ϕ is
continuous with respect to the compact-open topology. To do this, we define
a map ψ : T → 2A×Y as follows. For each p ∈ A× Y we define ψ(p) = {p}.
Let 〈u, y〉 ∈ (XA,2 \ A) × Y . Then there is U ∈ UA,2 such that u ∈ U . If
U = {u}, then we define ψ(〈u, y〉) = {〈l(U), y〉}. Suppose that |U | ≥ 2.
We define ψ(〈u, y〉) = {〈l(U), y〉} if u ≤ s(U), ψ(〈u, y〉) = {〈r(U), y〉} if
u ≥ t(U), and ψ(〈u, y〉) = {〈l(U), y〉, 〈r(U), y〉} if s(U) < u < t(U). It is
easily checked that ψ is upper semicontinuous, i.e., for each open set V in
A× Y , the set {p ∈ T : ψ(p) ⊆ V } is open in T . Now, it is enough to show
that ϕ is continuous at 0 ∈ Ck(A × Y ). Let K be a compact set of T and
ε > 0. Since ψ is upper semicontinuous, it follows from [13, Corollary 9.6]
that K0 =

⋃
p∈K ψ(p) is compact. If f ∈ Ck(A× Y ) and f [K0] ⊆ (−ε,+ε),

then ϕ(f)[K] ⊆ (−ε,+ε) by (3.1). Hence, ϕ is continuous at 0 with respect
to the compact-open topology.
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Finally, we assume that A separatesX. Then there is a retraction rU from
[l(U), r(U)] to {l(U), r(U)} for each U ∈ UA,2. Define a map r2 : XA,2 → A
by r2|A = idA and r2|U = rU for each U ∈ UA,2. Then r2 is a retraction.
On the other hand, there is a retraction r1 : XA,1 → A as we have proved
above. By [4, Proposition 2.1.13], the combination r1 5 r2 is a retraction
from XA,1 ∪XA,2 to A.

(I) We prove that (2) implies (3). Let Y be a space. By Lemma 1, A is
πL-embedded in XA,1 and in XA,2, and by (2), A is also πL-embedded in
XA,0. Hence, for each i = 0, 1, 2, there is an Lch-extender ϕi : C(A × Y )
→ C(XA,i×Y ) which is continuous with respect to both the compact open
topology and the pointwise convergence topology. Define an extender ϕ :
C(A×Y )→ C(X×Y ) by ϕ(f) = ϕ0(f)5ϕ1(f)5ϕ2(f) for f ∈ C(A×Y ).
Then ϕ is an Lch-extender which is continuous with respect to both the
compact-open topology and the pointwise convergence topology.

(II) We prove that (2) implies (1) if A separates X. By (2), there is
a retraction r0 : XA,0 → A. Since A separates X, there is a retraction
r : XA,1 ∪XA,2 → A by Lemma 1. Then the combination r05 r : X → A is
a retraction.

We shall establish some conventions which will be used in the rest of the
proof. It remains to show that A is a retract of XA,0 = A ∪ UA,0 (i.e., con-
dition (2)) when the pair (A,X) satisfies condition (i) for i ∈ {4, 5, 6, 7, 8},
or for i = 10 if also A is paracompact and the cellularity of A is nonmea-
surable. Obviously, if (A,X) satisfies condition (i) for i ∈ {4, 5, 6, 7, 8, 10},
so does the pair (A,S) for every subspace S with A ⊆ S ⊆ X. Thus,
we may assume without losing generality that X = XA,0. Moreover, if we
choose a point xU ∈ U for each U ∈ UA,0, then it is easily checked that
A ∪ {xU : U ∈ UA,0} is a retract of XA,0. Hence, it suffices to show that A
is a retract of A ∪ {xU : U ∈ UA,0}. This means that we may assume that
each element of UA,0 is a singleton. That is, we assume that

(∗) X = XA,0 and each element of UA,0 is singleton.

Further, we then denote the family of convex components of A in X by
A. By the assumptions, X \ A is discrete and for each u, u′ ∈ X \ A with
u < u′, there is B ∈ A such that u < B < u′. Let Z = A∪ (X \A). Then we
can regard Z naturally as a linearly ordered set. For B ∈ A and u ∈ X \A,
we write u = B+ to mean that u is an immediate successor of B in Z; and
analogously, B = u+. Let τ denote the topology of X. Fix a point a0 ∈ A
and a point aB ∈ B for each B ∈ A.

(III) We prove that (4) implies (2). Let B = A \ {B ∈ A : |B| = 1 and
(−∞, B] 6∈ τ and [B,+∞) 6∈ τ}, where (−∞, B]={x ∈ X : (∃b∈B)(x ≤ b)}
and [B,+∞) = {x ∈ X : (∃b ∈ B)(x ≥ b)}. Note that B may be empty.



