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Abstract. We consider the question: when does a Ψ -space satisfy property (a)? We
show that if |A| < p then the Ψ -space Ψ(A) satisfies property (a), but in some Cohen mod-
els the negation of CH holds and every uncountable Ψ -space fails to satisfy property (a).
We also show that in a model of Fleissner and Miller there exists a Ψ -space of cardinality p

which has property (a). We extend a theorem of Matveev relating the existence of certain
closed discrete subsets with the failure of property (a).

1. Introduction. A space X has property (a) [13] provided for every
open cover U and dense set D of X there exists a closed discrete (in X)
F ⊂ D such that st(F,U) = X. Property (a) was introduced by M. Matveev
in order to explore the absoluteness condition in the definition of absolutely
countable compactness [11]. Some results on property (a) can be found in
[9], [13], and [14].

In the first part of this paper we consider the question: Under what
conditions does the space Ψ(A) satisfy property (a)? Recall that for an
almost disjoint family A of infinite subsets of ω, Ψ(A) denotes the associated
topological space whose underlying set consists of the set of natural numbers
ω, and one point xA for every A ∈ A. The points in ω are declared to be
isolated, and basic neighborhoods of a point xA are of the form {xA}∪(A\n)
for all n ∈ ω (see [6, 5I], or [3, 3.6.I]). Evidently, if A is countable, then
Ψ(A) has property (a); so we are only interested in uncountable almost
disjoint families. The statement “Ψ(A) has property (a)” translates into the
following set-theoretic statement about A:

(∗) (∀f : A → ω)(∃P ⊂ ω)(∀A ∈ A)(0 < |P ∩ (A \ f(A))| < ω).

We generalize in §5 the following theorem which can be applied to Ψ(A).
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Theorem 1 (M. Matveev [13]). If X is separable, and contains a closed
discrete subset of cardinality c, then X does not have property (a).

Corollary 1. If |A| = c, then Ψ(A) does not satisfy property (a).

It is known, and easy to see, that if A is maximal (i.e., Ψ(A) is pseu-
docompact), then Ψ(A) does not satisfy property (a) [14]. We recall that
there are models of Hechler [7] in which the cardinality of the continuum c
is arbitrarily large and there exist maximal almost disjoint families of every
uncountable cardinality less than or equal to c. Part of our motivation for
this paper was to find what other conditions on A imply that Ψ(A) has (or
does not have) property (a). While this problem is primarily motivated by
topological concerns its analysis led us to some new questions about almost
disjoint families which may be of independent interest.

Our results yield the following one concerning models of set theory:

Theorem 2. (1) [p = c] ⇒ Ψ(A) satisfies property (a) if and only if
|A| < c.

(2) Adding any number of Cohen reals to a model of CH results in a
model where Ψ(A) satisfies property (a) if and only if A is countable.

(3) There is a model with an almost disjoint family A of size p where
Ψ(A) satisfies property (a).

It is well known that p = ω1 in the Cohen model used in part (2) of
Theorem 2; so in the models used in both parts (1) and (2) of Theorem 2,
every Ψ -space of size p fails to satisfy property (a). This motivates part (3)
of Theorem 2. The proof of Theorem 2 is given in Sections 2, 3, and 4.

To generalize Theorem 1, we introduce in §5 two new cardinal invariants
related to density and extent, and we study these further in §7. In §6 we
consider the effect of property (a) on the inequality e(x) < 2d(X). Some
open questions are given in §8. We use certain small cardinals throughout
the paper; see [2] and [5].

2. Martin’s Axiom and Ψ(A). Recall that a family P of subsets of
the natural numbers has the strong finite intersection property provided
every finite intersection of members of P is infinite. An infinite S ⊂ ω is a
pseudointersection for P provided S \ P is finite for all P ∈ P (see [2]).

Definition 1. p = min{|P| : P ⊂ [ω]ω has the strong finite intersection
property, but has no pseudointersection}.