Dugundji extenders and retracts 155

Let Y be the space obtained from the subspace B ∪ (X \A) of the LOTS Z
by making each point of B isolated, i.e., Y has the topology generated by a
base {{B} : B ∈ B} ∪ {(C,D) ∩ Y : C < D and C,D ∈ A}.

For each B ∈ A with |B| ≥ 2, fix xB , yB ∈ B with xB < yB and choose
fB ∈ C(B) such that fB(x) = 0 for each x ≤ xB , fB(x) = 1 for each x ≥ yB ,
and 0 ≤ fB(x) ≤ 1 for each x ∈ B. We define f ∈ C(A× Y ) as follows: Let
〈a, y〉 ∈ A× Y . If a 6∈ y ∈ B or y ∈ X \A, define f(〈a, y〉) = 0 if a < y, and
f(〈a, y〉) = 1 if a > y. If y = B ∈ B and a ∈ B, then we distinguish three
cases: If (−∞, B] ∈ τ , let f(〈a, y〉) = 0. If (−∞, B] 6∈ τ and [B,+∞) ∈ τ ,
let f(〈a, y〉) = 1. If (−∞, B] 6∈ τ and [B,+∞) 6∈ τ , then |B| ≥ 2 by the
definition of B. Define f(〈a, y〉) = fB(a). Then it is easily checked that f is
continuous. By (4), f extends to g ∈ C(X × Y ).

We define a retraction r : X → A as follows: Define r(a) = a for each
a ∈ A. Let u ∈ X \ A. First, if u = maxZ or u = minZ, let r(u) = a0.
Next, we assume that u 6= maxZ and u 6= minZ. If u has an immediate
predecessor B in Z, let r(u) = aB . If u has no immediate predecessor but has
an immediate successor B′ in Z, let r(u) = aB′ . Finally, assume that u is not
as above. Then, by the continuity of g, there are C,D ∈ A, with C < u < D,
such that |g(〈u, u〉) − g(〈u, y〉)| < 1/4 for each y ∈ Y with C ≤ y ≤ D.
Define r(u) = aC if g(〈u, u〉) < 1/2, and r(u) = aD if g(〈u, u〉) ≥ 1/2. By
the definition, the following (3.2) and (3.3) hold for each u ∈ X \A:

(3.2) If r(u) ∈ B < u and u 6= B+ in Z, then

g(〈u, y〉) < 3/4 for each y ∈ Y with B ≤ y ≤ u.
(3.3) If r(u) ∈ B > u and B 6= u+ in Z, then

g(〈u, y〉) > 1/4 for each y ∈ Y with u ≤ y ≤ B.
It suffices to show that r is continuous at each point of A. Suppose that
r is not continuous at p ∈ A. Then there exist a convex neighborhood H
of p in X and S ⊆ H \ A such that p ∈ clX S and r[S] ∩ H = ∅. Put
S1 = {u ∈ S : u < p and r(u) < H}, S2 = {u ∈ S : u < p and r(u) > H},
S3 = {u ∈ S : u > p and r(u) < H} and S4 = {u ∈ S : u > p and r(u) > H}.
Since S = S1∪S2∪S3∪S4, either p ∈ clX(S1∪S2) or p ∈ clX(S3∪S4). Now,
we only show that a contradiction occurs in the former case, since the latter
case can be proved similarly. Choose B ∈ A with p ∈ B. Since S1 ∪ S2 < p
and p ∈ clX(S1 ∪ S2), p = minB, [p,+∞) 6∈ τ and B has no immediate
predecessor in Z. We consider three cases:

Case 1: p ∈ clX S1. Since [p,+∞) 6∈ τ , there is v ∈ H \ A with v < p.
We may assume that v < S1 < p. For each u ∈ S1, since r(u) < v < u, it
follows from (3.2) that g(〈u, v〉) < 3/4. Since p ∈ clX S1, this implies that
g(〈p, v〉) ≤ 3/4, but f(〈p, v〉) = 1 since p > v. This contradicts the fact that
g is an extension of f .
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Case 2: p ∈ clX S2 and B ∈ Y . For each u ∈ S2, u < p < r(u) and
B 6= u+ in Z. Hence, it follows from (3.3) that g(〈u,B〉) > 1/4 for each
u ∈ S2. Since p ∈ clX S2, this implies that g(〈p,B〉) ≥ 1/4, but f(〈p,B〉) =
0, because p ∈ B ∈ B, [p,+∞) 6∈ τ and p = minB. This is a contradiction.