We use two basic facts about the cardinal p:

(1) (Bell’s theorem [1], [5, 14C]) if κ < p, then “MA for σ-centered posets
of cardinality κ” holds, and

(2) Martin’s Axiom implies that p = c [5, 11D].
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We say that an almost disjoint family A is soft if there exists P ⊆ ω
such that for all A ∈ A, 0 < |P ∩ A| < ω. It is obvious that any family A
that satisfies (∗) is soft, and that there exist soft families of every cardinality
≤ c (thus a soft family A of cardinality c does not satisfy (∗)). We use the
following observation: If κ is a cardinal such that every almost disjoint family
A with |A| < κ is soft, then every almost disjoint family A with |A| < κ
satisfies (∗); hence the corresponding Ψ(A) satisfies property (a).

Theorem 3. If |A| < p then Ψ(A) satisfies property (a).

P r o o f. It suffices to prove that any almost disjoint family A with |A| <
p is soft. This can can be deduced directly from Fremlin’s “portmanteau
theorem” [5, 21A]. We sketch a proof that is a slight variation on the proof
that “MA ⇒ a = c” [10, 2.16]. Let A with |A| < p be given. According to
[10, 2.7] “the almost disjoint sets partial order” PA is defined to be

{(s, F ) : s ∈ [ω]<ω, F ∈ [A]<ω},
where (s′, F ′) ≤ (s, F ) if and only if

s ⊂ s′, F ⊂ F ′ and (∀A ∈ F )(A ∩ s′ ⊂ s).
We use the following subset:

QA = {(s, F ) ∈ PA : for every A ∈ F, s ∩A 6= ∅}.
Since (PA,≤) is a σ-centered poset, so is (QA,≤). Moreover, for each A ∈ A,

DA = {(s, F ) ∈ QA : A ∈ F}
is dense in QA. MA says that there is a filter G ⊂ QA such that G∩DA 6= ∅
for all A ∈ A. Then P =

⋃{s : (∃F )((s, F ) ∈ G)} is the desired set.

3. Cohen forcing and Ψ(A)

Theorem 4. In the Cohen model , Ψ(A) does not have property (a) when-
ever A is an uncountable almost disjoint family.

P r o o f. We force with Fn(κ, 2) over a model M of CH. If κ ≤ ω1 the
result follows from Corollary 1; so we assume that κ > ω1. Fix anM-generic
set G ⊆ Fn(κ, 2). We claim that in M[G] the conclusion of the theorem
holds. To show this, fix an uncountable almost disjoint family A ∈ M[G].
It is easy to check that if Ψ(A0) does not have property (a) for some subset
A0 ⊆ A then Ψ(A) will also fail to have property (a). Therefore we may
assume that A is of size ω1. Therefore there is an I ⊆ κ of size ω1 such that
A ∈ M[G ∩ Fn(I, 2)]. Note that CH holds in this intermediate model, and
that M[G] is obtained by forcing with Fn(κ \ I, 2) over M[G ∩ Fn(I, 2)].
Therefore we may also assume that A is in the ground model M. Working
with the negation of (∗), we now construct an open cover of X = Ψ(A), also
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in the ground model, witnessing that X does not have property (a) in the
extension. This open cover will be of the form

Uf = {{a} ∪ (a \ f(a)) : a ∈ A} ∪ {{n} : n ∈ ω}
where f : A → ω. We need the following lemma.

Lemma 1. Assume CH. Let A be an almost disjoint family of size ω1.
There is a function f : A → ω such that for each Fn(ω, 2)-name τ for a
subset of ω, if

(a) 1 ° (∀a ∈ Ǎ)(|τ ∩ a| < ω)

then

(b) 1 ° (∃a ∈ Ǎ)(τ ∩ (a \ f̌(a)) = ∅).
P r o o f. Enumerate A as {aα,n : α < ω1, n < ω}, and by CH, enumerate

all Fn(ω, 2)-nice names for subsets of ω as {τα : α < ω1}. Fix α < ω1. If
there is a p ∈ Fn(ω, 2) and an a ∈ A such that

p ° |ǎ ∩ τ | = ω

then let f(aα,n) = 0 for each n ∈ ω. So assume that

(c) 1 ° (∀a ∈ Ǎ)(|τα ∩ a| < ω).