Case 3: p ∈ clX S2 and B 6∈ Y . Then B = {p} and (−∞, p] 6∈ τ by the
definition of Y . Thus, there is w ∈ H \ A with w > p. Since r(u) > w > u
for each u ∈ S2, g(〈p, w〉) ≥ 1/4 by the similar argument to Case 1, but
f(〈p, w〉) = 0 since p < w. This is a contradiction. Hence, the proof of
(4)⇒(2) is complete.

(IV) We prove that (i) implies (2) for each i = 5, 6, 7, 8. Recall our
simplifying assumptions (∗). If one of the conditions (5), (6), (7) and (8)
holds, then there is a continuous linear extender ϕ : C∗k(A)→ Cp(X). Let I
be the closed set {x ∈ X : ϕ(1A)(x) ≤ 1/2}, where 1A is a constant function
on A taking the value 1. Since I ⊆ X \A and X \A is discrete, I is open and
closed in X. Let u ∈ X \ (A ∪ I). Since ϕ is continuous, there is a compact
set Ku of A such that ϕ(f)(u) > 1/2 for each f ∈ C∗k(A) with f [Ku] = {1}.
Let Ku,1 = Ku ∩ (−∞, u) and Ku,2 = Ku ∩ (u,+∞). We may assume
that both Ku,1 and Ku,2 are nonempty unless u = minZ or u = maxZ.
Let Cu,1 = {f ∈ C∗k(A) : f [Ku,1] = {1} and f [(u,+∞) ∩ A] = {0}} and
Cu,2 = {f ∈ C∗k(A) : f [Ku,2] = {1} and f [(−∞, u) ∩A] = {0}}.

We define a retraction r : X → A. Define r(a) = a for each a ∈ A. For
u ∈ X \ A, we define r(u) as follows: First, if u = minZ or u = maxZ, let
r(u) = a0. Next, we assume that u 6= minZ and u 6= maxZ. If u ∈ I, let
r(u) = a0. If u ∈ X \ (A∪I), then ϕ(1A)(u) > 1/2. Now, suppose that there
exist f1 ∈ Cu,1 with ϕ(f1)(u) ≤ 1/4 and f2 ∈ Cu,2 with ϕ(f2)(u) ≤ 1/4.
Then ϕ(f1 +f2)(u) = ϕ(f1)(u)+ϕ(f2)(u) ≤ 1/2. Since (f1 +f2)[Ku] = {1},
this contradicts the definition of Ku. Hence, either ϕ(f)(u) > 1/4 for each
f ∈ Cu,1 or ϕ(f)(u) > 1/4 for each f ∈ Cu,2. In the former case, define
r(u) = maxKu,1, and otherwise, define r(u) = minKu,2. It suffices to show
that r is continuous at each point of A. Suppose that r is not continuous at
p ∈ A. Then there exist a convex neighborhood H of p in X and S ⊆ H \A
such that p ∈ clX S and r[S] ∩ H = ∅. Since I is a closed set missing A,
we may assume that S ∩ I = ∅. Let Si, i = 1, 2, 3, 4, be the same as in the
proof of (4)⇒(2). Then p ∈ clX Si for some i. Now, we only show that a
contradiction occurs when p ∈ clX S1 or p ∈ clX S2, since the other cases
can be proved similarly. First, assume that p ∈ clX S1. Since S1 < p and
p ∈ clX S1, there is v ∈ H \A with v < p. We may assume that v < S1 < p.
For each u ∈ S1, since r(u) < u,

(3.4) ϕ(f)(u) > 1/4 for each f ∈ Cu,1.
Define g ∈ C∗k(A) by g(x) = 1 for each x ∈ (−∞, v) ∩ A and g(x) = 0 for
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each x ∈ (v,+∞) ∩ A. Then, for each u ∈ S1, we have g ∈ Cu,1, because
maxKu,1 = r(u) < v < u. Hence, it follows from (3.4) that ϕ(g)(u) > 1/4
for each u ∈ S1. Since p ∈ clX S1, this implies that ϕ(g)(p) ≥ 1/4, but
g(p) = 0 since p > v. This is a contradiction. Next, assume that p ∈ clX S2.
For each u ∈ S2, since r(u) > u,

(3.5) ϕ(f)(u) > 1/4 for each f ∈ Cu,2.
There is h ∈ C∗k(A) such that h(x) = 0 for each x ∈ (−∞, p] ∩ A and
h(x) = 1 for each x ∈ ([p,+∞) \ H) ∩ A. Then, for each u ∈ S2, we have
h ∈ Cu,2, because minKu,2 = r(u) > p > u. Hence, it follows from (3.5)
that ϕ(h)(u) > 1/4 for each u ∈ S2. Since p ∈ clX S2, this implies that
ϕ(h)(p) ≥ 1/4, but h(p) = 0 by the definition. This is a contradiction.

(V) Finally, we prove that (10) implies (2) if A is paracompact and
the cellularity of A is nonmeasurable. Let ϕ : C(A) → C(X) be an Lcch-
extender. We define a retraction r : X → A. Define r(a) = a for each a ∈ A.
For u ∈ X \A, we define r(u) as follows: First, if u = minZ or u = maxZ,
let r(u) = a0. Next, we assume that u 6= minZ and u 6= maxZ. If u
has an immediate predecessor B in Z, let r(u) = aB . If u has no immediate
predecessor but has an immediate successor B′ in Z, let r(u) = aB′ . Finally,
assume that u is not as above. For an open and closed set D in A, define
eD ∈ C(A) by eD(a) = 1 if a ∈ D, and eD(a) = 0 otherwise.

Claim. There exist u0, u1∈X\A such that u0<u<u1 and ϕ(eD)(u)=0,
where D = (u0, u1) ∩A.

P r o o f. Suppose that the claim fails. Then either ϕ(e(v,u)∩A)(u) > 0 for
each v ∈ X \ A with v < u or ϕ(e(u,w)∩A)(u) > 0 for each w ∈ X \ A
with w > u. We only consider the former case, since the proof for the latter
case is similar. Since A is paracompact, there is a regular infinite cardinal
κ and an increasing κ-sequence s : κ → A such that u = sup s[κ] and s[κ]
is discrete closed in A. By the assumption, κ is nonmeasurable. Since u has
no immediate predecessor in Z, by passing to a subsequence if necessary,
we may assume that for each α < κ, there is yα ∈ X \ A with s(α) < yα <
s(α + 1). Then the set Y = {yα : α < κ} is discrete closed in X because
the point u is isolated. For each α < κ, let Iα =

⋃{B ∈ A : yβ < B < yα
for each β < α}. Since Y is discrete closed, each Iα is open and closed in
A and {Iα : α < κ} is a partition of A ∩ (−∞, u). For each E ⊆ κ, let
fE =

∑
α∈E eIα , and let E = {E ⊆ κ : ϕ(fE)(u) > 0}. Observe that if

E ∈ E and E ⊆ F , then F ∈ E , and if E1 ∪E2 ∈ E , then E1 ∈ E or E2 ∈ E .
Now, suppose that there is an infinite, point-finite subfamily {En : n∈N}

of E . For each n ∈ N, choose kn > 0 with ϕ(knfEn)(u) ≥ n, and let
f =

∑
n∈N knfEn . Then f ∈ C(A), because all but finitely many fEn vanish

on each Iα. For each n ∈ N, since f ≥ knfEn , ϕ(f)(u) ≥ ϕ(knfEn)(u) ≥ n,
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which is impossible. Hence, E includes no infinite, point-finite subfamily.
It follows that there is α0 < κ such that {α} 6∈ E for each α > α0.
Put E0 = {α : α0 < α < κ}; then E0 ∈ E by our assumption that
ϕ(e(v,u)∩A(u)) > 0 for each v ∈ X − A with v < u. If for each E ∈ E
with E ⊆ E0, there is E′ ⊆ E such that E′ ∈ E and E \E′ ∈ E , then we can
find an infinite, disjoint subfamily of E . Since it is impossible, there is F ∈ E ,
with F ⊆ E0, such that for each F ′ ⊆ F , either F ′ 6∈ E or F \ F ′ 6∈ E . Then
the family F = {E ∈ E : E ⊆ F} is a free ultrafilter on the set F . Indeed,
we can show that F is closed under finite intersections as follows. First note
that because E1∪E2 ∈ E implies that E1 or E2 belongs to E , it follows that
if F ′ ⊂ F then exactly one of the sets F ′ and F−F ′ fails to belong to E . Now
let Ei ∈ F for i = 1, 2. Then F − Ei 6∈ E so that (F − E1) ∪ (F − E2) 6∈ E .
Thus F − (E1 ∩E2) 6∈ E , so that E1 ∩E2 ∈ E . Hence E1 ∩E2 ∈ F . Since κ
is nonmeasurable, F cannot have the countable intersection property, i.e.,
there is {Fn : n ∈ N} ⊆ F such that Fn+1 ⊆ Fn for each n and

⋂
n∈N Fn = ∅.

Since {Fn : n ∈ N} is point-finite, this is a contradiction.