It is well known that Fn(ω, 2) does not add any function in ωω dominat-
ing all ground model functions in ωω. In the language of forcing extensions
this means that if G is Fn(ω, 2)-generic overM then for each s ∈ ωω∩M[G]
there is an f ∈ ωω ∩M such that {n : f(n) > s(n)} is infinite (see [10],
Exercise VII.G7). Therefore

E = {p ∈ Fn(ω, 2) :

(∃f ∈ ωω)(p ° “f̌(n) > max(τα ∩ ǎα,n) for infinitely many n”)}
is a dense subset of Fn(ω, 2). For each p ∈ E fix a corresponding fp ∈ ωω.
Since E is countable, we may choose gα ∈ ωω such that for each p ∈ E,
gα(n) > fp(n) for all but finitely many n ∈ ω. Then

(d) 1 ° {n ∈ ω : ǧα(n) > max(τα ∩ ǎα,n)} is infinite.

(We will only need the fact that this set is forced to be nonempty). Now
define f : A → ω by f(aα,n) = gα(n) for each α ∈ ω1 and each n ∈ ω. If

(e) 1 ° (∀a ∈ Ǎ)(|τ ∩ ǎ| < ω),

then there is an α such that

(f) 1 ° τ = τα.

Therefore, by (d),

1 ° (∃n ∈ ω)(τα ∩ ǎα,n ⊆ ǧα(n)).
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But this clearly means that

1 ° (∃a ∈ Ǎ)(τα ∩ (a \ f̌(a)) = ∅).
This completes the proof of Lemma 1.

To complete the proof of Theorem 4, fix G ⊆ Fn(κ, 2) generic over M,
and fix f given by the lemma. We claim that in M[G], X does not have
property (a). By way of contradiction assume otherwise. Then, since ω is
dense in X, there is an F ⊆ ω closed discrete such that st(F,Uf ) = X. By
(∗), F ∩a is finite for each a ∈ A and F ∩(a\f(a)) 6= ∅ for each a ∈ A. Since
F is countable, there is a countable I ⊆ κ such that F ∈ M[G ∩ Fn(I, 2)].
But as Fn(I, 2) is isomorphic to Fn(ω, 2) and G∩Fn(I, 2) is Fn(I, 2)-generic
over M, there is an Fn(ω, 2)-name τ such that

1 ° (∀a ∈ Ǎ)(|τ ∩ a| < ω and τ ∩ (a \ f̌(a)) 6= ∅).
This contradicts Lemma 1.

4. A Ψ-space of size p with property (a). We prove that it is con-
sistent that there is an almost disjoint family A of size p with property (a).
Since the existence of a Q-set implies the existence of a normal Ψ -space of
size ω1, the existence of A follows from the next two theorems. Recall that
d denotes the smallest cardinality of a dominating family of functions from
ω to ω with respect to the mod finite order (e.g., see [2]).

Theorem 5. Suppose that A ⊆ [ω]ω is an almost disjoint family such
that |A| < d and such that Ψ(A) is normal. Then Ψ(A) has property (a).

Theorem 6 (Fleissner–Miller). If ZFC is consistent then so is ZFC +
(there is a Q-set) + (d = 2ω = ω2) + (p = ω1).

Proof of Theorem 5. We need some notation. For a finite sequence s ∈ ωn
and k ∈ ω, s _ k ∈ ωn+1 is the sequence extending s whose (n+1)st element
is k. For sequences s, t ∈ ωn we write s ≤ t if s(k) ≤ t(k) for each k < n.

Fix A as in the hypothesis of the theorem. It suffices to prove that any
such A is soft. For each s ∈ ω<ω define As ⊆ A and open sets Us, Vs ⊆ Ψ(A)
as follows. A∅ = ∅, U∅ = ∅ and V∅ = Ψ(A). For each n ∈ ω let A〈n〉 = {a ∈
A : a ∩ n 6= ∅}. Using normality of Ψ(A) fix disjoint open sets U〈n〉 ⊇ A〈n〉
and V〈n〉 ⊇ A \A〈n〉. In addition we choose these open sets so that

(a) n < m implies U〈n〉 ⊆ U〈m〉 and V〈m〉 ⊆ V〈n〉.
Fix n > 1 and suppose that As, Us and Vs have been defined for each s ∈ ωn
so that

(b) As ⊆ A, Us and Vs are open in Ψ(A) such that Us ∩ Vs = ∅ for each
s ∈ ω≤n.

(c) Us ⊇
⋃
i≤nAs|i and Vs ⊇ A \

⋃
i≤nAs|i are disjoint open sets.
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(d) Us|i ⊆ Us|j and Vs|i ⊇ Vs|j for each i < j ≤ n and for each s ∈ ωn.

Fix s ∈ ωn+1. Let

As =
{
a ∈ A \

⋃

i≤n
As|i : a ∩ (s(n) \ s(n− 1)) ∩ Vs|n 6= ∅

}
.

Using normality, fix a clopen U ⊆ Ψ(A) such that U ∩A = As, U ∩Us|n = ∅
and U ⊆ Vs|n. Let Us = Us|n ∪ U and let Vs ⊆ Vs|n be an open set such
that A \⋃i≤n+1As|i ⊆ Vs and Us ∩Vs = ∅. This completes the construction
of the family {As, Us, Vs : s ∈ ω<ω}. Notice that the sets As satisfy the
following properties.

(e) For each s ∈ ωn and for each k > j ≥ s(n− 1), As_j ⊆ As_k.
(f) For each s ∈ ωn, A =

⋃
i≤nAs|i ∪

⋃
k>s(n−1)As_k.

For each a ∈ A define fa : ω → ω as follows. Let fa(0) be the minimum k
such that a ∈ A〈k〉. For n > 1, having defined fa|n let fa(n) be the minimum
k such that for each s ∈ ωn, if s ≤ fa|n and a 6∈ ⋃i≤nAs|i, then a ∈ As_k.
Clause (f) and the fact that the set of such s is finite guarantee that fa(n)
is well defined.

Using |A| < d, fix an increasing f ∈ ωω such that for each a ∈ A there
is an n ∈ ω such that f(n) ≥ fa(n).

Lemma 2. A =
⋃
n∈ω Af |n.

P r o o f. Fix a ∈ A. Fix n minimal so that f(n) ≥ fa(n). Suppose that
a 6∈ ⋃i≤nAf |i. Since f |n ≤ fa|n, a ∈ A(f |n)_fa(n) by the definition of fa(n).
By clause (e), a ∈ A(f |n)_k for each k ≥ fa(n) so a ∈ Af |n+1.

Now we define X that will witness that A is soft. Let S0 = f(0). For each
n > 0 let Sn = (f(n)\f(n−1))∩Vf |n and let X =

⋃
n∈ω Sn. Fix a ∈ Af |n+1.

By the definition of Af |n+1, a ∩ Sn 6= ∅ and by (b) and (d), a ∈ Uf |n+1 ⊆
Uf |m for all m > n. By our construction we also have Uf |n+1 ∩ Vf |m = ∅
for each m > n. Therefore, a ∩⋃m>n Sm ⊆ a \ Uf |n+1. But since Uf |n+1 is
an open set containing a, a \ Uf |n+1 is finite and therefore a ∩⋃m>n Sm is
finite. Therefore 0 < |a ∩X| < ω as required.

Proof of Theorem 6. One of the models of [4] satisfies the conclusion
of the theorem. Fleissner and Miller construct a model where there is a
Q-set concentrated on a countable set. Therefore b = ω1 in this model (see
Theorem 10.2 in [2]) and hence p = ω1. The forcing used to obtain the model
is an ω2 length finite support iteration of CCC partial orders. Therefore any
set of reals of size ω1 appears at some initial stage α < ω2. And since it is
a finite support iteration, V Pα+ω contains a Cohen real over V Pα which is
therefore not dominated by any real in V Pα . So no set of reals of size ω1 is
dominating.
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5. Density discreteness and cofinality. Recall the definition of den-
sity of a space X:

d(X) = min{|D| : D is a dense subset of X}+ ω.

Matveev’s proof of Theorem 1 yields the following more general state-
ment.

Theorem 7 (Matveev). If X has a closed discrete set F with |F | ≥ 2d(X),
then X does not satisfy property (a).

In order to extend this result we introduce two new cardinal invariants.

Notation. For a dense set D ⊂ X, let FD denote the set of all closed
discrete (in X) subsets of D.

Definition 2. The density discreteness number of a space X is

dd(X) = min{|FD| : D is dense in X}+ ω.