We finish the definition of r(u). Let D = (u1, u2) ∩ A be as in the
Claim, i.e., ϕ(eD)(u) = 0. Since u has neither an immediate predecessor
nor an immediate successor in Z, there are B,C ∈ A with u1 < B < u <
C < u2. If we put Du,1 = (−∞, u1) ∩ A and Du,2 = (u2,+∞) ∩ A, then
eD + eDu,1 + eDu,2 = 1A. Since ϕ(eD)(u) + ϕ(eDu,1)(u) + ϕ(eDu,2)(u) = 1,
either ϕ(eDu,1)(u) ≥ 1/2 or ϕ(eDu,2)(u) ≥ 1/2. In the former case, define
r(u) = aB , otherwise define r(u) = aC .

We show that r is continuous at each point of A. Let p ∈ A and H a
convex neighborhood of p in X. Then there is g ∈ C(A) such that g(p) = 0,
g[A \ H] = {1} and 0 ≤ g(a) ≤ 1 for each a ∈ A. Let G = H ∩ {x ∈ X :
ϕ(g)(x) < 1/2} \M , where M = {u : u = min(H \A) or u = max(H \A)};
of course, M may be empty. Then G is a neighborhood of p in X such
that G ∩ A ⊆ H. To show that r[G] ⊆ H, let u ∈ G \ A. If u has an
immediate predecessor or an immediate successor in Z, then r(u) ∈ H,
because u 6∈M . Suppose that u has neither. If r(u) < H, then ϕ(eDu,1)(u) ≥
1/2 and eDu,1 ≤ g. If r(u) > H, then ϕ(eDu,2)(u) ≥ 1/2 and eDu,2 ≤ g. In
each case, ϕ(g)(u) ≥ 1/2, which contradicts the fact that u ∈ G. Hence,
r[G] ⊆ H, which completes the proof of Theorem 1.

We give examples showing that the implication (9)⇒(2) need not be true
without the assumptions on A. The first one shows that paracompactness of
A is necessary to prove (9)⇒(2). LetX be a linearly ordered set and x a point
of X with no immediate predecessor. Then there exists a unique regular
cardinal κ such that there is an increasing κ-sequence s : κ→ (−∞, x) with
x = sup s[κ]. We call κ the left cofinality of x and write κ = lcf(x). Similarly
we define the right cofinality rcf(x) of x using a decreasing κ-sequence.



Dugundji extenders and retracts 159

Example 2. There exists a 0-dimensional , countably compact , GO-space
X such that for every closed subspace A, there is an Lch-extender ϕ :
C(A)→ C(X), but some closed subspace is not a retract.

P r o o f. Let Q be an η1-set, i.e., a linearly ordered set Q such that for
each pair of subsets C,D ⊆ Q with |C| < ω1, |D| < ω1 and C < D, there is
x ∈ Q with C < x < D (for details on η1-sets, see [7, Chapter 13]). Let R
be the Dedekind completion of Q and X the space obtained from the LOTS
R by making each point of Q isolated. For each countable set C ⊆ Q, there
are x, y ∈ Q such that ∅ < x < C < y < ∅ by the definition of an η1-set.
Hence, R has neither a countable cofinal subset nor a countable coinitial
subset. Moreover, lcf(x) ≥ ω1 and rcf(x) ≥ ω1 for each x ∈ Q. Hence, X is
countably compact. Let A be a closed subspace of X. Since C(A) = C∗(A),
there is an Lcch-extender ϕ : C(A) → C(X) by Heath–Lutzer’s extension
theorem (cf. Remark 1).

Now, suppose that ϕ is not an Lch-extender. Then there are f ∈ C(A)
and x ∈ X such that ϕ(f)(x) ∈ clR f [A] \ f [A]. If we define g(a) = |f(a) −
ϕ(f)(x)|−1 for each a ∈ A, then g is continuous and unbounded, which
contradicts countable compactness of A. Hence, ϕ is an Lch-extender.

We show that the closed subspace B = X \Q is not a retract of X. Sup-
pose that there is a retraction r : X → B. Let Q1 = {q ∈ Q : r(q) > q} and
Q2 = {q ∈ Q : r(q) < q}. Then Q1 or Q2 is dense in some open interval I of
the LOTS R. Now, we assume that Q1 is dense in I. Then we can inductively
define qn ∈ Q1 so as to satisfy qn−1 < qn < min{r(q1), . . . , r(qn−1)} for each
n > 1. Let p = supn∈N qn. Since Q is an η1-set, p ∈ B. Thus, p = lim qn in
X, but there is x ∈ Q with p < x < infn∈N r(qn), because Q is an η1-set.
This contradicts the continuity of r. Hence, B is not a retract of X.

The next example shows that the assumption that the cellularity of A is
nonmeasurable is necessary to prove (9)⇒(2).