Clearly, dd(X) ≤ 2d(X), and if X is a T1-space, then d(X) ≤ dd(X) ≤
2d(X).

Let F be a family of sets. We recall that C ⊂ F is said to be cofinal in
F provided for every F ∈ F there exists C ∈ C such that F ⊂ C.

Definition 3. The density discreteness cofinality of a space X is the
following number:

ddc(X) = min{|C| : D is dense in X and C is cofinal in FD}+ ω.

Obviously, ddc(X) ≤ dd(X), but ddc(X) < d(X) is possible. Indeed,
consider the following

Example 1. There exists a metrizable space X such that ddc(X) <
d(X) < dd(X).

P r o o f. Let X = (ω1×ω)∪{∞} where the points of ω1×ω are isolated,
and the sets B(∞, n) = {∞}∪{(α, i) : i > n, α < ω1} for n < ω form a base
at ∞. Now D = ω1 × ω is dense in X and C = {ω1 × n : n < ω} is cofinal
in FD since every set in X that intersects infinitely many levels (ω1 × {n})
has ∞ as a limit point; so ddc(X) = ω < ω1 = d(X) < 2ω1 = dd(X).

Theorem 8. If X has a closed discrete subset F with |F | ≥ ddc(X), and
the interior of F is empty , then X does not satisfy property (a).

P r o o f. The proof uses the main idea in Matveev’s proof of Theorem 1.
Let D be dense and CD cofinal in FD such that ddc(X) = |CD|. Since the
interior of F is empty, D \ F is dense in X, FD\F ⊂ FD,

C = {H \ F : H ∈ CD}
is cofinal in FD\F , C ∩ F = ∅ for all C ∈ C, and |C| ≤ |CD| = ddc(X); so
|C| = ddc(X).
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Let ddc(X) = κ, list C as {Hα : α < κ}, and list κ points of F as G =
{xα : α < κ}. For each α < κ, get an open set Uα such that Uα ∩G = {xα},
and Uα ∩Hα = ∅. Then the open cover U = {Uα : α < κ} ∪ {X \ G} and
the dense set D \ F demonstrate that X does not satisfy property (a): If
P ⊂ D \ F is closed discrete in X, then for some α < κ,

st(P,U) ⊂ st(Cα,U) ⊂ X \ {xα}.
This completes the proof.

The hypothesis “F has nonempty interior” in Theorem 8 cannot be
deleted. The space X in Example 1 provides a counterexample since any
space with exactly one nonisolated point obviously satisfies property (a).

Corollary 2. If X has a closed discrete subset F with |F | ≥ dd(X),
then X does not satisfy property (a).

P r o o f. Put G = {x ∈ F : {x} is open in X}. It suffices to show that
|G| < |F | because we can then apply Theorem 8 to F \G. Suppose |G| = |F |.
Since G is a set of isolated points, G ⊂ D for every dense set D. Thus |FD| ≥
2|G| = 2|F |; so we have 2|F | ≤ dd(X). But this leads to the contradiction

dd(X) ≤ |F | < 2|F | ≤ dd(X).

Since dd(X) ≤ 2d(X), Corollary 2 shows immediately that Matveev’s
Theorem 7 is a corollary to Theorem 8. Also, we note that Corollary 2 can
be used to show that Ψ(A) does not have property (a) whenever |A| = c or
A is maximal.

6. Extent. We recall the definitions of extent of a space X:

e(X) = sup{|F | : F is a closed discrete subset of X}+ ω.

In general the two numbers e(X) and ddc(X) are not related. For the
space X in Example 1, we have ddc(X) < e(X), and for the space X =
L(ω1), the one-point Lindelöfization of the discrete space of size ω1, we have
e(X) < ddc(X). Both of these spaces satisfy property (a).

Corollary 3. If X has property (a), then e(X) ≤ dd(X). In particular ,
e(X) ≤ 2d(X).

P r o o f. By contradiction, if e(X) > dd(X), then there exists a closed
discrete set F with |F | ≥ dd(X); so by Corollary 2, X does not satisfy
property (a), which is a contradiction.