Example 3. If there exists a measurable cardinal , then there exists a
0-dimensional , hereditarily paracompact , GO-space X with a closed subspace
A which has an Lch-extender ϕ : C(A)→ C(X) but is not a retract.

P r o o f. Let κ be the first measurable cardinal. Let L = Zκ be the LOTS
with the lexicographic order and let A={x∈L : (∃α<κ)(∀β>α)(x(β)=0)}.
Then it is easily checked that A is dense in L, |A| = κ and lcf(x) = rcf(x) = κ
for each x ∈ L. Let X be the space obtained from L by making each point
of L \A isolated.

First, suppose that X has a nonparacompact subspace. Then it follows
from [4, Theorem 2.3] that for some uncountable regular cardinal τ , some
stationary set T of τ is homeomorphic to a subspace of X. By the proof of
Theorem 1, we may assume that the embedding h : T → X is monotone
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increasing or monotone decreasing. Since |A| = κ and each point of X \A is
isolated, τ ≤ κ. Since lcf(x) = rcf(x) = κ for each x ∈ X, X cannot contain
any limit point of h[T ], which is a contradiction. Hence, X is hereditarily
paracompact.

Next, we show that there is an Lch-extender ϕ : C(A) → C(X).
Let f ∈ C(A) and u ∈ X \ A. Since lcf(u) = κ, there is an increasing
κ-sequence s : κ → X such that u = sup s[κ]. Since A is dense in the
LOTS L, we may assume that s[κ] ⊆ A. Put D = s[κ]. Since |D| is measur-
able, there is a free κ-complete ultrafilter p on D. Then f takes a constant
value ru on some element of p. For each x < u, {q ∈ D : q > x} ∈ p,
because |{q ∈ D : q ≤ x}| < κ. This implies that lim infx<u f(x) ≤ ru ≤
lim supx<u f(x). Define ϕ(f) by ϕ(f)|A = f and ϕ(f)(u) = ru for each
u ∈ X \A. Then ϕ : C(A)→ C(X) is an Lch-extender.

Finally, we show that A is not a retract of X. The order topology of
L is identical with the <κ-box topology. Hence, it is easily proved that L
is κ+-Baire, i.e., L cannot be the union of κ nowhere dense subsets. Now,
suppose that there is a retraction r : X → A. Since L is κ+-Baire, there is
p ∈ A such that r−1(p) is dense in some open interval I in L. Choose q ∈ A∩I
with q 6= p. Then q ∈ clL r−1(p), and hence q ∈ clX r−1(p) = r−1(p) by the
definition of the topology of X. Thus q = r(q) = p. This contradicts the
choice of q. Hence, A is not a retract of X.

The space X in Example 3 is not perfectly normal. We do not know
whether the implication (10)⇒(2) holds for every closed subspace of a per-
fectly normal GO-space assuming no cellurality conditions.

4. Perfectly normal GO-spaces. In this section, we consider extension
properties of perfectly normal GO-spaces. For f, g ∈ C(X), we write f ≤ g
if f(x) ≤ g(x) for each x ∈ X. For a subset I ⊆ R, a map ϕ : C(X, I) →
C(Y, I) is said to be monotone if for each f, g ∈ C(X, I), ϕ(f) ≤ ϕ(g)
whenever f ≤ g. For a subspace A ⊆ X, we call an extender ϕ : C(A, I)→
C(X, I) anMch-extender (resp.Mcch-extender) if it is monotone and ϕ(f)[X]
is included in the convex hull (resp. closed convex hull) of f [A] for each
f ∈ C(A, I). Every Lcch-extender is an Mcch-extender and every Lch-exten-
der is an Mch-extender. Recall that a zero-set of a space X is a set of the
form h−1(0) for some h ∈ C(X).

Theorem 2. The following hold for a zero-set A of a space X.

(1) If there exists an Lcch-extender from C(A) to C(X), then there exists
an Lch-extender from C(A) to C(X).

(2) If there exists an Lcch-extender from C∗(A) to C∗(X), then there
exists an Lch-extender from C∗(A) to C∗(X).
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(3) If there exists an Mcch-extender from C∗(A) to C∗(X), then there
exists an Mch-extender from C(A) to C(X).