It is known that for any regular space X, e(X) ≤ w(X) ≤ 2d(X) [8,
3.3(b)]. Thus property (a) and regularity both imply e(X) ≤ 2d(X). On the
other hand, property (a) implies e(X) ≤ dd(X), and regularity does not (if
X = Ψ(A) where A is maximal, then dd(X) = ω < e(X) ≥ ω1). Of course,
regularity does not yield a strict inequality in either case (if X = Ψ(A)
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where A is not maximal and |A| = c, then e(X) = dd(X) = 2d(X) = c).
Likewise, property (a) does not imply a strict inequality in the first case (if
X is a compact separable space, then e(X) = dd(X) = ω).

We are left with the following question: Does property (a) imply e(X) <
2d(X)? We show that an affirmative answer to this question is consistent
with and (assuming a certain kind of inaccessible cardinal) independent of
the usual axioms of ZFC. Let S stand for the following statement:

S : “If X has property (a), then e(X) < 2d(X)”.

We will use the set-theoretic assumption “2κ is a successor cardinal for
each cardinal κ”. This assumption is implied by GCH, and is consistent with
MA+¬CH. We also use the assumption “p = c and c is weakly inaccessible”
(concerning the consistency of this assumption, see [10, VII, Cor. 6.5]).

Theorem 9. (i) If 2κ is a successor cardinal for each cardinal κ then S.
(ii) If p = c and c is weakly inaccessible then ¬S.

P r o o f o f (i). We prove S by contrapositive; so we assume that e(X) ≥
2d(X). By our set-theoretic assumption, 2d(X) = λ+ for some λ. Thus there
exists a closed discrete F ⊂ X with |F | = λ+ = 2d(X). By Theorem 7, X
does not have property (a).

P r o o f o f (ii). We assume “p = c and c is weakly inaccessible”, and
construct a counterexample to the statement S. Our counterexample will be
of the form Ψ(A)∪{∞}, where A is a special kind of almost disjoint family,
and “∞” is one additional point.

Let T be a tower on ω. By “p = c”, we may assume without loss of
generality that T = {Tα : α < c}, and for all α < β < c, Tβ \ Tα is
finite, and Aα = Tα \ Tα+1 is infinite. Clearly, A = {Aα : α < c} is an
almost disjoint family. Let xα be the point of Ψ(A) associated with Aα. Put
X = Ψ(A) ∪ {∞}, let points of Ψ(A) have their usual neighborhoods, and
define basic neighborhoods of “∞” for each α < c and finite H ⊂ ω by

W (α,H) = {∞} ∪ (Tα \H) ∪ {xβ : α ≤ β < c}.
It is straightforward to show that X is a zero-dimensional T2-space.

Since W (α, ∅) misses the closed discrete set {xβ : β < α}, and c is a
limit cardinal, it is clear that e(X) ≥ c, and since |X| = c, in fact e(X) = c
(however, X has no closed discrete set of cardinality c since “∞” is a limit
point of any set of cardinality c). Since X is separable, d(X) = ω, and thus
we have e(X) = c = 2d(X). It remains to show that X satisfies property (a).
Let U be an open cover of X, and D a dense set. There exists α < c, Uα ∈ U ,
and finite Hα ⊂ ω such that W (α,Hα) ⊂ Uα. Pick d0 ∈ Tα \Hα ⊂ Uα. For
β < α, there exist finite sets Fβ and Uβ ∈ U such that

{xβ} ∪ (Aβ \ Fβ) ⊂ Uβ and Aβ \ Fβ ⊂ ω \ Tα.
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Now A′ = {Aβ \Fβ : β < α} is an almost disjoint family with |A′| < c =
p; so by Theorem 3, Ψ(A′) satisfies property (a). Thus there exists a closed
discrete P ⊂ ω such that st(P,U) = Ψ(A′). Finally, we note that

Z = ω \ (st(P,U) ∪ (Tα \Hα))

is a closed discrete subset of X. Thus P ∪ Z ∪ {d0} is closed discrete in X,
P ∪ Z ∪ {d0} ⊂ ω ⊂ D, and

st(P ∪ Z ∪ {d0},U) = X.

Thus X satisfies property (a), and this completes the proof.