P r o o f. We may assume that A is nonempty. Fix a point a0 ∈ A. Since A
is a zero-set, there is h ∈ C(X) such that h−1(0) = A and 0 ≤ h(x) ≤ 1 for
each x ∈ X. Let ϕ : C(A)→ C(X) be an Lcch-extender. For each f ∈ C(A),
define θ(f) ∈ C(X) by θ(f)(x) = (1−h(x))·ϕ(f)(x)+h(x)·f(a0) for x ∈ X.
Then θ : C(A) → C(X) is an Lch-extender. The second statement can be
proved similarly. To prove the third statement, let ψ∗ : C∗(A) → C∗(X)
be an Mcch-extender and let I = (−1, 1) ⊆ R. For each f ∈ C(A, I), define
ψ(f) ∈ C∗(X) by ψ(f)(x) = (1− h(x)) · ψ∗(f)(x) + h(x) · f(a0) for x ∈ X.
Then ψ(f) ∈ C(X, I) and ψ : C(A, I) → C(X, I) is an Mch-extender.
Consider the function g : R → I defined by g(x) = x/(1 + |x|) for x ∈ R.
Define a monotone map µ1 : C(A) → C(A, I) by µ1(f) = g ◦ f for f ∈
C(A) and a monotone map µ2 : C(X, I) → C(X) by µ2(f) = g−1 ◦ f for
f ∈ C(X, I). Then µ2 ◦ ψ ◦ µ1 is an Mch-extender from C(A) to C(X).

Statement (1) of Theorem 2 shows that the converse of the implication
(9)⇒(10) in Theorem 1 holds for a zero-set A of a GO-space X. By Heath–
Lutzer’s extension theorem and Theorem 2, we have the following corollary:

Corollary 3. Let X be a perfectly normal GO-space. Then there exists
an Lch-extender from C∗(A) to C∗(X) for every closed subspace A of X.

Remark 4. In [1, Remark IV.5.2], van Douwen asked if there is an Lch-
extender ϕ : C∗(A)→ C∗(S) for every closed subspace A of the GO-space S
quoted before Example 1. Since S is perfectly normal, Corollary 2 answers
the question positively. (The question also appears in [14, Question 134],
but is misquoted mixing up the space S with the Sorgenfrey line.) For the
Michael line M , it is known that there is neither an Lch-extender from C∗(Q)
to C∗(M) nor a monotone extender from C(Q) to C(M) (cf. van Douwen [1]
and Stares–Vaughan [17]).

Heath–Lutzer–Zenor [10] proved that every GO-space is monotonically
normal and for every closed subspace A of a monotonically normal space X,
there exists a monotone extender ϕ : C(A, [0, 1])→ C(X, [0, 1]). In [1, The-
orem 2.1(23b)], van Douwen proved that if there is a monotone extender
from C(A, [0, 1]) to C(X, [0, 1]), then there is an Mcch-extender from C∗(A)
to C∗(X). Hence, we have the following corollary by Theorem 2:

Corollary 4. Let X be a perfectly normal , monotonically normal space.
Then there exists an Mch-extender from C(A) to C(X) for every closed
subspace A of X.

As we have shown in Section 2, there exists a perfectly normal GO-space
X with a closed subspace A which satisfies none of conditions (1)–(10) in
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Theorem 1. Finally, we give a sufficient condition for A to satisfy those
conditions for a closed subspace A of a perfectly normal GO-space X. We
need some definitions. For a GO-space X = (X,≤, τ), let E(X) = {x ∈ X :
[x,+∞) ∈ τ or (−∞, x] ∈ τ}. Let λ(≤) be the order topology on (X,≤). For
S ⊆ X, let clλ S denote the closure of S in (X,λ(≤)) and clτ S the closure
of S in (X,≤, τ). For a, b ∈ X, if there is no x ∈ X with a < x < b, we write
a = b− and b = a+.

Definition. Let X = (X,≤, τ) be a GO-space and A a closed subspace.
Recall that UA,0 =

⋃{U : U ∈ UA,0}. For x ∈ A, we write UA,0(<x) =
UA,0∩ (−∞, x) and UA,0(>x) = UA,0∩ (x,+∞). Observe that a point x ∈ A
is in the boundary of A in XA,0 if and only if either x ∈ clτ UA,0(<x) or
x ∈ clτ UA,0(>x). A point x ∈ A is a singular point of A if x satisfies one of
the following conditions (i) and (ii):

(i) x ∈ clλ UA,0(<x) ∩ clλ UA,0(>x) and either x ∈ clτ UA,0(<x) \
clτ UA,0(>x) or x ∈ clτ UA,0(>x) \ clτ UA,0(<x).

(ii) x∈{a, b}, where a=b− in X, a∈clτ UA,0(<a) and b∈clτ UA,0(>b).

The set of all singular points of A is denoted by S(A).

For example, consider the Cantor set K as a closed subspace of the
Sorgenfrey line S. Let K ′ be the subset of K consisting of all end-points.
Let S′ = S \ K ′ and A = S′ ∩ K. Then A is a closed subset of S′ and all
points in A are singular points of A satisfying condition (i).

On the other hand, in the space X in Example 1, all points of A are
singular points of A satisfying condition (ii). Hence, S(A) = A.

Theorem 3. Let X be a perfectly normal GO-space and A a closed
subspace such that S(A) is σ-discrete in X. Then A is a retract of XA,0,
and hence, A satisfies conditions (2)–(10) in Theorem 1.

P r o o f. As in the proof of (i)⇒(2) in Theorem 1, we may assume that
each element of UA,0 is a singleton, i.e., UA,0 is a discrete subspace. Since X
is perfectly normal, UA,0 is σ-discrete in X. Let Z be the boundary of A in
XA,0 and let Y = Z ∪ UA,0, i.e., Y is the closure of UA,0 in XA,0.

We now show that Y is metrizable. If we prove it, then it follows from
[3, Lemma] that Z is a retract of Y , which immediately implies that A is a
retract of XA,0. We need the following theorem by Faber [6].

Faber’s Theorem. Let S be a GO-space. Then S is perfectly normal if
and only if every disjoint family of convex open sets in S is σ-discrete in S.
Further , S is metrizable if and only if S has a σ-discrete dense subset D
such that E(S) ⊆ D.

We continue the proof of Theorem 3. Since Y is closed in XA,0 and
XA,0 is closed in X, Y is closed in X. Let V be the family of all convex
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components of X \ Y and put B = {x ∈ Z : (∃V ∈ V)(x = l(V ) or
x = r(V ))}. Then, by Faber’s theorem, V is σ-discrete in X, and hence, so
is the set B. Let C = {x ∈ Z : (∃u ∈ UA,0)(x = u− or x = u+)}. Since
UA,0 is σ-discrete in X, so is the set C. Let D = S(A) ∪ B ∪ C ∪ UA,0.
By the assumption, it follows that D is also σ-discrete in X. Finally, let
P = {x ∈ Z : x ∈ clτ UA,0(<x) ∩ clτ UA,0(>x)} and consider the subspace
Q = D ∪ P of X. Then, since UA,0 ⊆ D, D is dense in Q and E(Q) ⊆ D.
Hence, it follows from Faber’s theorem that Q is metrizable. We show that
Y ⊆ Q. Since UA,0 ⊆ Q, it is enough to show that Z ⊆ Q. Let x ∈ Z.
Then, by the definition of Z, either x ∈ clτ UA,0(<x) or x ∈ clτ UA,0(>x).
If x ∈ clτ UA,0(<x) ∩ clτ UA,0(>x), then x ∈ P ⊆ Q.

Now, we assume that x ∈ clτ UA,0(<x) \ clτ UA,0(>x). We consider two
cases:

Case 1: x has no immediate successor in X. If x = l(V ) for some V ∈ V,
then x ∈ B ⊆ Q. If x 6= l(V ) for each V ∈ V, then x = inf (Y ∩ (x,+∞)),
and hence, x ∈ clλ UA,0(>x). Since x ∈ clτ UA,0(<x), x ∈ S(A) ⊆ Q.

Case 2: x has an immediate successor x+ in X. If x+ 6∈ Y , then x+ ∈ V
for some V ∈ V. Since x = l(V ), x ∈ B ⊆ Q. If x+ ∈ UA,0, then x ∈ C ⊆ Q.
If x+ ∈ Z, then x+ ∈ clτ UA,0(>x). Since x ∈ clτ UA,0(<x), x ∈ S(A) ⊆ Q.

Thus, x ∈ Q. If x ∈ clτ UA,0(>x)\clτ UA,0(<x), we can prove that x ∈ Q
similarly. Hence, Y ⊆ Q, which implies that Y is metrizable.

For a closed subspace A of a GO-space X, S(A) ⊆ ∂A ∩ E(X), where
∂A is the boundary of A in X. Hence, we have the following corollary from
Theorem 3:

Corollary 5. Let X be a perfectly normal GO-space and A a closed
subspace of X such that ∂A ∩ E(X) is σ-discrete in X. Then A satisfies
conditions (2)–(10) in Theorem 1.

Remark 5. The set S(A) need not be σ-discrete in X even if A is a
retract of a separable GO-space X. In fact, let S′ and A be as defined before
Theorem 3. Since the Sorgenfrey line S is hereditarily retractifiable (cf. van
Douwen [1], [2]), A is a retract of S′, but, as we remarked before Theorem 3,
S(A) is not σ-discrete.

Now, let S2(A) be the set of all singular points of A satisfying condition
(ii) in the Definition. For the closed set A in the space of Example 1, S2(A) =
S(A) = A is not σ-discrete. We do not know whether Theorem 3 remains
true if “S(A)” is replaced by “S2(A)”.
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