Remark 1. In the proof of Theorem 9(ii), we used the statement “c is
a limit cardinal.” In the presence of “p = c”, this statement is equivalent to
“c is weakly inaccessible” because p is regular (see [2, 3.1] or [5, 21E]).

7. Using only dense sets of smallest cardinality. It seems natural
to ask if we can find the numbers dd(X) and ddc(X) by looking only at
dense sets of cardinality d(X). To consider this, we define

dd1(X) = min{|FD| : D is dense and |D| = d(X)},
and

ddc1(X) = min{|C| : D is dense and |D| = d(X) and C is cofinal in FD}.
We ask whether dd(X) = dd1(X), and ddc(X) = ddc1(X).

Theorem 10. (1) If GCH holds, then for every T1-space X, dd(X) =
dd1(X).

(2) If p > ω1 then there exists a T3.5-space X such that

(i) dd(X) < dd1(X), and
(ii) ddc(X) < ddc1(X).

P r o o f o f (1). By T1,

d(X) ≤ dd(X) ≤ dd1(X) ≤ 2d(X) = d(X)+.

Thus we need only consider the case d(X) = dd(X). In this case, there exists
a dense set D such that |FD| = d(X). By T1, |D| ≤ |FD|; so |D| = d(X).

P r o o f o f (2)(i). The example is a subspace of 2ω1 with the product
topology, and we use well known properties of this space. Let C ⊂ 2ω1 be
a countable dense set. Let D = {f ∈ 2ω1 : |{α < ω1 : f(α) 6= 0}| ≤ ω}.
Put X = C ∪ D as a subspace of the space 2ω1 . It is well known that
D is countably compact. Let E be a countable dense subset of X. Then
E ∩D ⊂ Dα for some α < ω1 where

Dα = {f ∈ 2ω1 : f(β) = 0 for all α ≤ β < ω1}.
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Since Dα is a closed nowhere dense set in 2ω1 , E ∩ (C \ Dα) is dense in
C, therefore dense in 2ω1 . Pick any y ∈ 2ω1 \X. Since χ(y, 2ω1) = ω1, and
p > ω1, it is well known that there exists a countably infinite set H ⊂ E
such that H converges to y. It follows that H has no limit points in X (since
y 6∈ X); so H is an infinite closed discrete subset of E. Thus |FE | = 2ω, and
since E was an arbitrary countable dense subset of X, we have dd1(X) = 2ω.
On the other hand, D0 = {f ∈ 2ω1 : |{α < ω1 : f(α) = 1}| < ω} is dense
in 2ω1 , and has no infinite closed discrete set in X since D0 ⊂ D (and D is
countably compact). Hence FD0 = [D0]<ω; so |FD0 | = ω1. Thus dd(X) ≤ ω1

(in fact, dd(X) = ω1). Thus we have

dd(X) = ω1 < p ≤ 2ω = dd1(X).

P r o o f o f (2)(ii). We first note that by the countable compactness
of D, we have ddc(X) ≤ ω1 (in fact, ddc(X) = ω1). Now we show that
ddc1(X) > ω1. Let E be a countable dense subset of X, and {Hα : α < ω1}
a family of closed discrete (in X) subsets of E. Since X is dense in 2ω1 , it
follows that clHα, the closure of Hα in 2ω1 , is nowhere dense in 2ω1 . Since
p < ω1, 2ω1 is not the union of ω1 nowhere dense sets [5, 14.2]; so there
exists a point y ∈ 2ω1 such that y 6∈ ⋃{clHα : α < ω1}. Again using p > ω1,
there exists a sequence in E converging to y, which gives us a closed discrete
(in X) set that is almost disjoint from (and hence not a subset of) each Hα.

The space X = C ∪ D in Theorem 10(2) does not have property (a).
This follows from a result of Matveev [12, Proposition 2].

8. Questions

1. Can the consistency of ¬S be established without the use of large
cardinals?

2. By Theorem 3, every almost disjoint family A with |A| < p is soft.
Does |A| < a imply that A is soft (this question was raised by K. Kunen)?
If the answer is “no”, then we ask the question for |A| < b (recall that
p ≤ b ≤ a ≤ c).

3. Can the set-theoretic assumptions in Theorem 8 be weakened, or in
the case of Theorem 10(2)(ii), be eliminated entirely?
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